Sun Mar 15 20:00:31 2009 UTC ()
Pull up following revision(s) (requested by roy in ticket #560):
	sys/net/rtsock.c: revision 1.124
Revert r1.119 as the implementation is broken.


(snj)
diff -r1.115.2.2 -r1.115.2.3 src/sys/net/rtsock.c

cvs diff -r1.115.2.2 -r1.115.2.3 src/sys/net/rtsock.c (switch to unified diff)

--- src/sys/net/rtsock.c 2009/01/09 02:58:58 1.115.2.2
+++ src/sys/net/rtsock.c 2009/03/15 20:00:30 1.115.2.3
@@ -1,1324 +1,1303 @@ @@ -1,1324 +1,1303 @@
1/* $NetBSD: rtsock.c,v 1.115.2.2 2009/01/09 02:58:58 snj Exp $ */ 1/* $NetBSD: rtsock.c,v 1.115.2.3 2009/03/15 20:00:30 snj Exp $ */
2 2
3/* 3/*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions 8 * modification, are permitted provided that the following conditions
9 * are met: 9 * are met:
10 * 1. Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer. 11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright 12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the 13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution. 14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors 15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software 16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission. 17 * without specific prior written permission.
18 * 18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE. 29 * SUCH DAMAGE.
30 */ 30 */
31 31
32/* 32/*
33 * Copyright (c) 1988, 1991, 1993 33 * Copyright (c) 1988, 1991, 1993
34 * The Regents of the University of California. All rights reserved. 34 * The Regents of the University of California. All rights reserved.
35 * 35 *
36 * Redistribution and use in source and binary forms, with or without 36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions 37 * modification, are permitted provided that the following conditions
38 * are met: 38 * are met:
39 * 1. Redistributions of source code must retain the above copyright 39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer. 40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright 41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the 42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution. 43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors 44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software 45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission. 46 * without specific prior written permission.
47 * 47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE. 58 * SUCH DAMAGE.
59 * 59 *
60 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 60 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95
61 */ 61 */
62 62
63#include <sys/cdefs.h> 63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.115.2.2 2009/01/09 02:58:58 snj Exp $"); 64__KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.115.2.3 2009/03/15 20:00:30 snj Exp $");
65 65
66#include "opt_inet.h" 66#include "opt_inet.h"
67 67
68#include <sys/param.h> 68#include <sys/param.h>
69#include <sys/systm.h> 69#include <sys/systm.h>
70#include <sys/proc.h> 70#include <sys/proc.h>
71#include <sys/mbuf.h> 71#include <sys/mbuf.h>
72#include <sys/socket.h> 72#include <sys/socket.h>
73#include <sys/socketvar.h> 73#include <sys/socketvar.h>
74#include <sys/domain.h> 74#include <sys/domain.h>
75#include <sys/protosw.h> 75#include <sys/protosw.h>
76#include <sys/sysctl.h> 76#include <sys/sysctl.h>
77#include <sys/kauth.h> 77#include <sys/kauth.h>
78#include <sys/intr.h> 78#include <sys/intr.h>
79#ifdef RTSOCK_DEBUG 79#ifdef RTSOCK_DEBUG
80#include <netinet/in.h> 80#include <netinet/in.h>
81#endif /* RTSOCK_DEBUG */ 81#endif /* RTSOCK_DEBUG */
82 82
83#include <net/if.h> 83#include <net/if.h>
84#include <net/route.h> 84#include <net/route.h>
85#include <net/raw_cb.h> 85#include <net/raw_cb.h>
86 86
87#include <machine/stdarg.h> 87#include <machine/stdarg.h>
88 88
89DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */ 89DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */
90 90
91struct sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, }; 91struct sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, };
92struct sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, }; 92struct sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, };
93 93
94int route_maxqlen = IFQ_MAXLEN; 94int route_maxqlen = IFQ_MAXLEN;
95static struct ifqueue route_intrq; 95static struct ifqueue route_intrq;
96static void *route_sih; 96static void *route_sih;
97 97
98struct walkarg { 98struct walkarg {
99 int w_op; 99 int w_op;
100 int w_arg; 100 int w_arg;
101 int w_given; 101 int w_given;
102 int w_needed; 102 int w_needed;
103 void * w_where; 103 void * w_where;
104 int w_tmemsize; 104 int w_tmemsize;
105 int w_tmemneeded; 105 int w_tmemneeded;
106 void * w_tmem; 106 void * w_tmem;
107}; 107};
108 108
109static struct mbuf *rt_msg1(int, struct rt_addrinfo *, void *, int); 109static struct mbuf *rt_msg1(int, struct rt_addrinfo *, void *, int);
110static int rt_msg2(int, struct rt_addrinfo *, void *, struct walkarg *, int *); 110static int rt_msg2(int, struct rt_addrinfo *, void *, struct walkarg *, int *);
111static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *); 111static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
112static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int, 112static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
113 struct rt_addrinfo *); 113 struct rt_addrinfo *);
114static int sysctl_dumpentry(struct rtentry *, void *); 114static int sysctl_dumpentry(struct rtentry *, void *);
115static int sysctl_iflist(int, struct walkarg *, int); 115static int sysctl_iflist(int, struct walkarg *, int);
116static int sysctl_rtable(SYSCTLFN_PROTO); 116static int sysctl_rtable(SYSCTLFN_PROTO);
117static inline void rt_adjustcount(int, int); 117static inline void rt_adjustcount(int, int);
118static void route_enqueue(struct mbuf *, int); 118static void route_enqueue(struct mbuf *, int);
119 119
120static inline void 120static inline void
121rt_adjustcount(int af, int cnt) 121rt_adjustcount(int af, int cnt)
122{ 122{
123 route_cb.any_count += cnt; 123 route_cb.any_count += cnt;
124 switch (af) { 124 switch (af) {
125 case AF_INET: 125 case AF_INET:
126 route_cb.ip_count += cnt; 126 route_cb.ip_count += cnt;
127 return; 127 return;
128#ifdef INET6 128#ifdef INET6
129 case AF_INET6: 129 case AF_INET6:
130 route_cb.ip6_count += cnt; 130 route_cb.ip6_count += cnt;
131 return; 131 return;
132#endif 132#endif
133 case AF_IPX: 133 case AF_IPX:
134 route_cb.ipx_count += cnt; 134 route_cb.ipx_count += cnt;
135 return; 135 return;
136 case AF_NS: 136 case AF_NS:
137 route_cb.ns_count += cnt; 137 route_cb.ns_count += cnt;
138 return; 138 return;
139 case AF_ISO: 139 case AF_ISO:
140 route_cb.iso_count += cnt; 140 route_cb.iso_count += cnt;
141 return; 141 return;
142 } 142 }
143} 143}
144 144
145/*ARGSUSED*/ 145/*ARGSUSED*/
146int 146int
147route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam, 147route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
148 struct mbuf *control, struct lwp *l) 148 struct mbuf *control, struct lwp *l)
149{ 149{
150 int error = 0; 150 int error = 0;
151 struct rawcb *rp = sotorawcb(so); 151 struct rawcb *rp = sotorawcb(so);
152 int s; 152 int s;
153 153
154 if (req == PRU_ATTACH) { 154 if (req == PRU_ATTACH) {
155 sosetlock(so); 155 sosetlock(so);
156 MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK|M_ZERO); 156 MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK|M_ZERO);
157 so->so_pcb = rp; 157 so->so_pcb = rp;
158 } 158 }
159 if (req == PRU_DETACH && rp) 159 if (req == PRU_DETACH && rp)
160 rt_adjustcount(rp->rcb_proto.sp_protocol, -1); 160 rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
161 s = splsoftnet(); 161 s = splsoftnet();
162 162
163 /* 163 /*
164 * Don't call raw_usrreq() in the attach case, because 164 * Don't call raw_usrreq() in the attach case, because
165 * we want to allow non-privileged processes to listen on 165 * we want to allow non-privileged processes to listen on
166 * and send "safe" commands to the routing socket. 166 * and send "safe" commands to the routing socket.
167 */ 167 */
168 if (req == PRU_ATTACH) { 168 if (req == PRU_ATTACH) {
169 if (l == NULL) 169 if (l == NULL)
170 error = EACCES; 170 error = EACCES;
171 else 171 else
172 error = raw_attach(so, (int)(long)nam); 172 error = raw_attach(so, (int)(long)nam);
173 } else 173 } else
174 error = raw_usrreq(so, req, m, nam, control, l); 174 error = raw_usrreq(so, req, m, nam, control, l);
175 175
176 rp = sotorawcb(so); 176 rp = sotorawcb(so);
177 if (req == PRU_ATTACH && rp) { 177 if (req == PRU_ATTACH && rp) {
178 if (error) { 178 if (error) {
179 free(rp, M_PCB); 179 free(rp, M_PCB);
180 splx(s); 180 splx(s);
181 return error; 181 return error;
182 } 182 }
183 rt_adjustcount(rp->rcb_proto.sp_protocol, 1); 183 rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
184 rp->rcb_laddr = &route_src; 184 rp->rcb_laddr = &route_src;
185 rp->rcb_faddr = &route_dst; 185 rp->rcb_faddr = &route_dst;
186 soisconnected(so); 186 soisconnected(so);
187 so->so_options |= SO_USELOOPBACK; 187 so->so_options |= SO_USELOOPBACK;
188 } 188 }
189 splx(s); 189 splx(s);
190 return error; 190 return error;
191} 191}
192 192
193static const struct sockaddr * 193static const struct sockaddr *
194intern_netmask(const struct sockaddr *mask) 194intern_netmask(const struct sockaddr *mask)
195{ 195{
196 struct radix_node *rn; 196 struct radix_node *rn;
197 extern struct radix_node_head *mask_rnhead; 197 extern struct radix_node_head *mask_rnhead;
198 198
199 if (mask != NULL && 199 if (mask != NULL &&
200 (rn = rn_search(mask, mask_rnhead->rnh_treetop))) 200 (rn = rn_search(mask, mask_rnhead->rnh_treetop)))
201 mask = (const struct sockaddr *)rn->rn_key; 201 mask = (const struct sockaddr *)rn->rn_key;
202 202
203 return mask; 203 return mask;
204} 204}
205 205
206/*ARGSUSED*/ 206/*ARGSUSED*/
207int 207int
208route_output(struct mbuf *m, ...) 208route_output(struct mbuf *m, ...)
