Wed Aug 5 15:39:57 2009 UTC ()
Compensate v_numoutput & nestbuf for lfs's rather peculiar I/O habits.


(pooka)
diff -r1.276 -r1.277 src/sys/ufs/lfs/lfs_vfsops.c

cvs diff -r1.276 -r1.277 src/sys/ufs/lfs/lfs_vfsops.c (switch to unified diff)

--- src/sys/ufs/lfs/lfs_vfsops.c 2009/08/05 14:37:01 1.276
+++ src/sys/ufs/lfs/lfs_vfsops.c 2009/08/05 15:39:57 1.277
@@ -1,2113 +1,2122 @@ @@ -1,2113 +1,2122 @@
1/* $NetBSD: lfs_vfsops.c,v 1.276 2009/08/05 14:37:01 pooka Exp $ */ 1/* $NetBSD: lfs_vfsops.c,v 1.277 2009/08/05 15:39:57 pooka Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007 4 * Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007, 2007
5 * The NetBSD Foundation, Inc. 5 * The NetBSD Foundation, Inc.
6 * All rights reserved. 6 * All rights reserved.
7 * 7 *
8 * This code is derived from software contributed to The NetBSD Foundation 8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Konrad E. Schroder <perseant@hhhh.org>. 9 * by Konrad E. Schroder <perseant@hhhh.org>.
10 * 10 *
11 * Redistribution and use in source and binary forms, with or without 11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions 12 * modification, are permitted provided that the following conditions
13 * are met: 13 * are met:
14 * 1. Redistributions of source code must retain the above copyright 14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer. 15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright 16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the 17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution. 18 * documentation and/or other materials provided with the distribution.
19 * 19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE. 30 * POSSIBILITY OF SUCH DAMAGE.
31 */ 31 */
32/*- 32/*-
33 * Copyright (c) 1989, 1991, 1993, 1994 33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved. 34 * The Regents of the University of California. All rights reserved.
35 * 35 *
36 * Redistribution and use in source and binary forms, with or without 36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions 37 * modification, are permitted provided that the following conditions
38 * are met: 38 * are met:
39 * 1. Redistributions of source code must retain the above copyright 39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer. 40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright 41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the 42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution. 43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors 44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software 45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission. 46 * without specific prior written permission.
47 * 47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE. 58 * SUCH DAMAGE.
59 * 59 *
60 * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95 60 * @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95
61 */ 61 */
62 62
63#include <sys/cdefs.h> 63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.276 2009/08/05 14:37:01 pooka Exp $"); 64__KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.277 2009/08/05 15:39:57 pooka Exp $");
65 65
66#if defined(_KERNEL_OPT) 66#if defined(_KERNEL_OPT)
67#include "opt_lfs.h" 67#include "opt_lfs.h"
68#include "opt_quota.h" 68#include "opt_quota.h"
69#endif 69#endif
70 70
71#include <sys/param.h> 71#include <sys/param.h>
72#include <sys/systm.h> 72#include <sys/systm.h>
