Sat Oct 4 17:20:06 2008 UTC ()
in cpu_hatch(), set PIR when the current value is not what we need
rather than only when it's zero.


(chs)
diff -r1.48 -r1.49 src/sys/arch/powerpc/oea/cpu_subr.c

cvs diff -r1.48 -r1.49 src/sys/arch/powerpc/oea/cpu_subr.c (switch to unified diff)

--- src/sys/arch/powerpc/oea/cpu_subr.c 2008/09/23 13:58:59 1.48
+++ src/sys/arch/powerpc/oea/cpu_subr.c 2008/10/04 17:20:06 1.49
@@ -1,1270 +1,1269 @@ @@ -1,1270 +1,1269 @@
1/* $NetBSD: cpu_subr.c,v 1.48 2008/09/23 13:58:59 macallan Exp $ */ 1/* $NetBSD: cpu_subr.c,v 1.49 2008/10/04 17:20:06 chs Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 2001 Matt Thomas. 4 * Copyright (c) 2001 Matt Thomas.
5 * Copyright (c) 2001 Tsubai Masanari. 5 * Copyright (c) 2001 Tsubai Masanari.
6 * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc. 6 * Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
7 * All rights reserved. 7 * All rights reserved.
8 * 8 *
9 * Redistribution and use in source and binary forms, with or without 9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions 10 * modification, are permitted provided that the following conditions
11 * are met: 11 * are met:
12 * 1. Redistributions of source code must retain the above copyright 12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer. 13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright 14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the 15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution. 16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software 17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement: 18 * must display the following acknowledgement:
19 * This product includes software developed by 19 * This product includes software developed by
20 * Internet Research Institute, Inc. 20 * Internet Research Institute, Inc.
21 * 4. The name of the author may not be used to endorse or promote products 21 * 4. The name of the author may not be used to endorse or promote products
22 * derived from this software without specific prior written permission. 22 * derived from this software without specific prior written permission.
23 * 23 *
24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */ 34 */
35 35
36#include <sys/cdefs.h> 36#include <sys/cdefs.h>
37__KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.48 2008/09/23 13:58:59 macallan Exp $"); 37__KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.49 2008/10/04 17:20:06 chs Exp $");
38 38
39#include "opt_ppcparam.h" 39#include "opt_ppcparam.h"
40#include "opt_multiprocessor.h" 40#include "opt_multiprocessor.h"
41#include "opt_altivec.h" 41#include "opt_altivec.h"
42#include "sysmon_envsys.h" 42#include "sysmon_envsys.h"
43 43
44#include <sys/param.h> 44#include <sys/param.h>
45#include <sys/systm.h> 45#include <sys/systm.h>
46#include <sys/device.h> 46#include <sys/device.h>
47#include <sys/types.h> 47#include <sys/types.h>
48#include <sys/lwp.h> 48#include <sys/lwp.h>
49#include <sys/user.h> 49#include <sys/user.h>
50#include <sys/malloc.h> 50#include <sys/malloc.h>
51 51
52#include <uvm/uvm_extern.h> 52#include <uvm/uvm_extern.h>
53 53
54#include <powerpc/oea/hid.h> 54#include <powerpc/oea/hid.h>
55#include <powerpc/oea/hid_601.h> 55#include <powerpc/oea/hid_601.h>
56#include <powerpc/spr.h> 56#include <powerpc/spr.h>
57#include <powerpc/oea/cpufeat.h> 57#include <powerpc/oea/cpufeat.h>
58 58
59#include <dev/sysmon/sysmonvar.h> 59#include <dev/sysmon/sysmonvar.h>
60 60
61static void cpu_enable_l2cr(register_t); 61static void cpu_enable_l2cr(register_t);
62static void cpu_enable_l3cr(register_t); 62static void cpu_enable_l3cr(register_t);
63static void cpu_config_l2cr(int); 63static void cpu_config_l2cr(int);
64static void cpu_config_l3cr(int); 64static void cpu_config_l3cr(int);
65static void cpu_probe_speed(struct cpu_info *); 65static void cpu_probe_speed(struct cpu_info *);
66static void cpu_idlespin(void); 66static void cpu_idlespin(void);
67#if NSYSMON_ENVSYS > 0 67#if NSYSMON_ENVSYS > 0
68static void cpu_tau_setup(struct cpu_info *); 68static void cpu_tau_setup(struct cpu_info *);
69static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *); 69static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
70#endif 70#endif
71 71
72int cpu; 72int cpu;
73int ncpus; 73int ncpus;
74 74
75struct fmttab { 75struct fmttab {
76 register_t fmt_mask; 76 register_t fmt_mask;
77 register_t fmt_value; 77 register_t fmt_value;
78 const char *fmt_string; 78 const char *fmt_string;
79}; 79};
80 80
81static const struct fmttab cpu_7450_l2cr_formats[] = { 81static const struct fmttab cpu_7450_l2cr_formats[] = {
82 { L2CR_L2E, 0, " disabled" }, 82 { L2CR_L2E, 0, " disabled" },
83 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" }, 83 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
84 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" }, 84 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
85 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" }, 85 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
86 { L2CR_L2E, ~0, " 256KB L2 cache" }, 86 { L2CR_L2E, ~0, " 256KB L2 cache" },
87 { L2CR_L2PE, 0, " no parity" }, 87 { L2CR_L2PE, 0, " no parity" },
88 { L2CR_L2PE, ~0, " parity enabled" }, 88 { L2CR_L2PE, ~0, " parity enabled" },
89 { 0, 0, NULL } 89 { 0, 0, NULL }
90}; 90};
91 91
92static const struct fmttab cpu_7448_l2cr_formats[] = { 92static const struct fmttab cpu_7448_l2cr_formats[] = {
93 { L2CR_L2E, 0, " disabled" }, 93 { L2CR_L2E, 0, " disabled" },
94 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" }, 94 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
95 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" }, 95 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
96 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" }, 96 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
97 { L2CR_L2E, ~0, " 1MB L2 cache" }, 97 { L2CR_L2E, ~0, " 1MB L2 cache" },
98 { L2CR_L2PE, 0, " no parity" }, 98 { L2CR_L2PE, 0, " no parity" },
99 { L2CR_L2PE, ~0, " parity enabled" }, 99 { L2CR_L2PE, ~0, " parity enabled" },
100 { 0, 0, NULL } 100 { 0, 0, NULL }
101}; 101};
102 102
103static const struct fmttab cpu_7457_l2cr_formats[] = { 103static const struct fmttab cpu_7457_l2cr_formats[] = {
104 { L2CR_L2E, 0, " disabled" }, 104 { L2CR_L2E, 0, " disabled" },
105 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" }, 105 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
106 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" }, 106 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
107 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" }, 107 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
108 { L2CR_L2E, ~0, " 512KB L2 cache" }, 108 { L2CR_L2E, ~0, " 512KB L2 cache" },
109 { L2CR_L2PE, 0, " no parity" }, 109 { L2CR_L2PE, 0, " no parity" },
110 { L2CR_L2PE, ~0, " parity enabled" }, 110 { L2CR_L2PE, ~0, " parity enabled" },
111 { 0, 0, NULL } 111 { 0, 0, NULL }
112}; 112};
113 113
114static const struct fmttab cpu_7450_l3cr_formats[] = { 114static const struct fmttab cpu_7450_l3cr_formats[] = {
115 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" }, 115 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
116 { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" }, 116 { L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
117 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" }, 117 { L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
118 { L3CR_L3SIZ, L3SIZ_2M, " 2MB" }, 118 { L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
119 { L3CR_L3SIZ, L3SIZ_1M, " 1MB" }, 119 { L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
120 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" }, 120 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
121 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" }, 121 { L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
122 { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" }, 122 { L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
123 { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" }, 123 { L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
124 { L3CR_L3SIZ, ~0, " L3 cache" }, 124 { L3CR_L3SIZ, ~0, " L3 cache" },
125 { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" }, 125 { L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
126 { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" }, 126 { L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
127 { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" }, 127 { L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
128 { L3CR_L3CLK, ~0, " at" }, 128 { L3CR_L3CLK, ~0, " at" },