209{ 209{
210 struct sockproto proto = { .sp_family = PF_ROUTE, }; 210 struct sockproto proto = { .sp_family = PF_ROUTE, };
211 struct rt_msghdr *rtm = NULL; 211 struct rt_msghdr *rtm = NULL;
212 struct rt_msghdr *old_rtm = NULL; 212 struct rt_msghdr *old_rtm = NULL;
213 struct rtentry *rt = NULL; 213 struct rtentry *rt = NULL;
214 struct rtentry *saved_nrt = NULL; 214 struct rtentry *saved_nrt = NULL;
215 struct rt_addrinfo info; 215 struct rt_addrinfo info;
216 int len, error = 0, ifa_route = 0; 216 int len, error = 0;
217 struct ifnet *ifp = NULL; 217 struct ifnet *ifp = NULL;
218 struct ifaddr *ifa = NULL, *oifa; 218 struct ifaddr *ifa = NULL;
219 struct socket *so; 219 struct socket *so;
220 va_list ap; 220 va_list ap;
221 sa_family_t family; 221 sa_family_t family;
222 222
223 va_start(ap, m); 223 va_start(ap, m);
224 so = va_arg(ap, struct socket *); 224 so = va_arg(ap, struct socket *);
225 va_end(ap); 225 va_end(ap);
226 226
227#define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0) 227#define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
228 if (m == NULL || ((m->m_len < sizeof(int32_t)) && 228 if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
229 (m = m_pullup(m, sizeof(int32_t))) == NULL)) 229 (m = m_pullup(m, sizeof(int32_t))) == NULL))
230 return ENOBUFS; 230 return ENOBUFS;
231 if ((m->m_flags & M_PKTHDR) == 0) 231 if ((m->m_flags & M_PKTHDR) == 0)
232 panic("route_output"); 232 panic("route_output");
233 len = m->m_pkthdr.len; 233 len = m->m_pkthdr.len;
234 if (len < sizeof(*rtm) || 234 if (len < sizeof(*rtm) ||
235 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 235 len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
236 info.rti_info[RTAX_DST] = NULL; 236 info.rti_info[RTAX_DST] = NULL;
237 senderr(EINVAL); 237 senderr(EINVAL);
238 } 238 }
239 R_Malloc(rtm, struct rt_msghdr *, len); 239 R_Malloc(rtm, struct rt_msghdr *, len);
240 if (rtm == NULL) { 240 if (rtm == NULL) {
241 info.rti_info[RTAX_DST] = NULL; 241 info.rti_info[RTAX_DST] = NULL;
242 senderr(ENOBUFS); 242 senderr(ENOBUFS);
243 } 243 }
244 m_copydata(m, 0, len, rtm); 244 m_copydata(m, 0, len, rtm);
245 if (rtm->rtm_version != RTM_VERSION) { 245 if (rtm->rtm_version != RTM_VERSION) {
246 info.rti_info[RTAX_DST] = NULL; 246 info.rti_info[RTAX_DST] = NULL;
247 senderr(EPROTONOSUPPORT); 247 senderr(EPROTONOSUPPORT);
248 } 248 }
249 rtm->rtm_pid = curproc->p_pid; 249 rtm->rtm_pid = curproc->p_pid;
250 memset(&info, 0, sizeof(info)); 250 memset(&info, 0, sizeof(info));
251 info.rti_addrs = rtm->rtm_addrs; 251 info.rti_addrs = rtm->rtm_addrs;
252 if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm, 252 if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm,
253 &info)) 253 &info))
254 senderr(EINVAL); 254 senderr(EINVAL);
255 info.rti_flags = rtm->rtm_flags; 255 info.rti_flags = rtm->rtm_flags;
256#ifdef RTSOCK_DEBUG 256#ifdef RTSOCK_DEBUG
257 if (info.rti_info[RTAX_DST]->sa_family == AF_INET) { 257 if (info.rti_info[RTAX_DST]->sa_family == AF_INET) {
258 printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__, 258 printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__,
259 inet_ntoa(((const struct sockaddr_in *) 259 inet_ntoa(((const struct sockaddr_in *)
260 info.rti_info[RTAX_DST])->sin_addr)); 260 info.rti_info[RTAX_DST])->sin_addr));
261 } 261 }
262#endif /* RTSOCK_DEBUG */ 262#endif /* RTSOCK_DEBUG */
263 if (info.rti_info[RTAX_DST] == NULL || 263 if (info.rti_info[RTAX_DST] == NULL ||
264 (info.rti_info[RTAX_DST]->sa_family >= AF_MAX)) 264 (info.rti_info[RTAX_DST]->sa_family >= AF_MAX))
265 senderr(EINVAL); 265 senderr(EINVAL);
266 if (info.rti_info[RTAX_GATEWAY] != NULL && 266 if (info.rti_info[RTAX_GATEWAY] != NULL &&
267 (info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) 267 (info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
268 senderr(EINVAL); 268 senderr(EINVAL);
269 269
270 /* 270 /*
271 * Verify that the caller has the appropriate privilege; RTM_GET 271 * Verify that the caller has the appropriate privilege; RTM_GET
272 * is the only operation the non-superuser is allowed. 272 * is the only operation the non-superuser is allowed.
273 */ 273 */
274 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE, 274 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
275 0, rtm, NULL, NULL) != 0) 275 0, rtm, NULL, NULL) != 0)
276 senderr(EACCES); 276 senderr(EACCES);
277 277
278 switch (rtm->rtm_type) { 278 switch (rtm->rtm_type) {
279 279
280 case RTM_ADD: 280 case RTM_ADD:
281 if (info.rti_info[RTAX_GATEWAY] == NULL) 281 if (info.rti_info[RTAX_GATEWAY] == NULL)
282 senderr(EINVAL); 282 senderr(EINVAL);
283 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt); 283 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
284 if (error == 0 && saved_nrt) { 284 if (error == 0 && saved_nrt) {
285 rt_setmetrics(rtm->rtm_inits, 285 rt_setmetrics(rtm->rtm_inits,
286 &rtm->rtm_rmx, &saved_nrt->rt_rmx); 286 &rtm->rtm_rmx, &saved_nrt->rt_rmx);
287 saved_nrt->rt_refcnt--; 287 saved_nrt->rt_refcnt--;
288 } 288 }
289 break; 289 break;
290 290
291 case RTM_DELETE: 291 case RTM_DELETE:
292 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt); 292 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
293 if (error == 0) { 293 if (error == 0) {
294 (rt = saved_nrt)->rt_refcnt++; 294 (rt = saved_nrt)->rt_refcnt++;
295 ifa = rt_get_ifa(rt); 
296 /* 
297 * If deleting an automatic route, scrub the flag. 
298 */ 
299 if (ifa->ifa_flags & IFA_ROUTE) 
300 ifa->ifa_flags &= ~IFA_ROUTE; 
301 goto report; 295 goto report;
302 } 296 }
303 break; 297 break;
304 298
305 case RTM_GET: 299 case RTM_GET:
306 case RTM_CHANGE: 300 case RTM_CHANGE:
307 case RTM_LOCK: 301 case RTM_LOCK:
308 /* XXX This will mask info.rti_info[RTAX_DST] with 302 /* XXX This will mask info.rti_info[RTAX_DST] with
309 * info.rti_info[RTAX_NETMASK] before 303 * info.rti_info[RTAX_NETMASK] before
310 * searching. It did not used to do that. --dyoung 304 * searching. It did not used to do that. --dyoung
311 */ 305 */
312 error = rtrequest1(RTM_GET, &info, &rt); 306 error = rtrequest1(RTM_GET, &info, &rt);
313 if (error != 0) 307 if (error != 0)
314 senderr(error); 308 senderr(error);
315 if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */ 309 if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
316 struct radix_node *rn; 310 struct radix_node *rn;
317 311
318 if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt), 312 if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt),
319 info.rti_info[RTAX_DST]->sa_len) != 0) 313 info.rti_info[RTAX_DST]->sa_len) != 0)
320 senderr(ESRCH); 314 senderr(ESRCH);
321 info.rti_info[RTAX_NETMASK] = intern_netmask( 315 info.rti_info[RTAX_NETMASK] = intern_netmask(
322 info.rti_info[RTAX_NETMASK]); 316 info.rti_info[RTAX_NETMASK]);
323 for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey) 317 for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)
324 if (info.rti_info[RTAX_NETMASK] == 318 if (info.rti_info[RTAX_NETMASK] ==
325 (const struct sockaddr *)rn->rn_mask) 319 (const struct sockaddr *)rn->rn_mask)
326 break; 320 break;
327 if (rn == NULL) 321 if (rn == NULL)
328 senderr(ETOOMANYREFS); 322 senderr(ETOOMANYREFS);
329 rt = (struct rtentry *)rn; 323 rt = (struct rtentry *)rn;
330 } 324 }
331 325
332 switch (rtm->rtm_type) { 326 switch (rtm->rtm_type) {
333 case RTM_GET: 327 case RTM_GET:
334 report: 328 report:
335 info.rti_info[RTAX_DST] = rt_getkey(rt); 329 info.rti_info[RTAX_DST] = rt_getkey(rt);
336 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 330 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
337 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 331 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
338 if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0) 332 if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
339 ; 333 ;
340 else if ((ifp = rt->rt_ifp) != NULL) { 334 else if ((ifp = rt->rt_ifp) != NULL) {
341 const struct ifaddr *rtifa; 335 const struct ifaddr *rtifa;
342 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr; 336 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
343 /* rtifa used to be simply rt->rt_ifa. 337 /* rtifa used to be simply rt->rt_ifa.