73#include <sys/namei.h> 73#include <sys/namei.h>
74#include <sys/proc.h> 74#include <sys/proc.h>
75#include <sys/kernel.h> 75#include <sys/kernel.h>
76#include <sys/vnode.h> 76#include <sys/vnode.h>
77#include <sys/mount.h> 77#include <sys/mount.h>
78#include <sys/kthread.h> 78#include <sys/kthread.h>
79#include <sys/buf.h> 79#include <sys/buf.h>
80#include <sys/device.h> 80#include <sys/device.h>
81#include <sys/mbuf.h> 81#include <sys/mbuf.h>
82#include <sys/file.h> 82#include <sys/file.h>
83#include <sys/disklabel.h> 83#include <sys/disklabel.h>
84#include <sys/ioctl.h> 84#include <sys/ioctl.h>
85#include <sys/errno.h> 85#include <sys/errno.h>
86#include <sys/malloc.h> 86#include <sys/malloc.h>
87#include <sys/pool.h> 87#include <sys/pool.h>
88#include <sys/socket.h> 88#include <sys/socket.h>
89#include <sys/syslog.h> 89#include <sys/syslog.h>
90#include <uvm/uvm_extern.h> 90#include <uvm/uvm_extern.h>
91#include <sys/sysctl.h> 91#include <sys/sysctl.h>
92#include <sys/conf.h> 92#include <sys/conf.h>
93#include <sys/kauth.h> 93#include <sys/kauth.h>
94#include <sys/module.h> 94#include <sys/module.h>
95 95
96#include <miscfs/specfs/specdev.h> 96#include <miscfs/specfs/specdev.h>
97 97
98#include <ufs/ufs/quota.h> 98#include <ufs/ufs/quota.h>
99#include <ufs/ufs/inode.h> 99#include <ufs/ufs/inode.h>
100#include <ufs/ufs/ufsmount.h> 100#include <ufs/ufs/ufsmount.h>
101#include <ufs/ufs/ufs_extern.h> 101#include <ufs/ufs/ufs_extern.h>
102 102
103#include <uvm/uvm.h> 103#include <uvm/uvm.h>
104#include <uvm/uvm_stat.h> 104#include <uvm/uvm_stat.h>
105#include <uvm/uvm_pager.h> 105#include <uvm/uvm_pager.h>
106#include <uvm/uvm_pdaemon.h> 106#include <uvm/uvm_pdaemon.h>
107 107
108#include <ufs/lfs/lfs.h> 108#include <ufs/lfs/lfs.h>
109#include <ufs/lfs/lfs_extern.h> 109#include <ufs/lfs/lfs_extern.h>
110 110
111#include <miscfs/genfs/genfs.h> 111#include <miscfs/genfs/genfs.h>
112#include <miscfs/genfs/genfs_node.h> 112#include <miscfs/genfs/genfs_node.h>
113 113
114MODULE(MODULE_CLASS_VFS, lfs, "ffs"); 114MODULE(MODULE_CLASS_VFS, lfs, "ffs");
115 115
116static int lfs_gop_write(struct vnode *, struct vm_page **, int, int); 116static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
117static bool lfs_issequential_hole(const struct ufsmount *, 117static bool lfs_issequential_hole(const struct ufsmount *,
118 daddr_t, daddr_t); 118 daddr_t, daddr_t);
119 119
120static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *); 120static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
121 121
122void lfs_sysctl_setup(struct sysctllog *); 122void lfs_sysctl_setup(struct sysctllog *);
123static struct sysctllog *lfs_sysctl_log; 123static struct sysctllog *lfs_sysctl_log;
124 124
125extern const struct vnodeopv_desc lfs_vnodeop_opv_desc; 125extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
126extern const struct vnodeopv_desc lfs_specop_opv_desc; 126extern const struct vnodeopv_desc lfs_specop_opv_desc;
127extern const struct vnodeopv_desc lfs_fifoop_opv_desc; 127extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
128 128
129pid_t lfs_writer_daemon = 0; 129pid_t lfs_writer_daemon = 0;
130int lfs_do_flush = 0; 130int lfs_do_flush = 0;
131#ifdef LFS_KERNEL_RFW 131#ifdef LFS_KERNEL_RFW
132int lfs_do_rfw = 0; 132int lfs_do_rfw = 0;
133#endif 133#endif
134 134
135const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = { 135const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