129 { L3CR_L3CLK, L3CLK_20, " 2:1" }, 129 { L3CR_L3CLK, L3CLK_20, " 2:1" },
130 { L3CR_L3CLK, L3CLK_25, " 2.5:1" }, 130 { L3CR_L3CLK, L3CLK_25, " 2.5:1" },
131 { L3CR_L3CLK, L3CLK_30, " 3:1" }, 131 { L3CR_L3CLK, L3CLK_30, " 3:1" },
132 { L3CR_L3CLK, L3CLK_35, " 3.5:1" }, 132 { L3CR_L3CLK, L3CLK_35, " 3.5:1" },
133 { L3CR_L3CLK, L3CLK_40, " 4:1" }, 133 { L3CR_L3CLK, L3CLK_40, " 4:1" },
134 { L3CR_L3CLK, L3CLK_50, " 5:1" }, 134 { L3CR_L3CLK, L3CLK_50, " 5:1" },
135 { L3CR_L3CLK, L3CLK_60, " 6:1" }, 135 { L3CR_L3CLK, L3CLK_60, " 6:1" },
136 { L3CR_L3CLK, ~0, " ratio" }, 136 { L3CR_L3CLK, ~0, " ratio" },
137 { 0, 0, NULL }, 137 { 0, 0, NULL },
138}; 138};
139 139
140static const struct fmttab cpu_ibm750_l2cr_formats[] = { 140static const struct fmttab cpu_ibm750_l2cr_formats[] = {
141 { L2CR_L2E, 0, " disabled" }, 141 { L2CR_L2E, 0, " disabled" },
142 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" }, 142 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
143 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" }, 143 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
144 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" }, 144 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
145 { 0, ~0, " 512KB" }, 145 { 0, ~0, " 512KB" },
146 { L2CR_L2WT, L2CR_L2WT, " WT" }, 146 { L2CR_L2WT, L2CR_L2WT, " WT" },
147 { L2CR_L2WT, 0, " WB" }, 147 { L2CR_L2WT, 0, " WB" },
148 { L2CR_L2PE, L2CR_L2PE, " with ECC" }, 148 { L2CR_L2PE, L2CR_L2PE, " with ECC" },
149 { 0, ~0, " L2 cache" }, 149 { 0, ~0, " L2 cache" },
150 { 0, 0, NULL } 150 { 0, 0, NULL }
151}; 151};
152 152
153static const struct fmttab cpu_l2cr_formats[] = { 153static const struct fmttab cpu_l2cr_formats[] = {
154 { L2CR_L2E, 0, " disabled" }, 154 { L2CR_L2E, 0, " disabled" },
155 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" }, 155 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
156 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" }, 156 { L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
157 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" }, 157 { L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
158 { L2CR_L2PE, L2CR_L2PE, " parity" }, 158 { L2CR_L2PE, L2CR_L2PE, " parity" },
159 { L2CR_L2PE, 0, " no-parity" }, 159 { L2CR_L2PE, 0, " no-parity" },
160 { L2CR_L2SIZ, L2SIZ_2M, " 2MB" }, 160 { L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
161 { L2CR_L2SIZ, L2SIZ_1M, " 1MB" }, 161 { L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
162 { L2CR_L2SIZ, L2SIZ_512K, " 512KB" }, 162 { L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
163 { L2CR_L2SIZ, L2SIZ_256K, " 256KB" }, 163 { L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
164 { L2CR_L2WT, L2CR_L2WT, " WT" }, 164 { L2CR_L2WT, L2CR_L2WT, " WT" },
165 { L2CR_L2WT, 0, " WB" }, 165 { L2CR_L2WT, 0, " WB" },
166 { L2CR_L2E, ~0, " L2 cache" }, 166 { L2CR_L2E, ~0, " L2 cache" },
167 { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" }, 167 { L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
168 { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" }, 168 { L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
169 { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" }, 169 { L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
170 { L2CR_L2CLK, ~0, " at" }, 170 { L2CR_L2CLK, ~0, " at" },
171 { L2CR_L2CLK, L2CLK_10, " 1:1" }, 171 { L2CR_L2CLK, L2CLK_10, " 1:1" },
172 { L2CR_L2CLK, L2CLK_15, " 1.5:1" }, 172 { L2CR_L2CLK, L2CLK_15, " 1.5:1" },
173 { L2CR_L2CLK, L2CLK_20, " 2:1" }, 173 { L2CR_L2CLK, L2CLK_20, " 2:1" },
174 { L2CR_L2CLK, L2CLK_25, " 2.5:1" }, 174 { L2CR_L2CLK, L2CLK_25, " 2.5:1" },
175 { L2CR_L2CLK, L2CLK_30, " 3:1" }, 175 { L2CR_L2CLK, L2CLK_30, " 3:1" },
176 { L2CR_L2CLK, L2CLK_35, " 3.5:1" }, 176 { L2CR_L2CLK, L2CLK_35, " 3.5:1" },
177 { L2CR_L2CLK, L2CLK_40, " 4:1" }, 177 { L2CR_L2CLK, L2CLK_40, " 4:1" },
178 { L2CR_L2CLK, ~0, " ratio" }, 178 { L2CR_L2CLK, ~0, " ratio" },
179 { 0, 0, NULL } 179 { 0, 0, NULL }
180}; 180};
181 181
182static void cpu_fmttab_print(const struct fmttab *, register_t); 182static void cpu_fmttab_print(const struct fmttab *, register_t);
183 183
184struct cputab { 184struct cputab {
185 const char name[8]; 185 const char name[8];
186 uint16_t version; 186 uint16_t version;
187 uint16_t revfmt; 187 uint16_t revfmt;
188}; 188};
189#define REVFMT_MAJMIN 1 /* %u.%u */ 189#define REVFMT_MAJMIN 1 /* %u.%u */
190#define REVFMT_HEX 2 /* 0x%04x */ 190#define REVFMT_HEX 2 /* 0x%04x */
191#define REVFMT_DEC 3 /* %u */ 191#define REVFMT_DEC 3 /* %u */
192static const struct cputab models[] = { 192static const struct cputab models[] = {
193 { "601", MPC601, REVFMT_DEC }, 193 { "601", MPC601, REVFMT_DEC },
194 { "602", MPC602, REVFMT_DEC }, 194 { "602", MPC602, REVFMT_DEC },
195 { "603", MPC603, REVFMT_MAJMIN }, 195 { "603", MPC603, REVFMT_MAJMIN },
196 { "603e", MPC603e, REVFMT_MAJMIN }, 196 { "603e", MPC603e, REVFMT_MAJMIN },
197 { "603ev", MPC603ev, REVFMT_MAJMIN }, 197 { "603ev", MPC603ev, REVFMT_MAJMIN },
198 { "G2", MPCG2, REVFMT_MAJMIN }, 198 { "G2", MPCG2, REVFMT_MAJMIN },
199 { "604", MPC604, REVFMT_MAJMIN }, 199 { "604", MPC604, REVFMT_MAJMIN },
200 { "604e", MPC604e, REVFMT_MAJMIN }, 200 { "604e", MPC604e, REVFMT_MAJMIN },
201 { "604ev", MPC604ev, REVFMT_MAJMIN }, 201 { "604ev", MPC604ev, REVFMT_MAJMIN },
202 { "620", MPC620, REVFMT_HEX }, 202 { "620", MPC620, REVFMT_HEX },
203 { "750", MPC750, REVFMT_MAJMIN }, 203 { "750", MPC750, REVFMT_MAJMIN },
204 { "750FX", IBM750FX, REVFMT_MAJMIN }, 204 { "750FX", IBM750FX, REVFMT_MAJMIN },
205 { "7400", MPC7400, REVFMT_MAJMIN }, 205 { "7400", MPC7400, REVFMT_MAJMIN },
206 { "7410", MPC7410, REVFMT_MAJMIN }, 206 { "7410", MPC7410, REVFMT_MAJMIN },
207 { "7450", MPC7450, REVFMT_MAJMIN }, 207 { "7450", MPC7450, REVFMT_MAJMIN },
208 { "7455", MPC7455, REVFMT_MAJMIN }, 208 { "7455", MPC7455, REVFMT_MAJMIN },
209 { "7457", MPC7457, REVFMT_MAJMIN }, 209 { "7457", MPC7457, REVFMT_MAJMIN },
210 { "7447A", MPC7447A, REVFMT_MAJMIN }, 210 { "7447A", MPC7447A, REVFMT_MAJMIN },
211 { "7448", MPC7448, REVFMT_MAJMIN }, 211 { "7448", MPC7448, REVFMT_MAJMIN },
212 { "8240", MPC8240, REVFMT_MAJMIN }, 212 { "8240", MPC8240, REVFMT_MAJMIN },
213 { "8245", MPC8245, REVFMT_MAJMIN }, 213 { "8245", MPC8245, REVFMT_MAJMIN },
214 { "970", IBM970, REVFMT_MAJMIN }, 214 { "970", IBM970, REVFMT_MAJMIN },
215 { "970FX", IBM970FX, REVFMT_MAJMIN }, 215 { "970FX", IBM970FX, REVFMT_MAJMIN },
216 { "970MP", IBM970MP, REVFMT_MAJMIN }, 216 { "970MP", IBM970MP, REVFMT_MAJMIN },
217 { "POWER3II", IBMPOWER3II, REVFMT_MAJMIN }, 217 { "POWER3II", IBMPOWER3II, REVFMT_MAJMIN },
218 { "", 0, REVFMT_HEX } 218 { "", 0, REVFMT_HEX }
219}; 219};
220 220
221#ifdef MULTIPROCESSOR 221#ifdef MULTIPROCESSOR
222struct cpu_info cpu_info[CPU_MAXNUM] = { { .ci_curlwp = &lwp0, }, };  222struct cpu_info cpu_info[CPU_MAXNUM] = { { .ci_curlwp = &lwp0, }, };
223volatile struct cpu_hatch_data *cpu_hatch_data; 223volatile struct cpu_hatch_data *cpu_hatch_data;
224volatile int cpu_hatch_stack; 224volatile int cpu_hatch_stack;
225extern int ticks_per_intr; 225extern int ticks_per_intr;
226#include <powerpc/oea/bat.h> 226#include <powerpc/oea/bat.h>
227#include <arch/powerpc/pic/picvar.h> 227#include <arch/powerpc/pic/picvar.h>
228#include <arch/powerpc/pic/ipivar.h> 228#include <arch/powerpc/pic/ipivar.h>
229extern struct bat battable[]; 229extern struct bat battable[];
230#else 230#else
231struct cpu_info cpu_info[1] = { { .ci_curlwp = &lwp0, }, };  231struct cpu_info cpu_info[1] = { { .ci_curlwp = &lwp0, }, };
232#endif /*MULTIPROCESSOR*/ 232#endif /*MULTIPROCESSOR*/
233 233
234int cpu_altivec; 234int cpu_altivec;
235int cpu_psluserset, cpu_pslusermod; 235int cpu_psluserset, cpu_pslusermod;
236char cpu_model[80]; 236char cpu_model[80];
237 237
238/* This is to be called from locore.S, and nowhere else. */ 238/* This is to be called from locore.S, and nowhere else. */
239 239
240void 240void
241cpu_model_init(void) 241cpu_model_init(void)
242{ 242{
243 u_int pvr, vers; 243 u_int pvr, vers;
244 244
245 pvr = mfpvr(); 245 pvr = mfpvr();
246 vers = pvr >> 16; 246 vers = pvr >> 16;
247 247
248 oeacpufeat = 0; 248 oeacpufeat = 0;
249  249
250 if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 || 250 if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
251 vers == IBMCELL || vers == IBMPOWER6P5) 251 vers == IBMCELL || vers == IBMPOWER6P5)
252 oeacpufeat |= OEACPU_64 | OEACPU_64_BRIDGE | OEACPU_NOBAT; 252 oeacpufeat |= OEACPU_64 | OEACPU_64_BRIDGE | OEACPU_NOBAT;
253  253
254 else if (vers == MPC601) 254 else if (vers == MPC601)
255 oeacpufeat |= OEACPU_601; 255 oeacpufeat |= OEACPU_601;
256 256