344 * If rt->rt_ifa != NULL, then 338 * If rt->rt_ifa != NULL, then
345 * rt_get_ifa() != NULL. So this 339 * rt_get_ifa() != NULL. So this
346 * ought to still be safe. --dyoung 340 * ought to still be safe. --dyoung
347 */ 341 */
348 rtifa = rt_get_ifa(rt); 342 rtifa = rt_get_ifa(rt);
349 info.rti_info[RTAX_IFA] = rtifa->ifa_addr; 343 info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
350#ifdef RTSOCK_DEBUG 344#ifdef RTSOCK_DEBUG
351 if (info.rti_info[RTAX_IFA]->sa_family == 345 if (info.rti_info[RTAX_IFA]->sa_family ==
352 AF_INET) { 346 AF_INET) {
353 printf("%s: copying out RTAX_IFA %s ", 347 printf("%s: copying out RTAX_IFA %s ",
354 __func__, inet_ntoa( 348 __func__, inet_ntoa(
355 (const struct sockaddr_in *) 349 (const struct sockaddr_in *)
356 info.rti_info[RTAX_IFA])->sin_addr); 350 info.rti_info[RTAX_IFA])->sin_addr);
357 printf("for info.rti_info[RTAX_DST] %s " 351 printf("for info.rti_info[RTAX_DST] %s "
358 "ifa_getifa %p ifa_seqno %p\n", 352 "ifa_getifa %p ifa_seqno %p\n",
359 inet_ntoa( 353 inet_ntoa(
360 (const struct sockaddr_in *) 354 (const struct sockaddr_in *)
361 info.rti_info[RTAX_DST])->sin_addr), 355 info.rti_info[RTAX_DST])->sin_addr),
362 (void *)rtifa->ifa_getifa, 356 (void *)rtifa->ifa_getifa,
363 rtifa->ifa_seqno); 357 rtifa->ifa_seqno);
364 } 358 }
365#endif /* RTSOCK_DEBUG */ 359#endif /* RTSOCK_DEBUG */
366 if (ifp->if_flags & IFF_POINTOPOINT) { 360 if (ifp->if_flags & IFF_POINTOPOINT) {
367 info.rti_info[RTAX_BRD] = 361 info.rti_info[RTAX_BRD] =
368 rtifa->ifa_dstaddr; 362 rtifa->ifa_dstaddr;
369 } else 363 } else
370 info.rti_info[RTAX_BRD] = NULL; 364 info.rti_info[RTAX_BRD] = NULL;
371 rtm->rtm_index = ifp->if_index; 365 rtm->rtm_index = ifp->if_index;
372 } else { 366 } else {
373 info.rti_info[RTAX_IFP] = NULL; 367 info.rti_info[RTAX_IFP] = NULL;
374 info.rti_info[RTAX_IFA] = NULL; 368 info.rti_info[RTAX_IFA] = NULL;
375 } 369 }
376 (void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len); 370 (void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len);
377 if (len > rtm->rtm_msglen) { 371 if (len > rtm->rtm_msglen) {
378 old_rtm = rtm; 372 old_rtm = rtm;
379 R_Malloc(rtm, struct rt_msghdr *, len); 373 R_Malloc(rtm, struct rt_msghdr *, len);
380 if (rtm == NULL) 374 if (rtm == NULL)
381 senderr(ENOBUFS); 375 senderr(ENOBUFS);
382 (void)memcpy(rtm, old_rtm, old_rtm->rtm_msglen); 376 (void)memcpy(rtm, old_rtm, old_rtm->rtm_msglen);
383 } 377 }
384 (void)rt_msg2(rtm->rtm_type, &info, rtm, NULL, 0); 378 (void)rt_msg2(rtm->rtm_type, &info, rtm, NULL, 0);
385 rtm->rtm_flags = rt->rt_flags; 379 rtm->rtm_flags = rt->rt_flags;
386 rtm->rtm_rmx = rt->rt_rmx; 380 rtm->rtm_rmx = rt->rt_rmx;
387 rtm->rtm_addrs = info.rti_addrs; 381 rtm->rtm_addrs = info.rti_addrs;
388 break; 382 break;
389 383
390 case RTM_CHANGE: 384 case RTM_CHANGE:
391 /* 385 /*
392 * new gateway could require new ifaddr, ifp; 386 * new gateway could require new ifaddr, ifp;
393 * flags may also be different; ifp may be specified 387 * flags may also be different; ifp may be specified
394 * by ll sockaddr when protocol address is ambiguous 388 * by ll sockaddr when protocol address is ambiguous
395 */ 389 */
396 if ((error = rt_getifa(&info)) != 0) 390 if ((error = rt_getifa(&info)) != 0)
397 senderr(error); 391 senderr(error);
398 if (info.rti_info[RTAX_GATEWAY] && 392 if (info.rti_info[RTAX_GATEWAY] &&
399 rt_setgate(rt, info.rti_info[RTAX_GATEWAY])) 393 rt_setgate(rt, info.rti_info[RTAX_GATEWAY]))
400 senderr(EDQUOT); 394 senderr(EDQUOT);
401 /* new gateway could require new ifaddr, ifp; 395 /* new gateway could require new ifaddr, ifp;
402 flags may also be different; ifp may be specified 396 flags may also be different; ifp may be specified
403 by ll sockaddr when protocol address is ambiguous */ 397 by ll sockaddr when protocol address is ambiguous */
404 if (info.rti_info[RTAX_IFP] && 398 if (info.rti_info[RTAX_IFP] &&
405 (ifa = ifa_ifwithnet(info.rti_info[RTAX_IFP])) && 399 (ifa = ifa_ifwithnet(info.rti_info[RTAX_IFP])) &&
406 (ifp = ifa->ifa_ifp) && (info.rti_info[RTAX_IFA] || 400 (ifp = ifa->ifa_ifp) && (info.rti_info[RTAX_IFA] ||
407 info.rti_info[RTAX_GATEWAY])) { 401 info.rti_info[RTAX_GATEWAY])) {
408 ifa = ifaof_ifpforaddr(info.rti_info[RTAX_IFA] ? 402 ifa = ifaof_ifpforaddr(info.rti_info[RTAX_IFA] ?
409 info.rti_info[RTAX_IFA] : 403 info.rti_info[RTAX_IFA] :
410 info.rti_info[RTAX_GATEWAY], ifp); 404 info.rti_info[RTAX_GATEWAY], ifp);
411 } else if ((info.rti_info[RTAX_IFA] && 405 } else if ((info.rti_info[RTAX_IFA] &&
412 (ifa = ifa_ifwithaddr(info.rti_info[RTAX_IFA]))) || 406 (ifa = ifa_ifwithaddr(info.rti_info[RTAX_IFA]))) ||
413 (info.rti_info[RTAX_GATEWAY] && 407 (info.rti_info[RTAX_GATEWAY] &&
414 (ifa = ifa_ifwithroute(rt->rt_flags, 408 (ifa = ifa_ifwithroute(rt->rt_flags,
415 rt_getkey(rt), info.rti_info[RTAX_GATEWAY])))) { 409 rt_getkey(rt), info.rti_info[RTAX_GATEWAY])))) {
416 ifp = ifa->ifa_ifp; 410 ifp = ifa->ifa_ifp;
417 } 411 }
418 oifa = rt->rt_ifa; 
419 if (oifa && oifa->ifa_flags & IFA_ROUTE) { 
420 /* 
421 * If changing an automatically added route, 
422 * remove the flag and store the fact. 
423 */ 
424 oifa->ifa_flags &= ~IFA_ROUTE; 
425 ifa_route = 1; 
426 } 
427 if (ifa) { 412 if (ifa) {
 413 struct ifaddr *oifa = rt->rt_ifa;
428 if (oifa != ifa) { 414 if (oifa != ifa) {
429 if (oifa && oifa->ifa_rtrequest) { 415 if (oifa && oifa->ifa_rtrequest) {
430 oifa->ifa_rtrequest(RTM_DELETE, 416 oifa->ifa_rtrequest(RTM_DELETE,
431 rt, &info); 417 rt, &info);
432 } 418 }
433 /* 
434 * If changing an automatically added 
435 * route, store this if not static. 
436 */ 
437 if (ifa_route && 
438 !(rt->rt_flags & RTF_STATIC)) 
439 ifa->ifa_flags |= IFA_ROUTE; 
440 rt_replace_ifa(rt, ifa); 419 rt_replace_ifa(rt, ifa);
441 rt->rt_ifp = ifp; 420 rt->rt_ifp = ifp;
442 } 421 }
443 } 422 }
444 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 423 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
445 &rt->rt_rmx); 424 &rt->rt_rmx);
446 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest) 425 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
447 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info); 426 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
448 /*FALLTHROUGH*/ 427 /*FALLTHROUGH*/
449 case RTM_LOCK: 428 case RTM_LOCK:
450 rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits); 429 rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
451 rt->rt_rmx.rmx_locks |= 430 rt->rt_rmx.rmx_locks |=
452 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); 431 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
453 break; 432 break;
454 } 433 }
455 break; 434 break;
456 435
457 default: 436 default:
458 senderr(EOPNOTSUPP); 437 senderr(EOPNOTSUPP);
459 } 438 }
460 439
461flush: 440flush:
462 if (rtm) { 441 if (rtm) {
463 if (error) 442 if (error)
464 rtm->rtm_errno = error; 443 rtm->rtm_errno = error;
465 else 444 else
466 rtm->rtm_flags |= RTF_DONE; 445 rtm->rtm_flags |= RTF_DONE;
467 } 446 }
468 family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family : 447 family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family :
469 0; 448 0;
470 /* We cannot free old_rtm until we have stopped using the 449 /* We cannot free old_rtm until we have stopped using the
471 * pointers in info, some of which may point to sockaddrs 450 * pointers in info, some of which may point to sockaddrs
472 * in old_rtm. 451 * in old_rtm.
473 */ 452 */
474 if (old_rtm != NULL) 453 if (old_rtm != NULL)
475 Free(old_rtm); 454 Free(old_rtm);
476 if (rt) 455 if (rt)
477 rtfree(rt); 456 rtfree(rt);
478 { 457 {
479 struct rawcb *rp = NULL; 458 struct rawcb *rp = NULL;
480 /* 459 /*
481 * Check to see if we don't want our own messages. 460 * Check to see if we don't want our own messages.
482 */ 461 */
483 if ((so->so_options & SO_USELOOPBACK) == 0) { 462 if ((so->so_options & SO_USELOOPBACK) == 0) {
484 if (route_cb.any_count <= 1) { 463 if (route_cb.any_count <= 1) {
485 if (rtm) 464 if (rtm)
486 Free(rtm); 465 Free(rtm);
487 m_freem(m); 466 m_freem(m);
488 return error; 467 return error;
489 } 468 }
490 /* There is another listener, so construct message */ 469 /* There is another listener, so construct message */
491 rp = sotorawcb(so); 470 rp = sotorawcb(so);
492 } 471 }
493 if (rtm) { 472 if (rtm) {
494 m_copyback(m, 0, rtm->rtm_msglen, rtm); 473 m_copyback(m, 0, rtm->rtm_msglen, rtm);
495 if (m->m_pkthdr.len < rtm->rtm_msglen) { 474 if (m->m_pkthdr.len < rtm->rtm_msglen) {
496 m_freem(m); 475 m_freem(m);
497 m = NULL; 476 m = NULL;
498 } else if (m->m_pkthdr.len > rtm->rtm_msglen) 477 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
499 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); 478 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
500 Free(rtm); 479 Free(rtm);
501 } 480 }
502 if (rp) 481 if (rp)
503 rp->rcb_proto.sp_family = 0; /* Avoid us */ 482 rp->rcb_proto.sp_family = 0; /* Avoid us */
504 if (family) 483 if (family)
505 proto.sp_protocol = family; 484 proto.sp_protocol = family;
506 if (m) 485 if (m)
507 raw_input(m, &proto, &route_src, &route_dst); 486 raw_input(m, &proto, &route_src, &route_dst);
508 if (rp) 487 if (rp)
509 rp->rcb_proto.sp_family = PF_ROUTE; 488 rp->rcb_proto.sp_family = PF_ROUTE;
510 } 489 }
511 return error; 490 return error;
512} 491}
513 492
514void 493void
515rt_setmetrics(u_long which, const struct rt_metrics *in, struct rt_metrics *out) 494rt_setmetrics(u_long which, const struct rt_metrics *in, struct rt_metrics *out)
516{ 495{
517#define metric(f, e) if (which & (f)) out->e = in->e; 496#define metric(f, e) if (which & (f)) out->e = in->e;
518 metric(RTV_RPIPE, rmx_recvpipe); 497 metric(RTV_RPIPE, rmx_recvpipe);
519 metric(RTV_SPIPE, rmx_sendpipe); 498 metric(RTV_SPIPE, rmx_sendpipe);
520 metric(RTV_SSTHRESH, rmx_ssthresh); 499 metric(RTV_SSTHRESH, rmx_ssthresh);
521 metric(RTV_RTT, rmx_rtt); 500 metric(RTV_RTT, rmx_rtt);
522 metric(RTV_RTTVAR, rmx_rttvar); 501 metric(RTV_RTTVAR, rmx_rttvar);
523 metric(RTV_HOPCOUNT, rmx_hopcount); 502 metric(RTV_HOPCOUNT, rmx_hopcount);
524 metric(RTV_MTU, rmx_mtu); 503 metric(RTV_MTU, rmx_mtu);
525 metric(RTV_EXPIRE, rmx_expire); 504 metric(RTV_EXPIRE, rmx_expire);
526#undef metric 505#undef metric
527} 506}
528 507
529#define ROUNDUP(a) \ 508#define ROUNDUP(a) \
530 ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) 509 ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
531#define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len)) 510#define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len))
532 511
533static int 512static int
534rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim, 513rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim,
535 struct rt_addrinfo *rtinfo) 514 struct rt_addrinfo *rtinfo)
536{ 515{
537 const struct sockaddr *sa = NULL; /* Quell compiler warning */ 516 const struct sockaddr *sa = NULL; /* Quell compiler warning */
538 int i; 517 int i;
539 518
540 for (i = 0; i < RTAX_MAX && cp < cplim; i++) { 519 for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
541 if ((rtinfo->rti_addrs & (1 << i)) == 0) 520 if ((rtinfo->rti_addrs & (1 << i)) == 0)
542 continue; 521 continue;
543 rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp; 522 rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
544 ADVANCE(cp, sa); 523 ADVANCE(cp, sa);
545 } 524 }
546 525
547 /* 526 /*
548 * Check for extra addresses specified, except RTM_GET asking 527 * Check for extra addresses specified, except RTM_GET asking
549 * for interface info. 528 * for interface info.