136 &lfs_vnodeop_opv_desc, 136 &lfs_vnodeop_opv_desc,
137 &lfs_specop_opv_desc, 137 &lfs_specop_opv_desc,
138 &lfs_fifoop_opv_desc, 138 &lfs_fifoop_opv_desc,
139 NULL, 139 NULL,
140}; 140};
141 141
142struct vfsops lfs_vfsops = { 142struct vfsops lfs_vfsops = {
143 MOUNT_LFS, 143 MOUNT_LFS,
144 sizeof (struct ufs_args), 144 sizeof (struct ufs_args),
145 lfs_mount, 145 lfs_mount,
146 ufs_start, 146 ufs_start,
147 lfs_unmount, 147 lfs_unmount,
148 ufs_root, 148 ufs_root,
149 ufs_quotactl, 149 ufs_quotactl,
150 lfs_statvfs, 150 lfs_statvfs,
151 lfs_sync, 151 lfs_sync,
152 lfs_vget, 152 lfs_vget,
153 lfs_fhtovp, 153 lfs_fhtovp,
154 lfs_vptofh, 154 lfs_vptofh,
155 lfs_init, 155 lfs_init,
156 lfs_reinit, 156 lfs_reinit,
157 lfs_done, 157 lfs_done,
158 lfs_mountroot, 158 lfs_mountroot,
159 (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp, 159 (int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp,
160 vfs_stdextattrctl, 160 vfs_stdextattrctl,
161 (void *)eopnotsupp, /* vfs_suspendctl */ 161 (void *)eopnotsupp, /* vfs_suspendctl */
162 genfs_renamelock_enter, 162 genfs_renamelock_enter,
163 genfs_renamelock_exit, 163 genfs_renamelock_exit,
164 (void *)eopnotsupp, 164 (void *)eopnotsupp,
165 lfs_vnodeopv_descs, 165 lfs_vnodeopv_descs,
166 0, 166 0,
167 { NULL, NULL }, 167 { NULL, NULL },
168}; 168};
169 169
170const struct genfs_ops lfs_genfsops = { 170const struct genfs_ops lfs_genfsops = {
171 .gop_size = lfs_gop_size, 171 .gop_size = lfs_gop_size,
172 .gop_alloc = ufs_gop_alloc, 172 .gop_alloc = ufs_gop_alloc,
173 .gop_write = lfs_gop_write, 173 .gop_write = lfs_gop_write,
174 .gop_markupdate = ufs_gop_markupdate, 174 .gop_markupdate = ufs_gop_markupdate,
175}; 175};
176 176
177static const struct ufs_ops lfs_ufsops = { 177static const struct ufs_ops lfs_ufsops = {
178 .uo_itimes = NULL, 178 .uo_itimes = NULL,
179 .uo_update = lfs_update, 179 .uo_update = lfs_update,
180 .uo_truncate = lfs_truncate, 180 .uo_truncate = lfs_truncate,
181 .uo_valloc = lfs_valloc, 181 .uo_valloc = lfs_valloc,
182 .uo_vfree = lfs_vfree, 182 .uo_vfree = lfs_vfree,
183 .uo_balloc = lfs_balloc, 183 .uo_balloc = lfs_balloc,
184 .uo_unmark_vnode = lfs_unmark_vnode, 184 .uo_unmark_vnode = lfs_unmark_vnode,
185}; 185};
186 186
187struct shortlong { 187struct shortlong {
188 const char *sname; 188 const char *sname;
189 const char *lname; 189 const char *lname;
190}; 190};
191 191
192static int 192static int
193sysctl_lfs_dostats(SYSCTLFN_ARGS) 193sysctl_lfs_dostats(SYSCTLFN_ARGS)
194{ 194{
195 extern struct lfs_stats lfs_stats; 195 extern struct lfs_stats lfs_stats;
196 extern int lfs_dostats; 196 extern int lfs_dostats;
197 int error; 197 int error;
198 198
199 error = sysctl_lookup(SYSCTLFN_CALL(rnode)); 199 error = sysctl_lookup(SYSCTLFN_CALL(rnode));
200 if (error || newp == NULL) 200 if (error || newp == NULL)
201 return (error); 201 return (error);
202 202
203 if (lfs_dostats == 0) 203 if (lfs_dostats == 0)
204 memset(&lfs_stats, 0, sizeof(lfs_stats)); 204 memset(&lfs_stats, 0, sizeof(lfs_stats));
205 205
206 return (0); 206 return (0);
207} 207}
208 208
209void 209void
210lfs_sysctl_setup(struct sysctllog *clog) 210lfs_sysctl_setup(struct sysctllog *clog)
211{ 211{
212 int i; 212 int i;
213 extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead, 213 extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
214 lfs_fs_pagetrip, lfs_ignore_lazy_sync; 214 lfs_fs_pagetrip, lfs_ignore_lazy_sync;