257 else if (MPC745X_P(vers) && vers != MPC7450) 257 else if (MPC745X_P(vers) && vers != MPC7450)
258 oeacpufeat |= OEACPU_XBSEN | OEACPU_HIGHBAT | OEACPU_HIGHSPRG; 258 oeacpufeat |= OEACPU_XBSEN | OEACPU_HIGHBAT | OEACPU_HIGHSPRG;
259} 259}
260 260
261void 261void
262cpu_fmttab_print(const struct fmttab *fmt, register_t data) 262cpu_fmttab_print(const struct fmttab *fmt, register_t data)
263{ 263{
264 for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) { 264 for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
265 if ((~fmt->fmt_mask & fmt->fmt_value) != 0 || 265 if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
266 (data & fmt->fmt_mask) == fmt->fmt_value) 266 (data & fmt->fmt_mask) == fmt->fmt_value)
267 aprint_normal("%s", fmt->fmt_string); 267 aprint_normal("%s", fmt->fmt_string);
268 } 268 }
269} 269}
270 270
271void 271void
272cpu_idlespin(void) 272cpu_idlespin(void)
273{ 273{
274 register_t msr; 274 register_t msr;
275 275
276 if (powersave <= 0) 276 if (powersave <= 0)
277 return; 277 return;
278 278
279 __asm volatile( 279 __asm volatile(
280 "sync;" 280 "sync;"
281 "mfmsr %0;" 281 "mfmsr %0;"
282 "oris %0,%0,%1@h;" /* enter power saving mode */ 282 "oris %0,%0,%1@h;" /* enter power saving mode */
283 "mtmsr %0;" 283 "mtmsr %0;"
284 "isync;" 284 "isync;"
285 : "=r"(msr) 285 : "=r"(msr)
286 : "J"(PSL_POW)); 286 : "J"(PSL_POW));
287} 287}
288 288
289void 289void
290cpu_probe_cache(void) 290cpu_probe_cache(void)
291{ 291{
292 u_int assoc, pvr, vers; 292 u_int assoc, pvr, vers;
293 293
294 pvr = mfpvr(); 294 pvr = mfpvr();
295 vers = pvr >> 16; 295 vers = pvr >> 16;
296 296
297 297
298 /* Presently common across almost all implementations. */ 298 /* Presently common across almost all implementations. */
299 curcpu()->ci_ci.dcache_line_size = 32; 299 curcpu()->ci_ci.dcache_line_size = 32;
300 curcpu()->ci_ci.icache_line_size = 32; 300 curcpu()->ci_ci.icache_line_size = 32;
301 301
302 302
303 switch (vers) { 303 switch (vers) {
304#define K *1024 304#define K *1024
305 case IBM750FX: 305 case IBM750FX:
306 case MPC601: 306 case MPC601:
307 case MPC750: 307 case MPC750:
308 case MPC7400: 308 case MPC7400:
309 case MPC7447A: 309 case MPC7447A:
310 case MPC7448: 310 case MPC7448:
311 case MPC7450: 311 case MPC7450:
312 case MPC7455: 312 case MPC7455:
313 case MPC7457: 313 case MPC7457:
314 curcpu()->ci_ci.dcache_size = 32 K; 314 curcpu()->ci_ci.dcache_size = 32 K;
315 curcpu()->ci_ci.icache_size = 32 K; 315 curcpu()->ci_ci.icache_size = 32 K;
316 assoc = 8; 316 assoc = 8;
317 break; 317 break;
318 case MPC603: 318 case MPC603:
319 curcpu()->ci_ci.dcache_size = 8 K; 319 curcpu()->ci_ci.dcache_size = 8 K;
320 curcpu()->ci_ci.icache_size = 8 K; 320 curcpu()->ci_ci.icache_size = 8 K;
321 assoc = 2; 321 assoc = 2;
322 break; 322 break;
323 case MPC603e: 323 case MPC603e:
324 case MPC603ev: 324 case MPC603ev:
325 case MPC604: 325 case MPC604:
326 case MPC8240: 326 case MPC8240:
327 case MPC8245: 327 case MPC8245:
328 case MPCG2: 328 case MPCG2:
329 curcpu()->ci_ci.dcache_size = 16 K; 329 curcpu()->ci_ci.dcache_size = 16 K;
330 curcpu()->ci_ci.icache_size = 16 K; 330 curcpu()->ci_ci.icache_size = 16 K;
331 assoc = 4; 331 assoc = 4;
332 break; 332 break;
333 case MPC604e: 333 case MPC604e:
334 case MPC604ev: 334 case MPC604ev:
335 curcpu()->ci_ci.dcache_size = 32 K; 335 curcpu()->ci_ci.dcache_size = 32 K;
336 curcpu()->ci_ci.icache_size = 32 K; 336 curcpu()->ci_ci.icache_size = 32 K;
337 assoc = 4; 337 assoc = 4;
338 break; 338 break;
339 case IBMPOWER3II: 339 case IBMPOWER3II:
340 curcpu()->ci_ci.dcache_size = 64 K; 340 curcpu()->ci_ci.dcache_size = 64 K;
341 curcpu()->ci_ci.icache_size = 32 K; 341 curcpu()->ci_ci.icache_size = 32 K;
342 curcpu()->ci_ci.dcache_line_size = 128; 342 curcpu()->ci_ci.dcache_line_size = 128;
343 curcpu()->ci_ci.icache_line_size = 128; 343 curcpu()->ci_ci.icache_line_size = 128;
344 assoc = 128; /* not a typo */ 344 assoc = 128; /* not a typo */
345 break; 345 break;
346 case IBM970: 346 case IBM970:
347 case IBM970FX: 347 case IBM970FX:
348 case IBM970MP: 348 case IBM970MP:
349 curcpu()->ci_ci.dcache_size = 32 K; 349 curcpu()->ci_ci.dcache_size = 32 K;
350 curcpu()->ci_ci.icache_size = 64 K; 350 curcpu()->ci_ci.icache_size = 64 K;
351 curcpu()->ci_ci.dcache_line_size = 128; 351 curcpu()->ci_ci.dcache_line_size = 128;
352 curcpu()->ci_ci.icache_line_size = 128; 352 curcpu()->ci_ci.icache_line_size = 128;
353 assoc = 2; 353 assoc = 2;
354 break; 354 break;
355 355
356 default: 356 default:
357 curcpu()->ci_ci.dcache_size = PAGE_SIZE; 357 curcpu()->ci_ci.dcache_size = PAGE_SIZE;
358 curcpu()->ci_ci.icache_size = PAGE_SIZE; 358 curcpu()->ci_ci.icache_size = PAGE_SIZE;
359 assoc = 1; 359 assoc = 1;
360#undef K 360#undef K
361 } 361 }
362 362
363 /* 363 /*
364 * Possibly recolor. 364 * Possibly recolor.
365 */ 365 */
366 uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc)); 366 uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
367} 367}
368 368
369struct cpu_info * 369struct cpu_info *
370cpu_attach_common(struct device *self, int id) 370cpu_attach_common(struct device *self, int id)
371{ 371{
372 struct cpu_info *ci; 372 struct cpu_info *ci;
373 u_int pvr, vers; 373 u_int pvr, vers;
374 374
375 ci = &cpu_info[id]; 375 ci = &cpu_info[id];
376#ifndef MULTIPROCESSOR 376#ifndef MULTIPROCESSOR
377 /* 377 /*
378 * If this isn't the primary CPU, print an error message 378 * If this isn't the primary CPU, print an error message
379 * and just bail out. 379 * and just bail out.
380 */ 380 */
381 if (id != 0) { 381 if (id != 0) {
382 aprint_normal(": ID %d\n", id); 382 aprint_normal(": ID %d\n", id);
383 aprint_normal("%s: processor off-line; multiprocessor support " 383 aprint_normal("%s: processor off-line; multiprocessor support "
384 "not present in kernel\n", self->dv_xname); 384 "not present in kernel\n", self->dv_xname);
385 return (NULL); 385 return (NULL);
386 } 386 }
387#endif 387#endif
388 388
389 ci->ci_cpuid = id; 389 ci->ci_cpuid = id;
390 ci->ci_intrdepth = -1; 390 ci->ci_intrdepth = -1;
391 ci->ci_dev = self; 391 ci->ci_dev = self;
392 ci->ci_idlespin = cpu_idlespin; 392 ci->ci_idlespin = cpu_idlespin;
393 393
394 pvr = mfpvr(); 394 pvr = mfpvr();
395 vers = (pvr >> 16) & 0xffff; 395 vers = (pvr >> 16) & 0xffff;
396 396
397 switch (id) { 397 switch (id) {
398 case 0: 398 case 0:
399 /* load my cpu_number to PIR */ 399 /* load my cpu_number to PIR */
400 switch (vers) { 400 switch (vers) {
401 case MPC601: 401 case MPC601:
402 case MPC604: 402 case MPC604:
403 case MPC604e: 403 case MPC604e:
404 case MPC604ev: 404 case MPC604ev:
405 case MPC7400: 405 case MPC7400:
406 case MPC7410: 406 case MPC7410:
407 case MPC7447A: 407 case MPC7447A:
408 case MPC7448: 408 case MPC7448:
409 case MPC7450: 409 case MPC7450:
410 case MPC7455: 410 case MPC7455:
411 case MPC7457: 411 case MPC7457:
412 mtspr(SPR_PIR, id); 412 mtspr(SPR_PIR, id);
413 } 413 }
414 cpu_setup(self, ci); 414 cpu_setup(self, ci);
415 break; 415 break;
416 default: 416 default:
417 if (id >= CPU_MAXNUM) { 417 if (id >= CPU_MAXNUM) {
418 aprint_normal(": more than %d cpus?\n", CPU_MAXNUM); 418 aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
419 panic("cpuattach"); 419 panic("cpuattach");
420 } 420 }
421#ifndef MULTIPROCESSOR 421#ifndef MULTIPROCESSOR
422 aprint_normal(" not configured\n"); 422 aprint_normal(" not configured\n");
423 return NULL; 423 return NULL;
424#else 424#else
425 mi_cpu_attach(ci); 425 mi_cpu_attach(ci);
426 break; 426 break;
427#endif 427#endif
428 } 428 }
429 return (ci); 429 return (ci);
430} 430}
431 431
432void 432void
433cpu_setup(self, ci) 433cpu_setup(self, ci)
434 struct device *self; 434 struct device *self;
435 struct cpu_info *ci; 435 struct cpu_info *ci;
436{ 436{
437 u_int hid0, hid0_save, pvr, vers; 437 u_int hid0, hid0_save, pvr, vers;
438 const char *bitmask; 438 const char *bitmask;
439 char hidbuf[128]; 439 char hidbuf[128];
440 char model[80]; 440 char model[80];
441 441
442 pvr = mfpvr(); 442 pvr = mfpvr();
443 vers = (pvr >> 16) & 0xffff; 443 vers = (pvr >> 16) & 0xffff;
444 444
445 cpu_identify(model, sizeof(model)); 445 cpu_identify(model, sizeof(model));
446 aprint_normal(": %s, ID %d%s\n", model, cpu_number(), 446 aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
447 cpu_number() == 0 ? " (primary)" : ""); 447 cpu_number() == 0 ? " (primary)" : "");
448 448
449 /* set the cpu number */ 449 /* set the cpu number */
450 ci->ci_cpuid = cpu_number(); 450 ci->ci_cpuid = cpu_number();
451 hid0_save = hid0 = mfspr(SPR_HID0); 451 hid0_save = hid0 = mfspr(SPR_HID0);
452 452
453 cpu_probe_cache(); 453 cpu_probe_cache();
454 454
455 /* 455 /*
456 * Configure power-saving mode. 456 * Configure power-saving mode.