550 */ 529 */
551 if (rtmtype == RTM_GET) { 530 if (rtmtype == RTM_GET) {
552 if (((rtinfo->rti_addrs & 531 if (((rtinfo->rti_addrs &
553 (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0) 532 (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
554 return 1; 533 return 1;
555 } else if ((rtinfo->rti_addrs & (~0 << i)) != 0) 534 } else if ((rtinfo->rti_addrs & (~0 << i)) != 0)
556 return 1; 535 return 1;
557 /* Check for bad data length. */ 536 /* Check for bad data length. */
558 if (cp != cplim) { 537 if (cp != cplim) {
559 if (i == RTAX_NETMASK + 1 && sa != NULL && 538 if (i == RTAX_NETMASK + 1 && sa != NULL &&
560 cp - ROUNDUP(sa->sa_len) + sa->sa_len == cplim) 539 cp - ROUNDUP(sa->sa_len) + sa->sa_len == cplim)
561 /* 540 /*
562 * The last sockaddr was info.rti_info[RTAX_NETMASK]. 541 * The last sockaddr was info.rti_info[RTAX_NETMASK].
563 * We accept this for now for the sake of old 542 * We accept this for now for the sake of old
564 * binaries or third party softwares. 543 * binaries or third party softwares.
565 */ 544 */
566 ; 545 ;
567 else 546 else
568 return 1; 547 return 1;
569 } 548 }
570 return 0; 549 return 0;
571} 550}
572 551
573static struct mbuf * 552static struct mbuf *
574rt_msg1(int type, struct rt_addrinfo *rtinfo, void *data, int datalen) 553rt_msg1(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
575{ 554{
576 struct rt_msghdr *rtm; 555 struct rt_msghdr *rtm;
577 struct mbuf *m; 556 struct mbuf *m;
578 int i; 557 int i;
579 const struct sockaddr *sa; 558 const struct sockaddr *sa;
580 int len, dlen; 559 int len, dlen;
581 560
582 m = m_gethdr(M_DONTWAIT, MT_DATA); 561 m = m_gethdr(M_DONTWAIT, MT_DATA);
583 if (m == NULL) 562 if (m == NULL)
584 return m; 563 return m;
585 MCLAIM(m, &routedomain.dom_mowner); 564 MCLAIM(m, &routedomain.dom_mowner);
586 switch (type) { 565 switch (type) {
587 566
588 case RTM_DELADDR: 567 case RTM_DELADDR:
589 case RTM_NEWADDR: 568 case RTM_NEWADDR:
590 len = sizeof(struct ifa_msghdr); 569 len = sizeof(struct ifa_msghdr);
591 break; 570 break;
592 571
593#ifdef COMPAT_14 572#ifdef COMPAT_14
594 case RTM_OIFINFO: 573 case RTM_OIFINFO:
595 len = sizeof(struct if_msghdr14); 574 len = sizeof(struct if_msghdr14);
596 break; 575 break;
597#endif 576#endif
598 577
599 case RTM_IFINFO: 578 case RTM_IFINFO:
600 len = sizeof(struct if_msghdr); 579 len = sizeof(struct if_msghdr);
601 break; 580 break;
602 581
603 case RTM_IFANNOUNCE: 582 case RTM_IFANNOUNCE:
604 case RTM_IEEE80211: 583 case RTM_IEEE80211:
605 len = sizeof(struct if_announcemsghdr); 584 len = sizeof(struct if_announcemsghdr);
606 break; 585 break;
607 586
608 default: 587 default:
609 len = sizeof(struct rt_msghdr); 588 len = sizeof(struct rt_msghdr);
610 } 589 }
611 if (len > MHLEN + MLEN) 590 if (len > MHLEN + MLEN)
612 panic("rt_msg1: message too long"); 591 panic("rt_msg1: message too long");
613 else if (len > MHLEN) { 592 else if (len > MHLEN) {
614 m->m_next = m_get(M_DONTWAIT, MT_DATA); 593 m->m_next = m_get(M_DONTWAIT, MT_DATA);
615 if (m->m_next == NULL) { 594 if (m->m_next == NULL) {
616 m_freem(m); 595 m_freem(m);
617 return NULL; 596 return NULL;
618 } 597 }
619 MCLAIM(m->m_next, m->m_owner); 598 MCLAIM(m->m_next, m->m_owner);
620 m->m_pkthdr.len = len; 599 m->m_pkthdr.len = len;
621 m->m_len = MHLEN; 600 m->m_len = MHLEN;
622 m->m_next->m_len = len - MHLEN; 601 m->m_next->m_len = len - MHLEN;
623 } else { 602 } else {
624 m->m_pkthdr.len = m->m_len = len; 603 m->m_pkthdr.len = m->m_len = len;
625 } 604 }
626 m->m_pkthdr.rcvif = NULL; 605 m->m_pkthdr.rcvif = NULL;
627 m_copyback(m, 0, datalen, data); 606 m_copyback(m, 0, datalen, data);
628 if (len > datalen) 607 if (len > datalen)
629 (void)memset(mtod(m, char *) + datalen, 0, len - datalen); 608 (void)memset(mtod(m, char *) + datalen, 0, len - datalen);
630 rtm = mtod(m, struct rt_msghdr *); 609 rtm = mtod(m, struct rt_msghdr *);
631 for (i = 0; i < RTAX_MAX; i++) { 610 for (i = 0; i < RTAX_MAX; i++) {
632 if ((sa = rtinfo->rti_info[i]) == NULL) 611 if ((sa = rtinfo->rti_info[i]) == NULL)
633 continue; 612 continue;
634 rtinfo->rti_addrs |= (1 << i); 613 rtinfo->rti_addrs |= (1 << i);
635 dlen = ROUNDUP(sa->sa_len); 614 dlen = ROUNDUP(sa->sa_len);
636 m_copyback(m, len, dlen, sa); 615 m_copyback(m, len, dlen, sa);
637 len += dlen; 616 len += dlen;
638 } 617 }
639 if (m->m_pkthdr.len != len) { 618 if (m->m_pkthdr.len != len) {
640 m_freem(m); 619 m_freem(m);
641 return NULL; 620 return NULL;
642 } 621 }
643 rtm->rtm_msglen = len; 622 rtm->rtm_msglen = len;
644 rtm->rtm_version = RTM_VERSION; 623 rtm->rtm_version = RTM_VERSION;
645 rtm->rtm_type = type; 624 rtm->rtm_type = type;
646 return m; 625 return m;
647} 626}
648 627
649/* 628/*
650 * rt_msg2 629 * rt_msg2
651 * 630 *
652 * fills 'cp' or 'w'.w_tmem with the routing socket message and 631 * fills 'cp' or 'w'.w_tmem with the routing socket message and
653 * returns the length of the message in 'lenp'. 632 * returns the length of the message in 'lenp'.
654 * 633 *
655 * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold 634 * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
656 * the message 635 * the message
657 * otherwise walkarg's w_needed is updated and if the user buffer is 636 * otherwise walkarg's w_needed is updated and if the user buffer is
658 * specified and w_needed indicates space exists the information is copied 637 * specified and w_needed indicates space exists the information is copied
659 * into the temp space (w_tmem). w_tmem is [re]allocated if necessary, 638 * into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
660 * if the allocation fails ENOBUFS is returned. 639 * if the allocation fails ENOBUFS is returned.
661 */ 640 */
662static int 641static int
663rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct walkarg *w, 642rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct walkarg *w,
664 int *lenp) 643 int *lenp)
665{ 644{
666 int i; 645 int i;
667 int len, dlen, second_time = 0; 646 int len, dlen, second_time = 0;
668 char *cp0, *cp = cpv; 647 char *cp0, *cp = cpv;
669 648
670 rtinfo->rti_addrs = 0; 649 rtinfo->rti_addrs = 0;
671again: 650again:
672 switch (type) { 651 switch (type) {
673 652
674 case RTM_DELADDR: 653 case RTM_DELADDR:
675 case RTM_NEWADDR: 654 case RTM_NEWADDR:
676 len = sizeof(struct ifa_msghdr); 655 len = sizeof(struct ifa_msghdr);
677 break; 656 break;
678#ifdef COMPAT_14 657#ifdef COMPAT_14
679 case RTM_OIFINFO: 658 case RTM_OIFINFO:
680 len = sizeof(struct if_msghdr14); 659 len = sizeof(struct if_msghdr14);
681 break; 660 break;
682#endif 661#endif
683 662
684 case RTM_IFINFO: 663 case RTM_IFINFO:
685 len = sizeof(struct if_msghdr); 664 len = sizeof(struct if_msghdr);
686 break; 665 break;
687 666
688 default: 667 default:
689 len = sizeof(struct rt_msghdr); 668 len = sizeof(struct rt_msghdr);
690 } 669 }
691 if ((cp0 = cp) != NULL) 670 if ((cp0 = cp) != NULL)
692 cp += len; 671 cp += len;
693 for (i = 0; i < RTAX_MAX; i++) { 672 for (i = 0; i < RTAX_MAX; i++) {
694 const struct sockaddr *sa; 673 const struct sockaddr *sa;
695 674
696 if ((sa = rtinfo->rti_info[i]) == NULL) 675 if ((sa = rtinfo->rti_info[i]) == NULL)
697 continue; 676 continue;
698 rtinfo->rti_addrs |= (1 << i); 677 rtinfo->rti_addrs |= (1 << i);
699 dlen = ROUNDUP(sa->sa_len); 678 dlen = ROUNDUP(sa->sa_len);
700 if (cp) { 679 if (cp) {
701 (void)memcpy(cp, sa, (size_t)dlen); 680 (void)memcpy(cp, sa, (size_t)dlen);
702 cp += dlen; 681 cp += dlen;
703 } 682 }
704 len += dlen; 683 len += dlen;
705 } 684 }
706 if (cp == NULL && w != NULL && !second_time) { 685 if (cp == NULL && w != NULL && !second_time) {
707 struct walkarg *rw = w; 686 struct walkarg *rw = w;
708 687
709 rw->w_needed += len; 688 rw->w_needed += len;
710 if (rw->w_needed <= 0 && rw->w_where) { 689 if (rw->w_needed <= 0 && rw->w_where) {
711 if (rw->w_tmemsize < len) { 690 if (rw->w_tmemsize < len) {
712 if (rw->w_tmem) 691 if (rw->w_tmem)
713 free(rw->w_tmem, M_RTABLE); 692 free(rw->w_tmem, M_RTABLE);
714 rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT); 693 rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT);
715 if (rw->w_tmem) 694 if (rw->w_tmem)
716 rw->w_tmemsize = len; 695 rw->w_tmemsize = len;
717 else 696 else
718 rw->w_tmemsize = 0; 697 rw->w_tmemsize = 0;
719 } 698 }
720 if (rw->w_tmem) { 699 if (rw->w_tmem) {
721 cp = rw->w_tmem; 700 cp = rw->w_tmem;
722 second_time = 1; 701 second_time = 1;
723 goto again; 702 goto again;
724 } else { 703 } else {
725 rw->w_tmemneeded = len; 704 rw->w_tmemneeded = len;
726 return ENOBUFS; 705 return ENOBUFS;
727 } 706 }
728 } 707 }
729 } 708 }
730 if (cp) { 709 if (cp) {
731 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 710 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
732 711
733 rtm->rtm_version = RTM_VERSION; 712 rtm->rtm_version = RTM_VERSION;
734 rtm->rtm_type = type; 713 rtm->rtm_type = type;
735 rtm->rtm_msglen = len; 714 rtm->rtm_msglen = len;
736 } 715 }
737 if (lenp) 716 if (lenp)
738 *lenp = len; 717 *lenp = len;
739 return 0; 718 return 0;
740} 719}
741 720
742/* 721/*
743 * This routine is called to generate a message from the routing 722 * This routine is called to generate a message from the routing
744 * socket indicating that a redirect has occurred, a routing lookup 723 * socket indicating that a redirect has occurred, a routing lookup
745 * has failed, or that a protocol has detected timeouts to a particular 724 * has failed, or that a protocol has detected timeouts to a particular
746 * destination. 725 * destination.