215#ifdef DEBUG 215#ifdef DEBUG
216 extern int lfs_debug_log_subsys[DLOG_MAX]; 216 extern int lfs_debug_log_subsys[DLOG_MAX];
217 struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */ 217 struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
218 { "rollforward", "Debug roll-forward code" }, 218 { "rollforward", "Debug roll-forward code" },
219 { "alloc", "Debug inode allocation and free list" }, 219 { "alloc", "Debug inode allocation and free list" },
220 { "avail", "Debug space-available-now accounting" }, 220 { "avail", "Debug space-available-now accounting" },
221 { "flush", "Debug flush triggers" }, 221 { "flush", "Debug flush triggers" },
222 { "lockedlist", "Debug locked list accounting" }, 222 { "lockedlist", "Debug locked list accounting" },
223 { "vnode_verbose", "Verbose per-vnode-written debugging" }, 223 { "vnode_verbose", "Verbose per-vnode-written debugging" },
224 { "vnode", "Debug vnode use during segment write" }, 224 { "vnode", "Debug vnode use during segment write" },
225 { "segment", "Debug segment writing" }, 225 { "segment", "Debug segment writing" },
226 { "seguse", "Debug segment used-bytes accounting" }, 226 { "seguse", "Debug segment used-bytes accounting" },
227 { "cleaner", "Debug cleaning routines" }, 227 { "cleaner", "Debug cleaning routines" },
228 { "mount", "Debug mount/unmount routines" }, 228 { "mount", "Debug mount/unmount routines" },
229 { "pagecache", "Debug UBC interactions" }, 229 { "pagecache", "Debug UBC interactions" },
230 { "dirop", "Debug directory-operation accounting" }, 230 { "dirop", "Debug directory-operation accounting" },
231 { "malloc", "Debug private malloc accounting" }, 231 { "malloc", "Debug private malloc accounting" },
232 }; 232 };
233#endif /* DEBUG */ 233#endif /* DEBUG */
234 struct shortlong stat_names[] = { /* Must match lfs.h! */ 234 struct shortlong stat_names[] = { /* Must match lfs.h! */
235 { "segsused", "Number of new segments allocated" }, 235 { "segsused", "Number of new segments allocated" },
236 { "psegwrites", "Number of partial-segment writes" }, 236 { "psegwrites", "Number of partial-segment writes" },
237 { "psyncwrites", "Number of synchronous partial-segment" 237 { "psyncwrites", "Number of synchronous partial-segment"
238 " writes" }, 238 " writes" },
239 { "pcleanwrites", "Number of partial-segment writes by the" 239 { "pcleanwrites", "Number of partial-segment writes by the"
240 " cleaner" }, 240 " cleaner" },
241 { "blocktot", "Number of blocks written" }, 241 { "blocktot", "Number of blocks written" },
242 { "cleanblocks", "Number of blocks written by the cleaner" }, 242 { "cleanblocks", "Number of blocks written by the cleaner" },
243 { "ncheckpoints", "Number of checkpoints made" }, 243 { "ncheckpoints", "Number of checkpoints made" },
244 { "nwrites", "Number of whole writes" }, 244 { "nwrites", "Number of whole writes" },
245 { "nsync_writes", "Number of synchronous writes" }, 245 { "nsync_writes", "Number of synchronous writes" },
246 { "wait_exceeded", "Number of times writer waited for" 246 { "wait_exceeded", "Number of times writer waited for"
247 " cleaner" }, 247 " cleaner" },
248 { "write_exceeded", "Number of times writer invoked flush" }, 248 { "write_exceeded", "Number of times writer invoked flush" },
249 { "flush_invoked", "Number of times flush was invoked" }, 249 { "flush_invoked", "Number of times flush was invoked" },