457 */ 457 */
458 switch (vers) { 458 switch (vers) {
459 case MPC604: 459 case MPC604:
460 case MPC604e: 460 case MPC604e:
461 case MPC604ev: 461 case MPC604ev:
462 /* 462 /*
463 * Do not have HID0 support settings, but can support 463 * Do not have HID0 support settings, but can support
464 * MSR[POW] off 464 * MSR[POW] off
465 */ 465 */
466 powersave = 1; 466 powersave = 1;
467 break; 467 break;
468 468
469 case MPC603: 469 case MPC603:
470 case MPC603e: 470 case MPC603e:
471 case MPC603ev: 471 case MPC603ev:
472 case MPC750: 472 case MPC750:
473 case IBM750FX: 473 case IBM750FX:
474 case MPC7400: 474 case MPC7400:
475 case MPC7410: 475 case MPC7410:
476 case MPC8240: 476 case MPC8240:
477 case MPC8245: 477 case MPC8245:
478 case MPCG2: 478 case MPCG2:
479 /* Select DOZE mode. */ 479 /* Select DOZE mode. */
480 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP); 480 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
481 hid0 |= HID0_DOZE | HID0_DPM; 481 hid0 |= HID0_DOZE | HID0_DPM;
482 powersave = 1; 482 powersave = 1;
483 break; 483 break;
484 484
485 case MPC7447A: 485 case MPC7447A:
486 case MPC7448: 486 case MPC7448:
487 case MPC7457: 487 case MPC7457:
488 case MPC7455: 488 case MPC7455:
489 case MPC7450: 489 case MPC7450:
490 /* Enable the 7450 branch caches */ 490 /* Enable the 7450 branch caches */
491 hid0 |= HID0_SGE | HID0_BTIC; 491 hid0 |= HID0_SGE | HID0_BTIC;
492 hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT; 492 hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
493 /* Enable more and larger BAT registers */ 493 /* Enable more and larger BAT registers */
494 if (oeacpufeat & OEACPU_XBSEN) 494 if (oeacpufeat & OEACPU_XBSEN)
495 hid0 |= HID0_XBSEN; 495 hid0 |= HID0_XBSEN;
496 if (oeacpufeat & OEACPU_HIGHBAT) 496 if (oeacpufeat & OEACPU_HIGHBAT)
497 hid0 |= HID0_HIGH_BAT_EN; 497 hid0 |= HID0_HIGH_BAT_EN;
498 /* Disable BTIC on 7450 Rev 2.0 or earlier */ 498 /* Disable BTIC on 7450 Rev 2.0 or earlier */
499 if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200) 499 if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
500 hid0 &= ~HID0_BTIC; 500 hid0 &= ~HID0_BTIC;
501 /* Select NAP mode. */ 501 /* Select NAP mode. */
502 hid0 &= ~HID0_SLEEP; 502 hid0 &= ~HID0_SLEEP;
503 hid0 |= HID0_NAP | HID0_DPM; 503 hid0 |= HID0_NAP | HID0_DPM;
504 powersave = 1; 504 powersave = 1;
505 break; 505 break;
506 506
507 case IBM970: 507 case IBM970:
508 case IBM970FX: 508 case IBM970FX:
509 case IBM970MP: 509 case IBM970MP:
510 case IBMPOWER3II: 510 case IBMPOWER3II:
511 default: 511 default:
512 /* No power-saving mode is available. */ ; 512 /* No power-saving mode is available. */ ;
513 } 513 }
514 514
515#ifdef NAPMODE 515#ifdef NAPMODE
516 switch (vers) { 516 switch (vers) {
517 case IBM750FX: 517 case IBM750FX:
518 case MPC750: 518 case MPC750:
519 case MPC7400: 519 case MPC7400:
520 /* Select NAP mode. */ 520 /* Select NAP mode. */
521 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP); 521 hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
522 hid0 |= HID0_NAP; 522 hid0 |= HID0_NAP;
523 break; 523 break;
524 } 524 }
525#endif 525#endif
526 526
527 switch (vers) { 527 switch (vers) {
528 case IBM750FX: 528 case IBM750FX:
529 case MPC750: 529 case MPC750:
530 hid0 &= ~HID0_DBP; /* XXX correct? */ 530 hid0 &= ~HID0_DBP; /* XXX correct? */
531 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT; 531 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
532 break; 532 break;
533 533
534 case MPC7400: 534 case MPC7400:
535 case MPC7410: 535 case MPC7410:
536 hid0 &= ~HID0_SPD; 536 hid0 &= ~HID0_SPD;
537 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT; 537 hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
538 hid0 |= HID0_EIEC; 538 hid0 |= HID0_EIEC;
539 break; 539 break;
540 } 540 }
541 541
542 if (hid0 != hid0_save) { 542 if (hid0 != hid0_save) {
543 mtspr(SPR_HID0, hid0); 543 mtspr(SPR_HID0, hid0);
544 __asm volatile("sync;isync"); 544 __asm volatile("sync;isync");
545 } 545 }
546 546
547 547
548 switch (vers) { 548 switch (vers) {
549 case MPC601: 549 case MPC601:
550 bitmask = HID0_601_BITMASK; 550 bitmask = HID0_601_BITMASK;
551 break; 551 break;
552 case MPC7450: 552 case MPC7450:
553 case MPC7455: 553 case MPC7455:
554 case MPC7457: 554 case MPC7457:
555 bitmask = HID0_7450_BITMASK; 555 bitmask = HID0_7450_BITMASK;
556 break; 556 break;
557 case IBM970: 557 case IBM970:
558 case IBM970FX: 558 case IBM970FX:
559 case IBM970MP: 559 case IBM970MP:
560 bitmask = 0; 560 bitmask = 0;
561 break; 561 break;
562 default: 562 default:
563 bitmask = HID0_BITMASK; 563 bitmask = HID0_BITMASK;
564 break; 564 break;
565 } 565 }
566 bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf); 566 bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf);
567 aprint_normal("%s: HID0 %s, powersave: %d\n", self->dv_xname, hidbuf, 567 aprint_normal("%s: HID0 %s, powersave: %d\n", self->dv_xname, hidbuf,
568 powersave); 568 powersave);
569 569
570 ci->ci_khz = 0; 570 ci->ci_khz = 0;
571 571
572 /* 572 /*
573 * Display speed and cache configuration. 573 * Display speed and cache configuration.
574 */ 574 */
575 switch (vers) { 575 switch (vers) {
576 case MPC604: 576 case MPC604:
577 case MPC604e: 577 case MPC604e:
578 case MPC604ev: 578 case MPC604ev:
579 case MPC750: 579 case MPC750:
580 case IBM750FX: 580 case IBM750FX:
581 case MPC7400: 581 case MPC7400:
582 case MPC7410: 582 case MPC7410:
583 case MPC7447A: 583 case MPC7447A:
584 case MPC7448: 584 case MPC7448:
585 case MPC7450: 585 case MPC7450:
586 case MPC7455: 586 case MPC7455:
587 case MPC7457: 587 case MPC7457:
588 aprint_normal("%s: ", self->dv_xname); 588 aprint_normal("%s: ", self->dv_xname);
589 cpu_probe_speed(ci); 589 cpu_probe_speed(ci);
590 aprint_normal("%u.%02u MHz", 590 aprint_normal("%u.%02u MHz",
591 ci->ci_khz / 1000, (ci->ci_khz / 10) % 100); 591 ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
592 switch (vers) { 592 switch (vers) {
593 case MPC7450: /* 7441 does not have L3! */ 593 case MPC7450: /* 7441 does not have L3! */
594 case MPC7455: /* 7445 does not have L3! */ 594 case MPC7455: /* 7445 does not have L3! */
595 case MPC7457: /* 7447 does not have L3! */ 595 case MPC7457: /* 7447 does not have L3! */
596 cpu_config_l3cr(vers); 596 cpu_config_l3cr(vers);
597 break; 597 break;
598 case IBM750FX: 598 case IBM750FX:
599 case MPC750: 599 case MPC750:
600 case MPC7400: 600 case MPC7400:
601 case MPC7410: 601 case MPC7410:
602 case MPC7447A: 602 case MPC7447A:
603 case MPC7448: 603 case MPC7448:
604 cpu_config_l2cr(pvr); 604 cpu_config_l2cr(pvr);
605 break; 605 break;
606 default: 606 default:
607 break; 607 break;
608 } 608 }
609 aprint_normal("\n"); 609 aprint_normal("\n");
610 break; 610 break;
611 } 611 }
612 612
613#if NSYSMON_ENVSYS > 0 613#if NSYSMON_ENVSYS > 0
614 /* 614 /*
615 * Attach MPC750 temperature sensor to the envsys subsystem. 615 * Attach MPC750 temperature sensor to the envsys subsystem.
616 * XXX the 74xx series also has this sensor, but it is not 616 * XXX the 74xx series also has this sensor, but it is not
617 * XXX supported by Motorola and may return values that are off by  617 * XXX supported by Motorola and may return values that are off by
618 * XXX 35-55 degrees C. 618 * XXX 35-55 degrees C.