747 */ 726 */
748void 727void
749rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) 728rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
750{ 729{
751 struct rt_msghdr rtm; 730 struct rt_msghdr rtm;
752 struct mbuf *m; 731 struct mbuf *m;
753 const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 732 const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
754 733
755 if (route_cb.any_count == 0) 734 if (route_cb.any_count == 0)
756 return; 735 return;
757 memset(&rtm, 0, sizeof(rtm)); 736 memset(&rtm, 0, sizeof(rtm));
758 rtm.rtm_flags = RTF_DONE | flags; 737 rtm.rtm_flags = RTF_DONE | flags;
759 rtm.rtm_errno = error; 738 rtm.rtm_errno = error;
760 m = rt_msg1(type, rtinfo, &rtm, sizeof(rtm)); 739 m = rt_msg1(type, rtinfo, &rtm, sizeof(rtm));
761 if (m == NULL) 740 if (m == NULL)
762 return; 741 return;
763 mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs; 742 mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs;
764 route_enqueue(m, sa ? sa->sa_family : 0); 743 route_enqueue(m, sa ? sa->sa_family : 0);
765} 744}
766 745
767/* 746/*
768 * This routine is called to generate a message from the routing 747 * This routine is called to generate a message from the routing
769 * socket indicating that the status of a network interface has changed. 748 * socket indicating that the status of a network interface has changed.
770 */ 749 */
771void 750void
772rt_ifmsg(struct ifnet *ifp) 751rt_ifmsg(struct ifnet *ifp)
773{ 752{
774 struct if_msghdr ifm; 753 struct if_msghdr ifm;
775#ifdef COMPAT_14 754#ifdef COMPAT_14
776 struct if_msghdr14 oifm; 755 struct if_msghdr14 oifm;
777#endif 756#endif
778 struct mbuf *m; 757 struct mbuf *m;
779 struct rt_addrinfo info; 758 struct rt_addrinfo info;
780 759
781 if (route_cb.any_count == 0) 760 if (route_cb.any_count == 0)
782 return; 761 return;
783 memset(&info, 0, sizeof(info)); 762 memset(&info, 0, sizeof(info));
784 memset(&ifm, 0, sizeof(ifm)); 763 memset(&ifm, 0, sizeof(ifm));
785 ifm.ifm_index = ifp->if_index; 764 ifm.ifm_index = ifp->if_index;
786 ifm.ifm_flags = ifp->if_flags; 765 ifm.ifm_flags = ifp->if_flags;
787 ifm.ifm_data = ifp->if_data; 766 ifm.ifm_data = ifp->if_data;
788 ifm.ifm_addrs = 0; 767 ifm.ifm_addrs = 0;
789 m = rt_msg1(RTM_IFINFO, &info, &ifm, sizeof(ifm)); 768 m = rt_msg1(RTM_IFINFO, &info, &ifm, sizeof(ifm));
790 if (m == NULL) 769 if (m == NULL)
791 return; 770 return;
792 route_enqueue(m, 0); 771 route_enqueue(m, 0);
793#ifdef COMPAT_14 772#ifdef COMPAT_14
794 memset(&info, 0, sizeof(info)); 773 memset(&info, 0, sizeof(info));
795 memset(&oifm, 0, sizeof(oifm)); 774 memset(&oifm, 0, sizeof(oifm));
796 oifm.ifm_index = ifp->if_index; 775 oifm.ifm_index = ifp->if_index;
797 oifm.ifm_flags = ifp->if_flags; 776 oifm.ifm_flags = ifp->if_flags;
798 oifm.ifm_data.ifi_type = ifp->if_data.ifi_type; 777 oifm.ifm_data.ifi_type = ifp->if_data.ifi_type;
799 oifm.ifm_data.ifi_addrlen = ifp->if_data.ifi_addrlen; 778 oifm.ifm_data.ifi_addrlen = ifp->if_data.ifi_addrlen;
800 oifm.ifm_data.ifi_hdrlen = ifp->if_data.ifi_hdrlen; 779 oifm.ifm_data.ifi_hdrlen = ifp->if_data.ifi_hdrlen;
801 oifm.ifm_data.ifi_mtu = ifp->if_data.ifi_mtu; 780 oifm.ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
802 oifm.ifm_data.ifi_metric = ifp->if_data.ifi_metric; 781 oifm.ifm_data.ifi_metric = ifp->if_data.ifi_metric;
803 oifm.ifm_data.ifi_baudrate = ifp->if_data.ifi_baudrate; 782 oifm.ifm_data.ifi_baudrate = ifp->if_data.ifi_baudrate;
804 oifm.ifm_data.ifi_ipackets = ifp->if_data.ifi_ipackets; 783 oifm.ifm_data.ifi_ipackets = ifp->if_data.ifi_ipackets;
805 oifm.ifm_data.ifi_ierrors = ifp->if_data.ifi_ierrors; 784 oifm.ifm_data.ifi_ierrors = ifp->if_data.ifi_ierrors;
806 oifm.ifm_data.ifi_opackets = ifp->if_data.ifi_opackets; 785 oifm.ifm_data.ifi_opackets = ifp->if_data.ifi_opackets;
807 oifm.ifm_data.ifi_oerrors = ifp->if_data.ifi_oerrors; 786 oifm.ifm_data.ifi_oerrors = ifp->if_data.ifi_oerrors;
808 oifm.ifm_data.ifi_collisions = ifp->if_data.ifi_collisions; 787 oifm.ifm_data.ifi_collisions = ifp->if_data.ifi_collisions;
809 oifm.ifm_data.ifi_ibytes = ifp->if_data.ifi_ibytes; 788 oifm.ifm_data.ifi_ibytes = ifp->if_data.ifi_ibytes;
810 oifm.ifm_data.ifi_obytes = ifp->if_data.ifi_obytes; 789 oifm.ifm_data.ifi_obytes = ifp->if_data.ifi_obytes;
811 oifm.ifm_data.ifi_imcasts = ifp->if_data.ifi_imcasts; 790 oifm.ifm_data.ifi_imcasts = ifp->if_data.ifi_imcasts;
812 oifm.ifm_data.ifi_omcasts = ifp->if_data.ifi_omcasts; 791 oifm.ifm_data.ifi_omcasts = ifp->if_data.ifi_omcasts;
813 oifm.ifm_data.ifi_iqdrops = ifp->if_data.ifi_iqdrops; 792 oifm.ifm_data.ifi_iqdrops = ifp->if_data.ifi_iqdrops;
814 oifm.ifm_data.ifi_noproto = ifp->if_data.ifi_noproto; 793 oifm.ifm_data.ifi_noproto = ifp->if_data.ifi_noproto;
815 oifm.ifm_data.ifi_lastchange = ifp->if_data.ifi_lastchange; 794 oifm.ifm_data.ifi_lastchange = ifp->if_data.ifi_lastchange;
816 oifm.ifm_addrs = 0; 795 oifm.ifm_addrs = 0;
817 m = rt_msg1(RTM_OIFINFO, &info, &oifm, sizeof(oifm)); 796 m = rt_msg1(RTM_OIFINFO, &info, &oifm, sizeof(oifm));
818 if (m == NULL) 797 if (m == NULL)
819 return; 798 return;
820 route_enqueue(m, 0); 799 route_enqueue(m, 0);
821#endif 800#endif
822} 801}
823 802
824/* 803/*
825 * This is called to generate messages from the routing socket 804 * This is called to generate messages from the routing socket
826 * indicating a network interface has had addresses associated with it. 805 * indicating a network interface has had addresses associated with it.
827 * if we ever reverse the logic and replace messages TO the routing 806 * if we ever reverse the logic and replace messages TO the routing
828 * socket indicate a request to configure interfaces, then it will 807 * socket indicate a request to configure interfaces, then it will
829 * be unnecessary as the routing socket will automatically generate 808 * be unnecessary as the routing socket will automatically generate
830 * copies of it. 809 * copies of it.