250 { "vflush_invoked", "Number of time vflush was called" }, 250 { "vflush_invoked", "Number of time vflush was called" },
251 { "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" }, 251 { "clean_inlocked", "Number of vnodes skipped for VI_XLOCK" },
252 { "clean_vnlocked", "Number of vnodes skipped for vget failure" }, 252 { "clean_vnlocked", "Number of vnodes skipped for vget failure" },
253 { "segs_reclaimed", "Number of segments reclaimed" }, 253 { "segs_reclaimed", "Number of segments reclaimed" },
254 }; 254 };
255 255
256 sysctl_createv(&clog, 0, NULL, NULL, 256 sysctl_createv(&clog, 0, NULL, NULL,
257 CTLFLAG_PERMANENT, 257 CTLFLAG_PERMANENT,
258 CTLTYPE_NODE, "vfs", NULL, 258 CTLTYPE_NODE, "vfs", NULL,
259 NULL, 0, NULL, 0, 259 NULL, 0, NULL, 0,
260 CTL_VFS, CTL_EOL); 260 CTL_VFS, CTL_EOL);
261 sysctl_createv(&clog, 0, NULL, NULL, 261 sysctl_createv(&clog, 0, NULL, NULL,
262 CTLFLAG_PERMANENT, 262 CTLFLAG_PERMANENT,
263 CTLTYPE_NODE, "lfs", 263 CTLTYPE_NODE, "lfs",
264 SYSCTL_DESCR("Log-structured file system"), 264 SYSCTL_DESCR("Log-structured file system"),
265 NULL, 0, NULL, 0, 265 NULL, 0, NULL, 0,
266 CTL_VFS, 5, CTL_EOL); 266 CTL_VFS, 5, CTL_EOL);
267 /* 267 /*
268 * XXX the "5" above could be dynamic, thereby eliminating one 268 * XXX the "5" above could be dynamic, thereby eliminating one
269 * more instance of the "number to vfs" mapping problem, but 269 * more instance of the "number to vfs" mapping problem, but
270 * "5" is the order as taken from sys/mount.h 270 * "5" is the order as taken from sys/mount.h
271 */ 271 */
272 272
273 sysctl_createv(&clog, 0, NULL, NULL, 273 sysctl_createv(&clog, 0, NULL, NULL,
274 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 274 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
275 CTLTYPE_INT, "flushindir", NULL, 275 CTLTYPE_INT, "flushindir", NULL,
276 NULL, 0, &lfs_writeindir, 0, 276 NULL, 0, &lfs_writeindir, 0,
277 CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL); 277 CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
278 sysctl_createv(&clog, 0, NULL, NULL, 278 sysctl_createv(&clog, 0, NULL, NULL,
279 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 279 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
280 CTLTYPE_INT, "clean_vnhead", NULL, 280 CTLTYPE_INT, "clean_vnhead", NULL,
281 NULL, 0, &lfs_clean_vnhead, 0, 281 NULL, 0, &lfs_clean_vnhead, 0,
282 CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL); 282 CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
283 sysctl_createv(&clog, 0, NULL, NULL, 283 sysctl_createv(&clog, 0, NULL, NULL,
284 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 284 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
285 CTLTYPE_INT, "dostats", 285 CTLTYPE_INT, "dostats",
286 SYSCTL_DESCR("Maintain statistics on LFS operations"), 286 SYSCTL_DESCR("Maintain statistics on LFS operations"),
287 sysctl_lfs_dostats, 0, &lfs_dostats, 0, 287 sysctl_lfs_dostats, 0, &lfs_dostats, 0,
288 CTL_VFS, 5, LFS_DOSTATS, CTL_EOL); 288 CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
289 sysctl_createv(&clog, 0, NULL, NULL, 289 sysctl_createv(&clog, 0, NULL, NULL,
290 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 290 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
291 CTLTYPE_INT, "pagetrip", 291 CTLTYPE_INT, "pagetrip",
292 SYSCTL_DESCR("How many dirty pages in fs triggers" 292 SYSCTL_DESCR("How many dirty pages in fs triggers"