619 */ 619 */
620 if (vers == MPC750 || vers == IBM750FX) 620 if (vers == MPC750 || vers == IBM750FX)
621 cpu_tau_setup(ci); 621 cpu_tau_setup(ci);
622#endif 622#endif
623 623
624 evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR, 624 evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
625 NULL, self->dv_xname, "clock"); 625 NULL, self->dv_xname, "clock");
626 evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR, 626 evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
627 NULL, self->dv_xname, "soft clock"); 627 NULL, self->dv_xname, "soft clock");
628 evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR, 628 evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
629 NULL, self->dv_xname, "soft net"); 629 NULL, self->dv_xname, "soft net");
630 evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR, 630 evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
631 NULL, self->dv_xname, "soft serial"); 631 NULL, self->dv_xname, "soft serial");
632 evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP, 632 evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
633 NULL, self->dv_xname, "traps"); 633 NULL, self->dv_xname, "traps");
634 evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP, 634 evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
635 &ci->ci_ev_traps, self->dv_xname, "kernel DSI traps"); 635 &ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
636 evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP, 636 evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
637 &ci->ci_ev_traps, self->dv_xname, "user DSI traps"); 637 &ci->ci_ev_traps, self->dv_xname, "user DSI traps");
638 evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP, 638 evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
639 &ci->ci_ev_udsi, self->dv_xname, "user DSI failures"); 639 &ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
640 evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP, 640 evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
641 &ci->ci_ev_traps, self->dv_xname, "kernel ISI traps"); 641 &ci->ci_ev_traps, self->dv_xname, "kernel ISI traps");
642 evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP, 642 evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
643 &ci->ci_ev_traps, self->dv_xname, "user ISI traps"); 643 &ci->ci_ev_traps, self->dv_xname, "user ISI traps");
644 evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP, 644 evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
645 &ci->ci_ev_isi, self->dv_xname, "user ISI failures"); 645 &ci->ci_ev_isi, self->dv_xname, "user ISI failures");
646 evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP, 646 evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
647 &ci->ci_ev_traps, self->dv_xname, "system call traps"); 647 &ci->ci_ev_traps, self->dv_xname, "system call traps");
648 evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP, 648 evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
649 &ci->ci_ev_traps, self->dv_xname, "PGM traps"); 649 &ci->ci_ev_traps, self->dv_xname, "PGM traps");
650 evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP, 650 evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
651 &ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps"); 651 &ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
652 evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP, 652 evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
653 &ci->ci_ev_fpu, self->dv_xname, "FPU context switches"); 653 &ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
654 evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP, 654 evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
655 &ci->ci_ev_traps, self->dv_xname, "user alignment traps"); 655 &ci->ci_ev_traps, self->dv_xname, "user alignment traps");
656 evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP, 656 evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
657 &ci->ci_ev_ali, self->dv_xname, "user alignment traps"); 657 &ci->ci_ev_ali, self->dv_xname, "user alignment traps");
658 evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP, 658 evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
659 &ci->ci_ev_umchk, self->dv_xname, "user MCHK failures"); 659 &ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
660 evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP, 660 evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
661 &ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable"); 661 &ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
662#ifdef ALTIVEC 662#ifdef ALTIVEC
663 if (cpu_altivec) { 663 if (cpu_altivec) {
664 evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP, 664 evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
665 &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches"); 665 &ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
666 } 666 }
667#endif 667#endif
668 evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR, 668 evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
669 NULL, self->dv_xname, "IPIs"); 669 NULL, self->dv_xname, "IPIs");
670} 670}
671 671
672/* 672/*
673 * According to a document labeled "PVR Register Settings": 673 * According to a document labeled "PVR Register Settings":
674 ** For integrated microprocessors the PVR register inside the device 674 ** For integrated microprocessors the PVR register inside the device
675 ** will identify the version of the microprocessor core. You must also 675 ** will identify the version of the microprocessor core. You must also
676 ** read the Device ID, PCI register 02, to identify the part and the 676 ** read the Device ID, PCI register 02, to identify the part and the
677 ** Revision ID, PCI register 08, to identify the revision of the 677 ** Revision ID, PCI register 08, to identify the revision of the
678 ** integrated microprocessor. 678 ** integrated microprocessor.
679 * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014 679 * This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
680 */ 680 */
681 681
682void 682void
683cpu_identify(char *str, size_t len) 683cpu_identify(char *str, size_t len)
684{ 684{
685 u_int pvr, major, minor; 685 u_int pvr, major, minor;
686 uint16_t vers, rev, revfmt; 686 uint16_t vers, rev, revfmt;
687 const struct cputab *cp; 687 const struct cputab *cp;
688 const char *name; 688 const char *name;
689 size_t n; 689 size_t n;
690 690
691 pvr = mfpvr(); 691 pvr = mfpvr();
692 vers = pvr >> 16; 692 vers = pvr >> 16;
693 rev = pvr; 693 rev = pvr;
694 694
695 switch (vers) { 695 switch (vers) {
696 case MPC7410: 696 case MPC7410:
697 minor = (pvr >> 0) & 0xff; 697 minor = (pvr >> 0) & 0xff;
698 major = minor <= 4 ? 1 : 2; 698 major = minor <= 4 ? 1 : 2;
699 break; 699 break;
700 case MPCG2: /*XXX see note above */ 700 case MPCG2: /*XXX see note above */
701 major = (pvr >> 4) & 0xf; 701 major = (pvr >> 4) & 0xf;
702 minor = (pvr >> 0) & 0xf; 702 minor = (pvr >> 0) & 0xf;
703 break; 703 break;
704 default: 704 default:
705 major = (pvr >> 8) & 0xf; 705 major = (pvr >> 8) & 0xf;
706 minor = (pvr >> 0) & 0xf; 706 minor = (pvr >> 0) & 0xf;
707 } 707 }
708 708
709 for (cp = models; cp->name[0] != '\0'; cp++) { 709 for (cp = models; cp->name[0] != '\0'; cp++) {
710 if (cp->version == vers) 710 if (cp->version == vers)
711 break; 711 break;
712 } 712 }
713 713
714 if (str == NULL) { 714 if (str == NULL) {
715 str = cpu_model; 715 str = cpu_model;
716 len = sizeof(cpu_model); 716 len = sizeof(cpu_model);
717 cpu = vers; 717 cpu = vers;
718 } 718 }
719 719
720 revfmt = cp->revfmt; 720 revfmt = cp->revfmt;
721 name = cp->name; 721 name = cp->name;
722 if (rev == MPC750 && pvr == 15) { 722 if (rev == MPC750 && pvr == 15) {
723 name = "755"; 723 name = "755";
724 revfmt = REVFMT_HEX; 724 revfmt = REVFMT_HEX;
725 } 725 }
726 726
727 if (cp->name[0] != '\0') { 727 if (cp->name[0] != '\0') {
728 n = snprintf(str, len, "%s (Revision ", cp->name); 728 n = snprintf(str, len, "%s (Revision ", cp->name);
729 } else { 729 } else {
730 n = snprintf(str, len, "Version %#x (Revision ", vers); 730 n = snprintf(str, len, "Version %#x (Revision ", vers);
731 } 731 }
732 if (len > n) { 732 if (len > n) {
733 switch (revfmt) { 733 switch (revfmt) {
734 case REVFMT_MAJMIN: 734 case REVFMT_MAJMIN:
735 snprintf(str + n, len - n, "%u.%u)", major, minor); 735 snprintf(str + n, len - n, "%u.%u)", major, minor);
736 break; 736 break;
737 case REVFMT_HEX: 737 case REVFMT_HEX:
738 snprintf(str + n, len - n, "0x%04x)", rev); 738 snprintf(str + n, len - n, "0x%04x)", rev);
739 break; 739 break;
740 case REVFMT_DEC: 740 case REVFMT_DEC:
741 snprintf(str + n, len - n, "%u)", rev); 741 snprintf(str + n, len - n, "%u)", rev);
742 break; 742 break;
743 } 743 }
744 } 744 }
745} 745}
746 746
747#ifdef L2CR_CONFIG 747#ifdef L2CR_CONFIG
748u_int l2cr_config = L2CR_CONFIG; 748u_int l2cr_config = L2CR_CONFIG;
749#else 749#else
750u_int l2cr_config = 0; 750u_int l2cr_config = 0;
751#endif 751#endif
752 752
753#ifdef L3CR_CONFIG 753#ifdef L3CR_CONFIG
754u_int l3cr_config = L3CR_CONFIG; 754u_int l3cr_config = L3CR_CONFIG;
755#else 755#else
756u_int l3cr_config = 0; 756u_int l3cr_config = 0;
757#endif 757#endif
758 758
759void 759void
760cpu_enable_l2cr(register_t l2cr) 760cpu_enable_l2cr(register_t l2cr)
761{ 761{
762 register_t msr, x; 762 register_t msr, x;
763 uint16_t vers; 763 uint16_t vers;
764 764
765 vers = mfpvr() >> 16; 765 vers = mfpvr() >> 16;
766  766
767 /* Disable interrupts and set the cache config bits. */ 767 /* Disable interrupts and set the cache config bits. */