831 */ 810 */
832void 811void
833rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt) 812rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
834{ 813{
835 struct rt_addrinfo info; 814 struct rt_addrinfo info;
836 const struct sockaddr *sa = NULL; 815 const struct sockaddr *sa = NULL;
837 int pass; 816 int pass;
838 struct mbuf *m = NULL; 817 struct mbuf *m = NULL;
839 struct ifnet *ifp = ifa->ifa_ifp; 818 struct ifnet *ifp = ifa->ifa_ifp;
840 819
841 if (route_cb.any_count == 0) 820 if (route_cb.any_count == 0)
842 return; 821 return;
843 for (pass = 1; pass < 3; pass++) { 822 for (pass = 1; pass < 3; pass++) {
844 memset(&info, 0, sizeof(info)); 823 memset(&info, 0, sizeof(info));
845 if ((cmd == RTM_ADD && pass == 1) || 824 if ((cmd == RTM_ADD && pass == 1) ||
846 (cmd == RTM_DELETE && pass == 2)) { 825 (cmd == RTM_DELETE && pass == 2)) {
847 struct ifa_msghdr ifam; 826 struct ifa_msghdr ifam;
848 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; 827 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
849 828
850 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; 829 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
851 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr; 830 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
852 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 831 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
853 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 832 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
854 memset(&ifam, 0, sizeof(ifam)); 833 memset(&ifam, 0, sizeof(ifam));
855 ifam.ifam_index = ifp->if_index; 834 ifam.ifam_index = ifp->if_index;
856 ifam.ifam_metric = ifa->ifa_metric; 835 ifam.ifam_metric = ifa->ifa_metric;
857 ifam.ifam_flags = ifa->ifa_flags; 836 ifam.ifam_flags = ifa->ifa_flags;
858 m = rt_msg1(ncmd, &info, &ifam, sizeof(ifam)); 837 m = rt_msg1(ncmd, &info, &ifam, sizeof(ifam));
859 if (m == NULL) 838 if (m == NULL)
860 continue; 839 continue;
861 mtod(m, struct ifa_msghdr *)->ifam_addrs = 840 mtod(m, struct ifa_msghdr *)->ifam_addrs =
862 info.rti_addrs; 841 info.rti_addrs;
863 } 842 }
864 if ((cmd == RTM_ADD && pass == 2) || 843 if ((cmd == RTM_ADD && pass == 2) ||
865 (cmd == RTM_DELETE && pass == 1)) { 844 (cmd == RTM_DELETE && pass == 1)) {
866 struct rt_msghdr rtm; 845 struct rt_msghdr rtm;
867 846
868 if (rt == NULL) 847 if (rt == NULL)
869 continue; 848 continue;
870 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 849 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
871 info.rti_info[RTAX_DST] = sa = rt_getkey(rt); 850 info.rti_info[RTAX_DST] = sa = rt_getkey(rt);
872 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 851 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
873 memset(&rtm, 0, sizeof(rtm)); 852 memset(&rtm, 0, sizeof(rtm));
874 rtm.rtm_index = ifp->if_index; 853 rtm.rtm_index = ifp->if_index;
875 rtm.rtm_flags |= rt->rt_flags; 854 rtm.rtm_flags |= rt->rt_flags;
876 rtm.rtm_errno = error; 855 rtm.rtm_errno = error;
877 m = rt_msg1(cmd, &info, &rtm, sizeof(rtm)); 856 m = rt_msg1(cmd, &info, &rtm, sizeof(rtm));
878 if (m == NULL) 857 if (m == NULL)
879 continue; 858 continue;
880 mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs; 859 mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs;
881 } 860 }
882#ifdef DIAGNOSTIC 861#ifdef DIAGNOSTIC
883 if (m == NULL) 862 if (m == NULL)
884 panic("%s: called with wrong command", __func__); 863 panic("%s: called with wrong command", __func__);
885#endif 864#endif
886 route_enqueue(m, sa ? sa->sa_family : 0); 865 route_enqueue(m, sa ? sa->sa_family : 0);
887 } 866 }
888} 867}
889 868
890static struct mbuf * 869static struct mbuf *
891rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, 870rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
892 struct rt_addrinfo *info) 871 struct rt_addrinfo *info)
893{ 872{
894 struct if_announcemsghdr ifan; 873 struct if_announcemsghdr ifan;
895 874
896 memset(info, 0, sizeof(*info)); 875 memset(info, 0, sizeof(*info));
897 memset(&ifan, 0, sizeof(ifan)); 876 memset(&ifan, 0, sizeof(ifan));
898 ifan.ifan_index = ifp->if_index; 877 ifan.ifan_index = ifp->if_index;
899 strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name)); 878 strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
900 ifan.ifan_what = what; 879 ifan.ifan_what = what;
901 return rt_msg1(type, info, &ifan, sizeof(ifan)); 880 return rt_msg1(type, info, &ifan, sizeof(ifan));
902} 881}
903 882
904/* 883/*
905 * This is called to generate routing socket messages indicating 884 * This is called to generate routing socket messages indicating
906 * network interface arrival and departure. 885 * network interface arrival and departure.
907 */ 886 */
908void 887void
909rt_ifannouncemsg(struct ifnet *ifp, int what) 888rt_ifannouncemsg(struct ifnet *ifp, int what)
910{ 889{
911 struct mbuf *m; 890 struct mbuf *m;
912 struct rt_addrinfo info; 891 struct rt_addrinfo info;
913 892
914 if (route_cb.any_count == 0) 893 if (route_cb.any_count == 0)
915 return; 894 return;
916 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); 895 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
917 if (m == NULL) 896 if (m == NULL)
918 return; 897 return;
919 route_enqueue(m, 0); 898 route_enqueue(m, 0);
920} 899}
921 900
922/* 901/*
923 * This is called to generate routing socket messages indicating 902 * This is called to generate routing socket messages indicating
924 * IEEE80211 wireless events. 903 * IEEE80211 wireless events.
925 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. 904 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
926 */ 905 */
927void 906void
928rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) 907rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
929{ 908{
930 struct mbuf *m; 909 struct mbuf *m;
931 struct rt_addrinfo info; 910 struct rt_addrinfo info;
932 911
933 if (route_cb.any_count == 0) 912 if (route_cb.any_count == 0)
934 return; 913 return;
935 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); 914 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
936 if (m == NULL) 915 if (m == NULL)
937 return; 916 return;
938 /* 917 /*
939 * Append the ieee80211 data. Try to stick it in the 918 * Append the ieee80211 data. Try to stick it in the
940 * mbuf containing the ifannounce msg; otherwise allocate 919 * mbuf containing the ifannounce msg; otherwise allocate
941 * a new mbuf and append. 920 * a new mbuf and append.
942 * 921 *
943 * NB: we assume m is a single mbuf. 922 * NB: we assume m is a single mbuf.
944 */ 923 */
945 if (data_len > M_TRAILINGSPACE(m)) { 924 if (data_len > M_TRAILINGSPACE(m)) {
946 struct mbuf *n = m_get(M_NOWAIT, MT_DATA); 925 struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
947 if (n == NULL) { 926 if (n == NULL) {
948 m_freem(m); 927 m_freem(m);
949 return; 928 return;
950 } 929 }
951 (void)memcpy(mtod(n, void *), data, data_len); 930 (void)memcpy(mtod(n, void *), data, data_len);
952 n->m_len = data_len; 931 n->m_len = data_len;
953 m->m_next = n; 932 m->m_next = n;
954 } else if (data_len > 0) { 933 } else if (data_len > 0) {
955 (void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len); 934 (void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
956 m->m_len += data_len; 935 m->m_len += data_len;
957 } 936 }
958 if (m->m_flags & M_PKTHDR) 937 if (m->m_flags & M_PKTHDR)
959 m->m_pkthdr.len += data_len; 938 m->m_pkthdr.len += data_len;
960 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; 939 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
961 route_enqueue(m, 0); 940 route_enqueue(m, 0);
962} 941}
963 942
964/* 943/*
965 * This is used in dumping the kernel table via sysctl(). 944 * This is used in dumping the kernel table via sysctl().
966 */ 945 */
967static int 946static int
968sysctl_dumpentry(struct rtentry *rt, void *v) 947sysctl_dumpentry(struct rtentry *rt, void *v)
969{ 948{
970 struct walkarg *w = v; 949 struct walkarg *w = v;
971 int error = 0, size; 950 int error = 0, size;
972 struct rt_addrinfo info; 951 struct rt_addrinfo info;
973 952
974 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 953 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
975 return 0; 954 return 0;
976 memset(&info, 0, sizeof(info)); 955 memset(&info, 0, sizeof(info));
977 info.rti_info[RTAX_DST] = rt_getkey(rt); 956 info.rti_info[RTAX_DST] = rt_getkey(rt);
978 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 957 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
979 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 958 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
980 if (rt->rt_ifp) { 959 if (rt->rt_ifp) {
981 const struct ifaddr *rtifa; 960 const struct ifaddr *rtifa;
982 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr; 961 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
983 /* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL, 962 /* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL,
984 * then rt_get_ifa() != NULL. So this ought to still be safe. 963 * then rt_get_ifa() != NULL. So this ought to still be safe.