768 msr = mfmsr(); 768 msr = mfmsr();
769 mtmsr(msr & ~PSL_EE); 769 mtmsr(msr & ~PSL_EE);
770#ifdef ALTIVEC 770#ifdef ALTIVEC
771 if (cpu_altivec) 771 if (cpu_altivec)
772 __asm volatile("dssall"); 772 __asm volatile("dssall");
773#endif 773#endif
774 __asm volatile("sync"); 774 __asm volatile("sync");
775 mtspr(SPR_L2CR, l2cr & ~L2CR_L2E); 775 mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
776 __asm volatile("sync"); 776 __asm volatile("sync");
777 777
778 /* Wait for L2 clock to be stable (640 L2 clocks). */ 778 /* Wait for L2 clock to be stable (640 L2 clocks). */
779 delay(100); 779 delay(100);
780 780
781 /* Invalidate all L2 contents. */ 781 /* Invalidate all L2 contents. */
782 if (MPC745X_P(vers)) { 782 if (MPC745X_P(vers)) {
783 mtspr(SPR_L2CR, l2cr | L2CR_L2I); 783 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
784 do { 784 do {
785 x = mfspr(SPR_L2CR); 785 x = mfspr(SPR_L2CR);
786 } while (x & L2CR_L2I); 786 } while (x & L2CR_L2I);
787 } else { 787 } else {
788 mtspr(SPR_L2CR, l2cr | L2CR_L2I); 788 mtspr(SPR_L2CR, l2cr | L2CR_L2I);
789 do { 789 do {
790 x = mfspr(SPR_L2CR); 790 x = mfspr(SPR_L2CR);
791 } while (x & L2CR_L2IP); 791 } while (x & L2CR_L2IP);
792 } 792 }
793 /* Enable L2 cache. */ 793 /* Enable L2 cache. */
794 l2cr |= L2CR_L2E; 794 l2cr |= L2CR_L2E;
795 mtspr(SPR_L2CR, l2cr); 795 mtspr(SPR_L2CR, l2cr);
796 mtmsr(msr); 796 mtmsr(msr);
797} 797}
798 798
799void 799void
800cpu_enable_l3cr(register_t l3cr) 800cpu_enable_l3cr(register_t l3cr)
801{ 801{
802 register_t x; 802 register_t x;
803 803
804 /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */ 804 /* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
805  805
806 /* 806 /*
807 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and 807 * 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
808 * L3CLKEN. (also mask off reserved bits in case they were included 808 * L3CLKEN. (also mask off reserved bits in case they were included
809 * in L3CR_CONFIG) 809 * in L3CR_CONFIG)
810 */ 810 */
811 l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED); 811 l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
812 mtspr(SPR_L3CR, l3cr); 812 mtspr(SPR_L3CR, l3cr);
813 813
814 /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */ 814 /* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
815 l3cr |= 0x04000000; 815 l3cr |= 0x04000000;
816 mtspr(SPR_L3CR, l3cr); 816 mtspr(SPR_L3CR, l3cr);
817 817
818 /* 3: Set L3CLKEN to 1*/ 818 /* 3: Set L3CLKEN to 1*/
819 l3cr |= L3CR_L3CLKEN; 819 l3cr |= L3CR_L3CLKEN;
820 mtspr(SPR_L3CR, l3cr); 820 mtspr(SPR_L3CR, l3cr);
821 821
822 /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */ 822 /* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
823 __asm volatile("dssall;sync"); 823 __asm volatile("dssall;sync");
824 /* L3 cache is already disabled, no need to clear L3E */ 824 /* L3 cache is already disabled, no need to clear L3E */
825 mtspr(SPR_L3CR, l3cr|L3CR_L3I); 825 mtspr(SPR_L3CR, l3cr|L3CR_L3I);
826 do { 826 do {
827 x = mfspr(SPR_L3CR); 827 x = mfspr(SPR_L3CR);
828 } while (x & L3CR_L3I); 828 } while (x & L3CR_L3I);
829  829
830 /* 6: Clear L3CLKEN to 0 */ 830 /* 6: Clear L3CLKEN to 0 */
831 l3cr &= ~L3CR_L3CLKEN; 831 l3cr &= ~L3CR_L3CLKEN;
832 mtspr(SPR_L3CR, l3cr); 832 mtspr(SPR_L3CR, l3cr);
833 833
834 /* 7: Perform a 'sync' and wait at least 100 CPU cycles */ 834 /* 7: Perform a 'sync' and wait at least 100 CPU cycles */
835 __asm volatile("sync"); 835 __asm volatile("sync");
836 delay(100); 836 delay(100);
837 837
838 /* 8: Set L3E and L3CLKEN */ 838 /* 8: Set L3E and L3CLKEN */
839 l3cr |= (L3CR_L3E|L3CR_L3CLKEN); 839 l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
840 mtspr(SPR_L3CR, l3cr); 840 mtspr(SPR_L3CR, l3cr);
841 841
842 /* 9: Perform a 'sync' and wait at least 100 CPU cycles */ 842 /* 9: Perform a 'sync' and wait at least 100 CPU cycles */
843 __asm volatile("sync"); 843 __asm volatile("sync");
844 delay(100); 844 delay(100);
845} 845}
846 846
847void 847void
848cpu_config_l2cr(int pvr) 848cpu_config_l2cr(int pvr)
849{ 849{
850 register_t l2cr; 850 register_t l2cr;
851 u_int vers = (pvr >> 16) & 0xffff; 851 u_int vers = (pvr >> 16) & 0xffff;
852 852
853 l2cr = mfspr(SPR_L2CR); 853 l2cr = mfspr(SPR_L2CR);
854 854
855 /* 855 /*
856 * For MP systems, the firmware may only configure the L2 cache 856 * For MP systems, the firmware may only configure the L2 cache
857 * on the first CPU. In this case, assume that the other CPUs 857 * on the first CPU. In this case, assume that the other CPUs
858 * should use the same value for L2CR. 858 * should use the same value for L2CR.
859 */ 859 */
860 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) { 860 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
861 l2cr_config = l2cr; 861 l2cr_config = l2cr;
862 } 862 }
863 863
864 /* 864 /*
865 * Configure L2 cache if not enabled. 865 * Configure L2 cache if not enabled.
866 */ 866 */
867 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) { 867 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
868 cpu_enable_l2cr(l2cr_config); 868 cpu_enable_l2cr(l2cr_config);
869 l2cr = mfspr(SPR_L2CR); 869 l2cr = mfspr(SPR_L2CR);
870 } 870 }
871 871
872 if ((l2cr & L2CR_L2E) == 0) { 872 if ((l2cr & L2CR_L2E) == 0) {
873 aprint_normal(" L2 cache present but not enabled "); 873 aprint_normal(" L2 cache present but not enabled ");
874 return; 874 return;
875 } 875 }
876 aprint_normal(","); 876 aprint_normal(",");
877 877
878 switch (vers) { 878 switch (vers) {
879 case IBM750FX: 879 case IBM750FX:
880 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr); 880 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
881 break; 881 break;
882 case MPC750: 882 case MPC750:
883 if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ || 883 if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
884 (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */) 884 (pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
885 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr); 885 cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
886 else 886 else
887 cpu_fmttab_print(cpu_l2cr_formats, l2cr); 887 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
888 break; 888 break;
889 case MPC7447A: 889 case MPC7447A:
890 case MPC7457: 890 case MPC7457:
891 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr); 891 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
892 return; 892 return;
893 case MPC7448: 893 case MPC7448:
894 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr); 894 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
895 return; 895 return;
896 case MPC7450: 896 case MPC7450:
897 case MPC7455: 897 case MPC7455:
898 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr); 898 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
899 break; 899 break;
900 default: 900 default:
901 cpu_fmttab_print(cpu_l2cr_formats, l2cr); 901 cpu_fmttab_print(cpu_l2cr_formats, l2cr);
902 break; 902 break;
903 } 903 }
904} 904}
905 905
906void 906void
907cpu_config_l3cr(int vers) 907cpu_config_l3cr(int vers)
908{ 908{
909 register_t l2cr; 909 register_t l2cr;
910 register_t l3cr; 910 register_t l3cr;
911 911
912 l2cr = mfspr(SPR_L2CR); 912 l2cr = mfspr(SPR_L2CR);
913 913
914 /* 914 /*
915 * For MP systems, the firmware may only configure the L2 cache 915 * For MP systems, the firmware may only configure the L2 cache
916 * on the first CPU. In this case, assume that the other CPUs 916 * on the first CPU. In this case, assume that the other CPUs
917 * should use the same value for L2CR. 917 * should use the same value for L2CR.
918 */ 918 */
919 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) { 919 if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
920 l2cr_config = l2cr; 920 l2cr_config = l2cr;
921 } 921 }
922 922
923 /* 923 /*
924 * Configure L2 cache if not enabled. 924 * Configure L2 cache if not enabled.
925 */ 925 */
926 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) { 926 if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
927 cpu_enable_l2cr(l2cr_config); 927 cpu_enable_l2cr(l2cr_config);
928 l2cr = mfspr(SPR_L2CR); 928 l2cr = mfspr(SPR_L2CR);
929 } 929 }
930  930
931 aprint_normal(","); 931 aprint_normal(",");
932 switch (vers) { 932 switch (vers) {
933 case MPC7447A: 933 case MPC7447A:
934 case MPC7457: 934 case MPC7457:
935 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr); 935 cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
936 return; 936 return;
937 case MPC7448: 937 case MPC7448:
938 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr); 938 cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
939 return; 939 return;
940 default: 940 default:
941 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr); 941 cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
942 break; 942 break;
943 } 943 }
944 944
945 l3cr = mfspr(SPR_L3CR); 945 l3cr = mfspr(SPR_L3CR);
946 946
947 /* 947 /*
948 * For MP systems, the firmware may only configure the L3 cache 948 * For MP systems, the firmware may only configure the L3 cache
949 * on the first CPU. In this case, assume that the other CPUs 949 * on the first CPU. In this case, assume that the other CPUs
950 * should use the same value for L3CR. 950 * should use the same value for L3CR.
951 */ 951 */
952 if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) { 952 if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
953 l3cr_config = l3cr; 953 l3cr_config = l3cr;
954 } 954 }
955 955
956 /* 956 /*
957 * Configure L3 cache if not enabled. 957 * Configure L3 cache if not enabled.
958 */ 958 */
959 if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) { 959 if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
960 cpu_enable_l3cr(l3cr_config); 960 cpu_enable_l3cr(l3cr_config);
961 l3cr = mfspr(SPR_L3CR); 961 l3cr = mfspr(SPR_L3CR);
962 } 962 }
963  963
964 if (l3cr & L3CR_L3E) { 964 if (l3cr & L3CR_L3E) {
965 aprint_normal(","); 965 aprint_normal(",");
966 cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr); 966 cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
967 } 967 }
968} 968}
969 969
970void 970void
971cpu_probe_speed(struct cpu_info *ci) 971cpu_probe_speed(struct cpu_info *ci)
972{ 972{
973 uint64_t cps; 973 uint64_t cps;
974 974
975 mtspr(SPR_MMCR0, MMCR0_FC); 975 mtspr(SPR_MMCR0, MMCR0_FC);
976 mtspr(SPR_PMC1, 0); 976 mtspr(SPR_PMC1, 0);
977 mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES)); 977 mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
978 delay(100000); 978 delay(100000);
979 cps = (mfspr(SPR_PMC1) * 10) + 4999; 979 cps = (mfspr(SPR_PMC1) * 10) + 4999;
980 980
981 mtspr(SPR_MMCR0, MMCR0_FC); 981 mtspr(SPR_MMCR0, MMCR0_FC);
982 982
983 ci->ci_khz = cps / 1000; 983 ci->ci_khz = cps / 1000;
984} 984}
985 985
986#if NSYSMON_ENVSYS > 0 986#if NSYSMON_ENVSYS > 0
987void 987void
988cpu_tau_setup(struct cpu_info *ci) 988cpu_tau_setup(struct cpu_info *ci)
989{ 989{
990 struct sysmon_envsys *sme; 990 struct sysmon_envsys *sme;
991 envsys_data_t sensor; 991 envsys_data_t sensor;
992 int error; 992 int error;
993 993
994 sme = sysmon_envsys_create(); 994 sme = sysmon_envsys_create();
995 995
996 sensor.state = ENVSYS_SVALID; 996 sensor.state = ENVSYS_SVALID;
997 sensor.units = ENVSYS_STEMP; 997 sensor.units = ENVSYS_STEMP;
998 (void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc)); 998 (void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
999 if (sysmon_envsys_sensor_attach(sme, &sensor)) { 999 if (sysmon_envsys_sensor_attach(sme, &sensor)) {
1000 sysmon_envsys_destroy(sme); 1000 sysmon_envsys_destroy(sme);
1001 return; 1001 return;
1002 } 1002 }
1003 1003
1004 sme->sme_name = ci->ci_dev->dv_xname;  1004 sme->sme_name = ci->ci_dev->dv_xname;
1005 sme->sme_cookie = ci; 1005 sme->sme_cookie = ci;
1006 sme->sme_refresh = cpu_tau_refresh; 1006 sme->sme_refresh = cpu_tau_refresh;
1007 1007
1008 if ((error = sysmon_envsys_register(sme)) != 0) { 1008 if ((error = sysmon_envsys_register(sme)) != 0) {
1009 aprint_error("%s: unable to register with sysmon (%d)\n", 1009 aprint_error("%s: unable to register with sysmon (%d)\n",
1010 ci->ci_dev->dv_xname, error); 1010 ci->ci_dev->dv_xname, error);
1011 sysmon_envsys_destroy(sme); 1011 sysmon_envsys_destroy(sme);
1012 } 1012 }
1013} 1013}
1014 1014
1015 1015
1016/* Find the temperature of the CPU. */ 1016/* Find the temperature of the CPU. */
1017void 1017void
1018cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) 1018cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
1019{ 1019{
1020 int i, threshold, count; 1020 int i, threshold, count;
1021 1021
1022 threshold = 64; /* Half of the 7-bit sensor range */ 1022 threshold = 64; /* Half of the 7-bit sensor range */
1023 mtspr(SPR_THRM1, 0); 1023 mtspr(SPR_THRM1, 0);
1024 mtspr(SPR_THRM2, 0); 1024 mtspr(SPR_THRM2, 0);
1025 /* XXX This counter is supposed to be "at least 20 microseonds, in 1025 /* XXX This counter is supposed to be "at least 20 microseonds, in
1026 * XXX units of clock cycles". Since we don't have convenient 1026 * XXX units of clock cycles". Since we don't have convenient
1027 * XXX access to the CPU speed, set it to a conservative value, 1027 * XXX access to the CPU speed, set it to a conservative value,
1028 * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002, 1028 * XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002,
1029 * XXX the fastest G3 processor is 700MHz) . The cost is that 1029 * XXX the fastest G3 processor is 700MHz) . The cost is that
1030 * XXX measuring the temperature takes a bit longer. 1030 * XXX measuring the temperature takes a bit longer.
1031 */ 1031 */
1032 mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);  1032 mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);
1033 1033
1034 /* Successive-approximation code adapted from Motorola 1034 /* Successive-approximation code adapted from Motorola
1035 * application note AN1800/D, "Programming the Thermal Assist 1035 * application note AN1800/D, "Programming the Thermal Assist
1036 * Unit in the MPC750 Microprocessor". 1036 * Unit in the MPC750 Microprocessor".
1037 */ 1037 */
1038 for (i = 4; i >= 0 ; i--) { 1038 for (i = 4; i >= 0 ; i--) {
1039 mtspr(SPR_THRM1,  1039 mtspr(SPR_THRM1,
1040 SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID); 1040 SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
1041 count = 0; 1041 count = 0;
1042 while ((count < 100) &&  1042 while ((count < 100) &&
1043 ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) { 1043 ((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
1044 count++; 1044 count++;
1045 delay(1); 1045 delay(1);
1046 } 1046 }
1047 if (mfspr(SPR_THRM1) & SPR_THRM_TIN) { 1047 if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
1048 /* The interrupt bit was set, meaning the  1048 /* The interrupt bit was set, meaning the
1049 * temperature was above the threshold  1049 * temperature was above the threshold
1050 */ 1050 */
1051 threshold += 2 << i; 1051 threshold += 2 << i;
1052 } else { 1052 } else {
1053 /* Temperature was below the threshold */ 1053 /* Temperature was below the threshold */
1054 threshold -= 2 << i; 1054 threshold -= 2 << i;
1055 } 1055 }
1056 } 1056 }
1057 threshold += 2; 1057 threshold += 2;
1058 1058
1059 /* Convert the temperature in degrees C to microkelvin */ 1059 /* Convert the temperature in degrees C to microkelvin */
1060 edata->value_cur = (threshold * 1000000) + 273150000; 1060 edata->value_cur = (threshold * 1000000) + 273150000;
1061} 1061}
1062#endif /* NSYSMON_ENVSYS > 0 */ 1062#endif /* NSYSMON_ENVSYS > 0 */
1063 1063
1064#ifdef MULTIPROCESSOR 1064#ifdef MULTIPROCESSOR
1065extern volatile u_int cpu_spinstart_ack; 1065extern volatile u_int cpu_spinstart_ack;
1066 1066
1067int 1067int
1068cpu_spinup(struct device *self, struct cpu_info *ci) 1068cpu_spinup(struct device *self, struct cpu_info *ci)
1069{ 1069{
1070 volatile struct cpu_hatch_data hatch_data, *h = &hatch_data; 1070 volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
1071 struct pglist mlist; 1071 struct pglist mlist;
1072 int i, error, pvr, vers; 1072 int i, error, pvr, vers;
1073 char *cp, *hp; 1073 char *cp, *hp;
1074 1074
1075 pvr = mfpvr(); 1075 pvr = mfpvr();
1076 vers = pvr >> 16; 1076 vers = pvr >> 16;
1077 KASSERT(ci != curcpu()); 1077 KASSERT(ci != curcpu());
1078 1078
1079 /* 1079 /*
1080 * Allocate some contiguous pages for the intteup PCB and stack 1080 * Allocate some contiguous pages for the intteup PCB and stack
1081 * from the lowest 256MB (because bat0 always maps it va == pa). 1081 * from the lowest 256MB (because bat0 always maps it va == pa).
1082 * Must be 16 byte aligned. 1082 * Must be 16 byte aligned.
1083 */ 1083 */
1084 error = uvm_pglistalloc(INTSTK, 0x10000, 0x10000000, 16, 0, 1084 error = uvm_pglistalloc(INTSTK, 0x10000, 0x10000000, 16, 0,
1085 &mlist, 1, 1); 1085 &mlist, 1, 1);
1086 if (error) { 1086 if (error) {
1087 aprint_error(": unable to allocate idle stack\n"); 1087 aprint_error(": unable to allocate idle stack\n");
1088 return -1; 1088 return -1;
1089 } 1089 }
1090 1090
1091 KASSERT(ci != &cpu_info[0]); 1091 KASSERT(ci != &cpu_info[0]);
1092 1092
1093 cp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist)); 1093 cp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
1094 memset(cp, 0, INTSTK); 1094 memset(cp, 0, INTSTK);
1095 1095
1096 ci->ci_intstk = cp; 1096 ci->ci_intstk = cp;
1097 1097
1098 /* Now allocate a hatch stack */ 1098 /* Now allocate a hatch stack */
1099 error = uvm_pglistalloc(0x1000, 0x10000, 0x10000000, 16, 0, 1099 error = uvm_pglistalloc(0x1000, 0x10000, 0x10000000, 16, 0,
1100 &mlist, 1, 1); 1100 &mlist, 1, 1);
1101 if (error) { 1101 if (error) {
1102 aprint_error(": unable to allocate hatch stack\n"); 1102 aprint_error(": unable to allocate hatch stack\n");
1103 return -1; 1103 return -1;
1104 } 1104 }
1105 1105
1106 hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist)); 1106 hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
1107 memset(hp, 0, 0x1000); 1107 memset(hp, 0, 0x1000);
1108 1108
1109 /* Initialize secondary cpu's initial lwp to its idlelwp. */ 1109 /* Initialize secondary cpu's initial lwp to its idlelwp. */
1110 ci->ci_curlwp = ci->ci_data.cpu_idlelwp; 1110 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
1111 ci->ci_curpcb = &ci->ci_curlwp->l_addr->u_pcb; 1111 ci->ci_curpcb = &ci->ci_curlwp->l_addr->u_pcb;