985 * --dyoung 964 * --dyoung
986 */ 965 */
987 rtifa = rt_get_ifa(rt); 966 rtifa = rt_get_ifa(rt);
988 info.rti_info[RTAX_IFA] = rtifa->ifa_addr; 967 info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
989 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT) 968 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
990 info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr; 969 info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr;
991 } 970 }
992 if ((error = rt_msg2(RTM_GET, &info, 0, w, &size))) 971 if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
993 return error; 972 return error;
994 if (w->w_where && w->w_tmem && w->w_needed <= 0) { 973 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
995 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 974 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
996 975
997 rtm->rtm_flags = rt->rt_flags; 976 rtm->rtm_flags = rt->rt_flags;
998 rtm->rtm_use = rt->rt_use; 977 rtm->rtm_use = rt->rt_use;
999 rtm->rtm_rmx = rt->rt_rmx; 978 rtm->rtm_rmx = rt->rt_rmx;
1000 KASSERT(rt->rt_ifp != NULL); 979 KASSERT(rt->rt_ifp != NULL);
1001 rtm->rtm_index = rt->rt_ifp->if_index; 980 rtm->rtm_index = rt->rt_ifp->if_index;
1002 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0; 981 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1003 rtm->rtm_addrs = info.rti_addrs; 982 rtm->rtm_addrs = info.rti_addrs;
1004 if ((error = copyout(rtm, w->w_where, size)) != 0) 983 if ((error = copyout(rtm, w->w_where, size)) != 0)
1005 w->w_where = NULL; 984 w->w_where = NULL;
1006 else 985 else
1007 w->w_where = (char *)w->w_where + size; 986 w->w_where = (char *)w->w_where + size;
1008 } 987 }
1009 return error; 988 return error;
1010} 989}
1011 990
1012static int 991static int
1013sysctl_iflist(int af, struct walkarg *w, int type) 992sysctl_iflist(int af, struct walkarg *w, int type)
1014{ 993{
1015 struct ifnet *ifp; 994 struct ifnet *ifp;
1016 struct ifaddr *ifa; 995 struct ifaddr *ifa;
1017 struct rt_addrinfo info; 996 struct rt_addrinfo info;
1018 int len, error = 0; 997 int len, error = 0;
1019 998
1020 memset(&info, 0, sizeof(info)); 999 memset(&info, 0, sizeof(info));
1021 IFNET_FOREACH(ifp) { 1000 IFNET_FOREACH(ifp) {
1022 if (w->w_arg && w->w_arg != ifp->if_index) 1001 if (w->w_arg && w->w_arg != ifp->if_index)
1023 continue; 1002 continue;
1024 if (IFADDR_EMPTY(ifp)) 1003 if (IFADDR_EMPTY(ifp))
1025 continue; 1004 continue;
1026 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr; 1005 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
1027 switch (type) { 1006 switch (type) {
1028 case NET_RT_IFLIST: 1007 case NET_RT_IFLIST:
1029 error = rt_msg2(RTM_IFINFO, &info, NULL, w, &len); 1008 error = rt_msg2(RTM_IFINFO, &info, NULL, w, &len);
1030 break; 1009 break;
1031#ifdef COMPAT_14 1010#ifdef COMPAT_14
1032 case NET_RT_OIFLIST: 1011 case NET_RT_OIFLIST:
1033 error = rt_msg2(RTM_OIFINFO, &info, NULL, w, &len); 1012 error = rt_msg2(RTM_OIFINFO, &info, NULL, w, &len);
1034 break; 1013 break;
1035#endif 1014#endif
1036 default: 1015 default:
1037 panic("sysctl_iflist(1)"); 1016 panic("sysctl_iflist(1)");
1038 } 1017 }
1039 if (error) 1018 if (error)
1040 return error; 1019 return error;
1041 info.rti_info[RTAX_IFP] = NULL; 1020 info.rti_info[RTAX_IFP] = NULL;
1042 if (w->w_where && w->w_tmem && w->w_needed <= 0) { 1021 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1043 switch (type) { 1022 switch (type) {
1044 case NET_RT_IFLIST: { 1023 case NET_RT_IFLIST: {
1045 struct if_msghdr *ifm; 1024 struct if_msghdr *ifm;
1046 1025
1047 ifm = (struct if_msghdr *)w->w_tmem; 1026 ifm = (struct if_msghdr *)w->w_tmem;
1048 ifm->ifm_index = ifp->if_index; 1027 ifm->ifm_index = ifp->if_index;
1049 ifm->ifm_flags = ifp->if_flags; 1028 ifm->ifm_flags = ifp->if_flags;
1050 ifm->ifm_data = ifp->if_data; 1029 ifm->ifm_data = ifp->if_data;
1051 ifm->ifm_addrs = info.rti_addrs; 1030 ifm->ifm_addrs = info.rti_addrs;
1052 error = copyout(ifm, w->w_where, len); 1031 error = copyout(ifm, w->w_where, len);
1053 if (error) 1032 if (error)
1054 return error; 1033 return error;
1055 w->w_where = (char *)w->w_where + len; 1034 w->w_where = (char *)w->w_where + len;
1056 break; 1035 break;
1057 } 1036 }
1058 1037
1059#ifdef COMPAT_14 1038#ifdef COMPAT_14
1060 case NET_RT_OIFLIST: { 1039 case NET_RT_OIFLIST: {
1061 struct if_msghdr14 *ifm; 1040 struct if_msghdr14 *ifm;
1062 1041
1063 ifm = (struct if_msghdr14 *)w->w_tmem; 1042 ifm = (struct if_msghdr14 *)w->w_tmem;
1064 ifm->ifm_index = ifp->if_index; 1043 ifm->ifm_index = ifp->if_index;
1065 ifm->ifm_flags = ifp->if_flags; 1044 ifm->ifm_flags = ifp->if_flags;
1066 ifm->ifm_data.ifi_type = ifp->if_data.ifi_type; 1045 ifm->ifm_data.ifi_type = ifp->if_data.ifi_type;
1067 ifm->ifm_data.ifi_addrlen = 1046 ifm->ifm_data.ifi_addrlen =
1068 ifp->if_data.ifi_addrlen; 1047 ifp->if_data.ifi_addrlen;
1069 ifm->ifm_data.ifi_hdrlen = 1048 ifm->ifm_data.ifi_hdrlen =
1070 ifp->if_data.ifi_hdrlen; 1049 ifp->if_data.ifi_hdrlen;
1071 ifm->ifm_data.ifi_mtu = ifp->if_data.ifi_mtu; 1050 ifm->ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
1072 ifm->ifm_data.ifi_metric = 1051 ifm->ifm_data.ifi_metric =
1073 ifp->if_data.ifi_metric; 1052 ifp->if_data.ifi_metric;
1074 ifm->ifm_data.ifi_baudrate = 1053 ifm->ifm_data.ifi_baudrate =
1075 ifp->if_data.ifi_baudrate; 1054 ifp->if_data.ifi_baudrate;
1076 ifm->ifm_data.ifi_ipackets = 1055 ifm->ifm_data.ifi_ipackets =
1077 ifp->if_data.ifi_ipackets; 1056 ifp->if_data.ifi_ipackets;
1078 ifm->ifm_data.ifi_ierrors = 1057 ifm->ifm_data.ifi_ierrors =
1079 ifp->if_data.ifi_ierrors; 1058 ifp->if_data.ifi_ierrors;
1080 ifm->ifm_data.ifi_opackets = 1059 ifm->ifm_data.ifi_opackets =
1081 ifp->if_data.ifi_opackets; 1060 ifp->if_data.ifi_opackets;
1082 ifm->ifm_data.ifi_oerrors = 1061 ifm->ifm_data.ifi_oerrors =
1083 ifp->if_data.ifi_oerrors; 1062 ifp->if_data.ifi_oerrors;
1084 ifm->ifm_data.ifi_collisions = 1063 ifm->ifm_data.ifi_collisions =
1085 ifp->if_data.ifi_collisions; 1064 ifp->if_data.ifi_collisions;
1086 ifm->ifm_data.ifi_ibytes = 1065 ifm->ifm_data.ifi_ibytes =
1087 ifp->if_data.ifi_ibytes; 1066 ifp->if_data.ifi_ibytes;
1088 ifm->ifm_data.ifi_obytes = 1067 ifm->ifm_data.ifi_obytes =
1089 ifp->if_data.ifi_obytes; 1068 ifp->if_data.ifi_obytes;
1090 ifm->ifm_data.ifi_imcasts = 1069 ifm->ifm_data.ifi_imcasts =
1091 ifp->if_data.ifi_imcasts; 1070 ifp->if_data.ifi_imcasts;
1092 ifm->ifm_data.ifi_omcasts = 1071 ifm->ifm_data.ifi_omcasts =
1093 ifp->if_data.ifi_omcasts; 1072 ifp->if_data.ifi_omcasts;
1094 ifm->ifm_data.ifi_iqdrops = 1073 ifm->ifm_data.ifi_iqdrops =
1095 ifp->if_data.ifi_iqdrops; 1074 ifp->if_data.ifi_iqdrops;
1096 ifm->ifm_data.ifi_noproto = 1075 ifm->ifm_data.ifi_noproto =
1097 ifp->if_data.ifi_noproto; 1076 ifp->if_data.ifi_noproto;
1098 ifm->ifm_data.ifi_lastchange = 1077 ifm->ifm_data.ifi_lastchange =
1099 ifp->if_data.ifi_lastchange; 1078 ifp->if_data.ifi_lastchange;
1100 ifm->ifm_addrs = info.rti_addrs; 1079 ifm->ifm_addrs = info.rti_addrs;
1101 error = copyout(ifm, w->w_where, len); 1080 error = copyout(ifm, w->w_where, len);
1102 if (error) 1081 if (error)
1103 return error; 1082 return error;
1104 w->w_where = (char *)w->w_where + len; 1083 w->w_where = (char *)w->w_where + len;
1105 break; 1084 break;
1106 } 1085 }
1107#endif 1086#endif
1108 default: 1087 default:
1109 panic("sysctl_iflist(2)"); 1088 panic("sysctl_iflist(2)");
1110 } 1089 }
1111 } 1090 }
1112 IFADDR_FOREACH(ifa, ifp) { 1091 IFADDR_FOREACH(ifa, ifp) {
1113 if (af && af != ifa->ifa_addr->sa_family) 1092 if (af && af != ifa->ifa_addr->sa_family)
1114 continue; 1093 continue;
1115 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1094 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1116 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1095 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1117 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1096 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1118 if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len))) 1097 if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
1119 return error; 1098 return error;
1120 if (w->w_where && w->w_tmem && w->w_needed <= 0) { 1099 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1121 struct ifa_msghdr *ifam; 1100 struct ifa_msghdr *ifam;
1122 1101
1123 ifam = (struct ifa_msghdr *)w->w_tmem; 1102 ifam = (struct ifa_msghdr *)w->w_tmem;
1124 ifam->ifam_index = ifa->ifa_ifp->if_index; 1103 ifam->ifam_index = ifa->ifa_ifp->if_index;
1125 ifam->ifam_flags = ifa->ifa_flags; 1104 ifam->ifam_flags = ifa->ifa_flags;
1126 ifam->ifam_metric = ifa->ifa_metric; 1105 ifam->ifam_metric = ifa->ifa_metric;
1127 ifam->ifam_addrs = info.rti_addrs; 1106 ifam->ifam_addrs = info.rti_addrs;
1128 error = copyout(w->w_tmem, w->w_where, len); 1107 error = copyout(w->w_tmem, w->w_where, len);
1129 if (error) 1108 if (error)
1130 return error; 1109 return error;
1131 w->w_where = (char *)w->w_where + len; 1110 w->w_where = (char *)w->w_where + len;
1132 } 1111 }
1133 } 1112 }
1134 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1113 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1135 info.rti_info[RTAX_BRD] = NULL; 1114 info.rti_info[RTAX_BRD] = NULL;
1136 } 1115 }
1137 return 0; 1116 return 0;
1138} 1117}
1139 1118
1140static int 1119static int
1141sysctl_rtable(SYSCTLFN_ARGS) 1120sysctl_rtable(SYSCTLFN_ARGS)
1142{ 1121{
1143 void *where = oldp; 1122 void *where = oldp;
1144 size_t *given = oldlenp; 1123 size_t *given = oldlenp;
1145 const void *new = newp; 1124 const void *new = newp;
1146 int i, s, error = EINVAL; 1125 int i, s, error = EINVAL;
1147 u_char af; 1126 u_char af;
1148 struct walkarg w; 1127 struct walkarg w;
1149 1128
1150 if (namelen == 1 && name[0] == CTL_QUERY) 1129 if (namelen == 1 && name[0] == CTL_QUERY)
1151 return sysctl_query(SYSCTLFN_CALL(rnode)); 1130 return sysctl_query(SYSCTLFN_CALL(rnode));
1152 1131
1153 if (new) 1132 if (new)
1154 return EPERM; 1133 return EPERM;
1155 if (namelen != 3) 1134 if (namelen != 3)
1156 return EINVAL; 1135 return EINVAL;
1157 af = name[0]; 1136 af = name[0];
1158 w.w_tmemneeded = 0; 1137 w.w_tmemneeded = 0;
1159 w.w_tmemsize = 0; 1138 w.w_tmemsize = 0;
1160 w.w_tmem = NULL; 1139 w.w_tmem = NULL;
1161again: 1140again:
1162 /* we may return here if a later [re]alloc of the t_mem buffer fails */ 1141 /* we may return here if a later [re]alloc of the t_mem buffer fails */
1163 if (w.w_tmemneeded) { 1142 if (w.w_tmemneeded) {
1164 w.w_tmem = malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK); 1143 w.w_tmem = malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
1165 w.w_tmemsize = w.w_tmemneeded; 1144 w.w_tmemsize = w.w_tmemneeded;
1166 w.w_tmemneeded = 0; 1145 w.w_tmemneeded = 0;
1167 } 1146 }
1168 w.w_op = name[1]; 1147 w.w_op = name[1];
1169 w.w_arg = name[2]; 1148 w.w_arg = name[2];
1170 w.w_given = *given; 1149 w.w_given = *given;
1171 w.w_needed = 0 - w.w_given; 1150 w.w_needed = 0 - w.w_given;
1172 w.w_where = where; 1151 w.w_where = where;
1173 1152
1174 s = splsoftnet(); 1153 s = splsoftnet();
1175 switch (w.w_op) { 1154 switch (w.w_op) {
1176 1155
1177 case NET_RT_DUMP: 1156 case NET_RT_DUMP:
1178 case NET_RT_FLAGS: 1157 case NET_RT_FLAGS:
1179 for (i = 1; i <= AF_MAX; i++) 1158 for (i = 1; i <= AF_MAX; i++)
1180 if ((af == 0 || af == i) && 1159 if ((af == 0 || af == i) &&
1181 (error = rt_walktree(i, sysctl_dumpentry, &w))) 1160 (error = rt_walktree(i, sysctl_dumpentry, &w)))
1182 break; 1161 break;
1183 break; 1162 break;
1184 1163
1185#ifdef COMPAT_14 1164#ifdef COMPAT_14
1186 case NET_RT_OIFLIST: 1165 case NET_RT_OIFLIST:
1187 error = sysctl_iflist(af, &w, w.w_op); 1166 error = sysctl_iflist(af, &w, w.w_op);
1188 break; 1167 break;
1189#endif 1168#endif
1190 1169
1191 case NET_RT_IFLIST: 1170 case NET_RT_IFLIST:
1192 error = sysctl_iflist(af, &w, w.w_op); 1171 error = sysctl_iflist(af, &w, w.w_op);
1193 } 1172 }
1194 splx(s); 1173 splx(s);
1195 1174
1196 /* check to see if we couldn't allocate memory with NOWAIT */ 1175 /* check to see if we couldn't allocate memory with NOWAIT */
1197 if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded) 1176 if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
1198 goto again; 1177 goto again;
1199 1178
1200 if (w.w_tmem) 1179 if (w.w_tmem)
1201 free(w.w_tmem, M_RTABLE); 1180 free(w.w_tmem, M_RTABLE);
1202 w.w_needed += w.w_given; 1181 w.w_needed += w.w_given;
1203 if (where) { 1182 if (where) {
1204 *given = (char *)w.w_where - (char *)where; 1183 *given = (char *)w.w_where - (char *)where;
1205 if (*given < w.w_needed) 1184 if (*given < w.w_needed)
1206 return ENOMEM; 1185 return ENOMEM;
1207 } else { 1186 } else {
1208 *given = (11 * w.w_needed) / 10; 1187 *given = (11 * w.w_needed) / 10;
1209 } 1188 }
1210 return error; 1189 return error;
1211} 1190}
1212 1191
1213/* 1192/*
1214 * Routing message software interrupt routine 1193 * Routing message software interrupt routine
1215 */ 1194 */
1216static void 1195static void
1217route_intr(void *cookie) 1196route_intr(void *cookie)
1218{ 1197{
1219 struct sockproto proto = { .sp_family = PF_ROUTE, }; 1198 struct sockproto proto = { .sp_family = PF_ROUTE, };
1220 struct mbuf *m; 1199 struct mbuf *m;
1221 int s; 1200 int s;
1222 1201
1223 mutex_enter(softnet_lock); 1202 mutex_enter(softnet_lock);
1224 KERNEL_LOCK(1, NULL); 1203 KERNEL_LOCK(1, NULL);
1225 while (!IF_IS_EMPTY(&route_intrq)) { 1204 while (!IF_IS_EMPTY(&route_intrq)) {
1226 s = splnet(); 1205 s = splnet();
1227 IF_DEQUEUE(&route_intrq, m); 1206 IF_DEQUEUE(&route_intrq, m);
1228 splx(s); 1207 splx(s);
1229 if (m == NULL) 1208 if (m == NULL)
1230 break; 1209 break;
1231 proto.sp_protocol = M_GETCTX(m, uintptr_t); 1210 proto.sp_protocol = M_GETCTX(m, uintptr_t);
1232 raw_input(m, &proto, &route_src, &route_dst); 1211 raw_input(m, &proto, &route_src, &route_dst);
1233 } 1212 }
1234 KERNEL_UNLOCK_ONE(NULL); 1213 KERNEL_UNLOCK_ONE(NULL);
1235 mutex_exit(softnet_lock); 1214 mutex_exit(softnet_lock);
1236} 1215}
1237 1216
1238/* 1217/*
1239 * Enqueue a message to the software interrupt routine. 1218 * Enqueue a message to the software interrupt routine.
1240 */ 1219 */
1241static void 1220static void
1242route_enqueue(struct mbuf *m, int family) 1221route_enqueue(struct mbuf *m, int family)
1243{ 1222{
1244 int s, wasempty; 1223 int s, wasempty;
1245 1224
1246 s = splnet(); 1225 s = splnet();
1247 if (IF_QFULL(&route_intrq)) { 1226 if (IF_QFULL(&route_intrq)) {
1248 IF_DROP(&route_intrq); 1227 IF_DROP(&route_intrq);
1249 m_freem(m); 1228 m_freem(m);
1250 } else { 1229 } else {
1251 wasempty = IF_IS_EMPTY(&route_intrq); 1230 wasempty = IF_IS_EMPTY(&route_intrq);
1252 M_SETCTX(m, (uintptr_t)family); 1231 M_SETCTX(m, (uintptr_t)family);
1253 IF_ENQUEUE(&route_intrq, m); 1232 IF_ENQUEUE(&route_intrq, m);
1254 if (wasempty) 1233 if (wasempty)
1255 softint_schedule(route_sih); 1234 softint_schedule(route_sih);
1256 } 1235 }
1257 splx(s); 1236 splx(s);
1258} 1237}
1259 1238
1260void 1239void
1261rt_init(void) 1240rt_init(void)
1262{ 1241{
1263 1242
1264 route_intrq.ifq_maxlen = route_maxqlen; 1243 route_intrq.ifq_maxlen = route_maxqlen;
1265 route_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, 1244 route_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1266 route_intr, NULL); 1245 route_intr, NULL);
1267} 1246}
1268 1247
1269/* 1248/*
1270 * Definitions of protocols supported in the ROUTE domain. 1249 * Definitions of protocols supported in the ROUTE domain.
1271 */ 1250 */
1272PR_WRAP_USRREQ(route_usrreq) 1251PR_WRAP_USRREQ(route_usrreq)
1273#define route_usrreq route_usrreq_wrapper 1252#define route_usrreq route_usrreq_wrapper
1274 1253
1275const struct protosw routesw[] = { 1254const struct protosw routesw[] = {
1276 { 1255 {
1277 .pr_type = SOCK_RAW, 1256 .pr_type = SOCK_RAW,
1278 .pr_domain = &routedomain, 1257 .pr_domain = &routedomain,
1279 .pr_flags = PR_ATOMIC|PR_ADDR, 1258 .pr_flags = PR_ATOMIC|PR_ADDR,
1280 .pr_input = raw_input, 1259 .pr_input = raw_input,
1281 .pr_output = route_output, 1260 .pr_output = route_output,
1282 .pr_ctlinput = raw_ctlinput, 1261 .pr_ctlinput = raw_ctlinput,
1283 .pr_usrreq = route_usrreq, 1262 .pr_usrreq = route_usrreq,
1284 .pr_init = raw_init, 1263 .pr_init = raw_init,
1285 }, 1264 },
1286}; 1265};
1287 1266
1288struct domain routedomain = { 1267struct domain routedomain = {
1289 .dom_family = PF_ROUTE, 1268 .dom_family = PF_ROUTE,
1290 .dom_name = "route", 1269 .dom_name = "route",
1291 .dom_init = route_init, 1270 .dom_init = route_init,
1292 .dom_protosw = routesw, 1271 .dom_protosw = routesw,
1293 .dom_protoswNPROTOSW = &routesw[__arraycount(routesw)], 1272 .dom_protoswNPROTOSW = &routesw[__arraycount(routesw)],
1294}; 1273};
1295 1274
1296SYSCTL_SETUP(sysctl_net_route_setup, "sysctl net.route subtree setup") 1275SYSCTL_SETUP(sysctl_net_route_setup, "sysctl net.route subtree setup")
1297{ 1276{
1298 const struct sysctlnode *rnode = NULL; 1277 const struct sysctlnode *rnode = NULL;
1299 1278
1300 sysctl_createv(clog, 0, NULL, NULL, 1279 sysctl_createv(clog, 0, NULL, NULL,
1301 CTLFLAG_PERMANENT, 1280 CTLFLAG_PERMANENT,
1302 CTLTYPE_NODE, "net", NULL, 1281 CTLTYPE_NODE, "net", NULL,
1303 NULL, 0, NULL, 0, 1282 NULL, 0, NULL, 0,
1304 CTL_NET, CTL_EOL); 1283 CTL_NET, CTL_EOL);
1305 1284
1306 sysctl_createv(clog, 0, NULL, &rnode, 1285 sysctl_createv(clog, 0, NULL, &rnode,
1307 CTLFLAG_PERMANENT, 1286 CTLFLAG_PERMANENT,
1308 CTLTYPE_NODE, "route", 1287 CTLTYPE_NODE, "route",
1309 SYSCTL_DESCR("PF_ROUTE information"), 1288 SYSCTL_DESCR("PF_ROUTE information"),
1310 NULL, 0, NULL, 0, 1289 NULL, 0, NULL, 0,
1311 CTL_NET, PF_ROUTE, CTL_EOL); 1290 CTL_NET, PF_ROUTE, CTL_EOL);
1312 sysctl_createv(clog, 0, NULL, NULL, 1291 sysctl_createv(clog, 0, NULL, NULL,
1313 CTLFLAG_PERMANENT, 1292 CTLFLAG_PERMANENT,
1314 CTLTYPE_NODE, "rtable", 1293 CTLTYPE_NODE, "rtable",
1315 SYSCTL_DESCR("Routing table information"), 1294 SYSCTL_DESCR("Routing table information"),
1316 sysctl_rtable, 0, NULL, 0, 1295 sysctl_rtable, 0, NULL, 0,
1317 CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL); 1296 CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL);
1318 sysctl_createv(clog, 0, &rnode, NULL, 1297 sysctl_createv(clog, 0, &rnode, NULL,
1319 CTLFLAG_PERMANENT, 1298 CTLFLAG_PERMANENT,
1320 CTLTYPE_STRUCT, "stats", 1299 CTLTYPE_STRUCT, "stats",
1321 SYSCTL_DESCR("Routing statistics"), 1300 SYSCTL_DESCR("Routing statistics"),
1322 NULL, 0, &rtstat, sizeof(rtstat), 1301 NULL, 0, &rtstat, sizeof(rtstat),
1323 CTL_CREATE, CTL_EOL); 1302 CTL_CREATE, CTL_EOL);
1324} 1303}