1112 ci->ci_curpm = ci->ci_curpcb->pcb_pm; 1112 ci->ci_curpm = ci->ci_curpcb->pcb_pm;
1113 1113
1114 cpu_hatch_data = h; 1114 cpu_hatch_data = h;
1115 h->running = 0; 1115 h->running = 0;
1116 h->self = self; 1116 h->self = self;
1117 h->ci = ci; 1117 h->ci = ci;
1118 h->pir = ci->ci_cpuid; 1118 h->pir = ci->ci_cpuid;
1119 1119
1120 cpu_hatch_stack = (uint32_t)hp; 1120 cpu_hatch_stack = (uint32_t)hp;
1121 ci->ci_lasttb = cpu_info[0].ci_lasttb; 1121 ci->ci_lasttb = cpu_info[0].ci_lasttb;
1122 1122
1123 /* copy special registers */ 1123 /* copy special registers */
1124 1124
1125 h->hid0 = mfspr(SPR_HID0); 1125 h->hid0 = mfspr(SPR_HID0);
1126  1126
1127 __asm volatile ("mfsdr1 %0" : "=r"(h->sdr1)); 1127 __asm volatile ("mfsdr1 %0" : "=r"(h->sdr1));
1128 for (i = 0; i < 16; i++) { 1128 for (i = 0; i < 16; i++) {
1129 __asm ("mfsrin %0,%1" : "=r"(h->sr[i]) : 1129 __asm ("mfsrin %0,%1" : "=r"(h->sr[i]) :
1130 "r"(i << ADDR_SR_SHFT)); 1130 "r"(i << ADDR_SR_SHFT));
1131 } 1131 }
1132 if (oeacpufeat & OEACPU_64) 1132 if (oeacpufeat & OEACPU_64)
1133 h->asr = mfspr(SPR_ASR); 1133 h->asr = mfspr(SPR_ASR);
1134 else 1134 else
1135 h->asr = 0; 1135 h->asr = 0;
1136 1136
1137 /* copy the bat regs */ 1137 /* copy the bat regs */
1138 __asm volatile ("mfibatu %0,0" : "=r"(h->batu[0])); 1138 __asm volatile ("mfibatu %0,0" : "=r"(h->batu[0]));
1139 __asm volatile ("mfibatl %0,0" : "=r"(h->batl[0])); 1139 __asm volatile ("mfibatl %0,0" : "=r"(h->batl[0]));
1140 __asm volatile ("mfibatu %0,1" : "=r"(h->batu[1])); 1140 __asm volatile ("mfibatu %0,1" : "=r"(h->batu[1]));
1141 __asm volatile ("mfibatl %0,1" : "=r"(h->batl[1])); 1141 __asm volatile ("mfibatl %0,1" : "=r"(h->batl[1]));
1142 __asm volatile ("mfibatu %0,2" : "=r"(h->batu[2])); 1142 __asm volatile ("mfibatu %0,2" : "=r"(h->batu[2]));
1143 __asm volatile ("mfibatl %0,2" : "=r"(h->batl[2])); 1143 __asm volatile ("mfibatl %0,2" : "=r"(h->batl[2]));
1144 __asm volatile ("mfibatu %0,3" : "=r"(h->batu[3])); 1144 __asm volatile ("mfibatu %0,3" : "=r"(h->batu[3]));
1145 __asm volatile ("mfibatl %0,3" : "=r"(h->batl[3])); 1145 __asm volatile ("mfibatl %0,3" : "=r"(h->batl[3]));
1146 __asm volatile ("sync; isync"); 1146 __asm volatile ("sync; isync");
1147 1147
1148 if (md_setup_trampoline(h, ci) == -1) 1148 if (md_setup_trampoline(h, ci) == -1)
1149 return -1; 1149 return -1;
1150 md_presync_timebase(h); 1150 md_presync_timebase(h);
1151 md_start_timebase(h); 1151 md_start_timebase(h);
1152 1152
1153 /* wait for secondary printf */ 1153 /* wait for secondary printf */
1154 1154
1155 delay(200000); 1155 delay(200000);
1156 1156
1157 if (h->running < 1) { 1157 if (h->running < 1) {
1158 aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack, 1158 aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
1159 ci->ci_cpuid, cpu_spinstart_ack); 1159 ci->ci_cpuid, cpu_spinstart_ack);
1160 Debugger(); 1160 Debugger();
1161 return -1; 1161 return -1;
1162 } 1162 }
1163 1163
1164 /* Register IPI Interrupt */ 1164 /* Register IPI Interrupt */
1165 if (ipiops.ppc_establish_ipi) 1165 if (ipiops.ppc_establish_ipi)
1166 ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL); 1166 ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
1167 1167
1168 return 0; 1168 return 0;
1169} 1169}
1170 1170
1171static volatile int start_secondary_cpu; 1171static volatile int start_secondary_cpu;
1172extern void tlbia(void); 1172extern void tlbia(void);
1173 1173
1174register_t 1174register_t
1175cpu_hatch(void) 1175cpu_hatch(void)
1176{ 1176{
1177 volatile struct cpu_hatch_data *h = cpu_hatch_data; 1177 volatile struct cpu_hatch_data *h = cpu_hatch_data;
1178 struct cpu_info * const ci = h->ci; 1178 struct cpu_info * const ci = h->ci;
1179 u_int msr; 1179 u_int msr;
1180 int i; 1180 int i;
1181 1181
1182 /* Initialize timebase. */ 1182 /* Initialize timebase. */
1183 __asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0)); 1183 __asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
1184 1184
1185 /* 1185 /*
1186 * Set PIR (Processor Identification Register). i.e. whoami 1186 * Set PIR (Processor Identification Register). i.e. whoami
1187 * Note that PIR is read-only on some CPU's. Try to work around 1187 * Note that PIR is read-only on some CPU versions, so we write to it
1188 * that as best as possible. Assume that if it is 0, it is meant 1188 * only if it has a different value than we need.
1189 * to be setup by us. 
1190 */ 1189 */
1191 1190
1192 msr = mfspr(SPR_PIR); 1191 msr = mfspr(SPR_PIR);
1193 if (msr == 0) 1192 if (msr != h->pir)
1194 mtspr(SPR_PIR, h->pir); 1193 mtspr(SPR_PIR, h->pir);
1195  1194
1196 __asm volatile ("mtsprg 0,%0" :: "r"(ci)); 1195 __asm volatile ("mtsprg 0,%0" :: "r"(ci));
1197 cpu_spinstart_ack = 0; 1196 cpu_spinstart_ack = 0;
1198 1197
1199 /* Initialize MMU. */ 1198 /* Initialize MMU. */
1200 __asm ("mtibatu 0,%0" :: "r"(h->batu[0])); 1199 __asm ("mtibatu 0,%0" :: "r"(h->batu[0]));
1201 __asm ("mtibatl 0,%0" :: "r"(h->batl[0])); 1200 __asm ("mtibatl 0,%0" :: "r"(h->batl[0]));
1202 __asm ("mtibatu 1,%0" :: "r"(h->batu[1])); 1201 __asm ("mtibatu 1,%0" :: "r"(h->batu[1]));
1203 __asm ("mtibatl 1,%0" :: "r"(h->batl[1])); 1202 __asm ("mtibatl 1,%0" :: "r"(h->batl[1]));
1204 __asm ("mtibatu 2,%0" :: "r"(h->batu[2])); 1203 __asm ("mtibatu 2,%0" :: "r"(h->batu[2]));
1205 __asm ("mtibatl 2,%0" :: "r"(h->batl[2])); 1204 __asm ("mtibatl 2,%0" :: "r"(h->batl[2]));
1206 __asm ("mtibatu 3,%0" :: "r"(h->batu[3])); 1205 __asm ("mtibatu 3,%0" :: "r"(h->batu[3]));
1207 __asm ("mtibatl 3,%0" :: "r"(h->batl[3])); 1206 __asm ("mtibatl 3,%0" :: "r"(h->batl[3]));
1208 1207
1209 mtspr(SPR_HID0, h->hid0); 1208 mtspr(SPR_HID0, h->hid0);
1210 1209
1211 __asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;" 1210 __asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
1212 :: "r"(battable[0].batl), "r"(battable[0].batu)); 1211 :: "r"(battable[0].batl), "r"(battable[0].batu));
1213 1212
1214 __asm volatile ("sync"); 1213 __asm volatile ("sync");
1215 for (i = 0; i < 16; i++) 1214 for (i = 0; i < 16; i++)
1216 __asm ("mtsrin %0,%1" :: "r"(h->sr[i]), "r"(i << ADDR_SR_SHFT)); 1215 __asm ("mtsrin %0,%1" :: "r"(h->sr[i]), "r"(i << ADDR_SR_SHFT));
1217 __asm volatile ("sync; isync"); 1216 __asm volatile ("sync; isync");
1218 1217
1219 if (oeacpufeat & OEACPU_64) 1218 if (oeacpufeat & OEACPU_64)
1220 mtspr(SPR_ASR, h->asr); 1219 mtspr(SPR_ASR, h->asr);
1221 1220
1222 cpu_spinstart_ack = 1; 1221 cpu_spinstart_ack = 1;
1223 __asm ("ptesync"); 1222 __asm ("ptesync");
1224 __asm ("mtsdr1 %0" :: "r"(h->sdr1)); 1223 __asm ("mtsdr1 %0" :: "r"(h->sdr1));
1225 __asm volatile ("sync; isync"); 1224 __asm volatile ("sync; isync");
1226 1225
1227 cpu_spinstart_ack = 5; 1226 cpu_spinstart_ack = 5;
1228 for (i = 0; i < 16; i++) 1227 for (i = 0; i < 16; i++)
1229 __asm ("mfsrin %0,%1" : "=r"(h->sr[i]) : 1228 __asm ("mfsrin %0,%1" : "=r"(h->sr[i]) :
1230 "r"(i << ADDR_SR_SHFT)); 1229 "r"(i << ADDR_SR_SHFT));
1231 1230
1232 /* Enable I/D address translations. */ 1231 /* Enable I/D address translations. */
1233 msr = mfmsr(); 1232 msr = mfmsr();
1234 msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI; 1233 msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
1235 mtmsr(msr); 1234 mtmsr(msr);
1236 __asm volatile ("sync; isync"); 1235 __asm volatile ("sync; isync");
1237 cpu_spinstart_ack = 2; 1236 cpu_spinstart_ack = 2;
1238 1237
1239 md_sync_timebase(h); 1238 md_sync_timebase(h);
1240 1239
1241 cpu_setup(h->self, ci); 1240 cpu_setup(h->self, ci);
1242 1241
1243 h->running = 1; 1242 h->running = 1;
1244 __asm volatile ("sync; isync"); 1243 __asm volatile ("sync; isync");
1245 1244
1246 while (start_secondary_cpu == 0) 1245 while (start_secondary_cpu == 0)
1247 ; 1246 ;
1248 1247
1249 __asm volatile ("sync; isync"); 1248 __asm volatile ("sync; isync");
1250 1249
1251 aprint_normal("cpu%d started\n", curcpu()->ci_index); 1250 aprint_normal("cpu%d started\n", curcpu()->ci_index);
1252 __asm volatile ("mtdec %0" :: "r"(ticks_per_intr)); 1251 __asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
1253 1252
1254 md_setup_interrupts(); 1253 md_setup_interrupts();
1255 1254
1256 ci->ci_ipending = 0; 1255 ci->ci_ipending = 0;
1257 ci->ci_cpl = 0; 1256 ci->ci_cpl = 0;
1258 1257
1259 mtmsr(mfmsr() | PSL_EE); 1258 mtmsr(mfmsr() | PSL_EE);
1260 return ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_sp; 1259 return ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_sp;
1261} 1260}
1262 1261
1263void 1262void
1264cpu_boot_secondary_processors() 1263cpu_boot_secondary_processors()
1265{ 1264{
1266 start_secondary_cpu = 1; 1265 start_secondary_cpu = 1;
1267 __asm volatile ("sync"); 1266 __asm volatile ("sync");
1268} 1267}
1269 1268
1270#endif /*MULTIPROCESSOR*/ 1269#endif /*MULTIPROCESSOR*/