293 " a flush"), 293 " a flush"),
294 NULL, 0, &lfs_fs_pagetrip, 0, 294 NULL, 0, &lfs_fs_pagetrip, 0,
295 CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL); 295 CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
296 sysctl_createv(&clog, 0, NULL, NULL, 296 sysctl_createv(&clog, 0, NULL, NULL,
297 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 297 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
298 CTLTYPE_INT, "ignore_lazy_sync", 298 CTLTYPE_INT, "ignore_lazy_sync",
299 SYSCTL_DESCR("Lazy Sync is ignored entirely"), 299 SYSCTL_DESCR("Lazy Sync is ignored entirely"),
300 NULL, 0, &lfs_ignore_lazy_sync, 0, 300 NULL, 0, &lfs_ignore_lazy_sync, 0,
301 CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL); 301 CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
302#ifdef LFS_KERNEL_RFW 302#ifdef LFS_KERNEL_RFW
303 sysctl_createv(&clog, 0, NULL, NULL, 303 sysctl_createv(&clog, 0, NULL, NULL,
304 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 304 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
305 CTLTYPE_INT, "rfw", 305 CTLTYPE_INT, "rfw",
306 SYSCTL_DESCR("Use in-kernel roll-forward on mount"), 306 SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
307 NULL, 0, &lfs_do_rfw, 0, 307 NULL, 0, &lfs_do_rfw, 0,
308 CTL_VFS, 5, LFS_DO_RFW, CTL_EOL); 308 CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
309#endif 309#endif
310 310
311 sysctl_createv(&clog, 0, NULL, NULL, 311 sysctl_createv(&clog, 0, NULL, NULL,
312 CTLFLAG_PERMANENT, 312 CTLFLAG_PERMANENT,
313 CTLTYPE_NODE, "stats", 313 CTLTYPE_NODE, "stats",
314 SYSCTL_DESCR("Debugging options"), 314 SYSCTL_DESCR("Debugging options"),
315 NULL, 0, NULL, 0, 315 NULL, 0, NULL, 0,
316 CTL_VFS, 5, LFS_STATS, CTL_EOL); 316 CTL_VFS, 5, LFS_STATS, CTL_EOL);
317 for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) { 317 for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
318 sysctl_createv(&clog, 0, NULL, NULL, 318 sysctl_createv(&clog, 0, NULL, NULL,
319 CTLFLAG_PERMANENT|CTLFLAG_READONLY, 319 CTLFLAG_PERMANENT|CTLFLAG_READONLY,
320 CTLTYPE_INT, stat_names[i].sname, 320 CTLTYPE_INT, stat_names[i].sname,
321 SYSCTL_DESCR(stat_names[i].lname), 321 SYSCTL_DESCR(stat_names[i].lname),
322 NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]), 322 NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
323 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL); 323 0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
324 } 324 }
325 325
326#ifdef DEBUG 326#ifdef DEBUG
327 sysctl_createv(&clog, 0, NULL, NULL, 327 sysctl_createv(&clog, 0, NULL, NULL,
328 CTLFLAG_PERMANENT, 328 CTLFLAG_PERMANENT,
329 CTLTYPE_NODE, "debug", 329 CTLTYPE_NODE, "debug",
330 SYSCTL_DESCR("Debugging options"), 330 SYSCTL_DESCR("Debugging options"),
331 NULL, 0, NULL, 0, 331 NULL, 0, NULL, 0,
332 CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL); 332 CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
333 for (i = 0; i < DLOG_MAX; i++) { 333 for (i = 0; i < DLOG_MAX; i++) {
334 sysctl_createv(&clog, 0, NULL, NULL, 334 sysctl_createv(&clog, 0, NULL, NULL,
335 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 335 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
336 CTLTYPE_INT, dlog_names[i].sname, 336 CTLTYPE_INT, dlog_names[i].sname,
337 SYSCTL_DESCR(dlog_names[i].lname), 337 SYSCTL_DESCR(dlog_names[i].lname),
338 NULL, 0, &(lfs_debug_log_subsys[i]), 0, 338 NULL, 0, &(lfs_debug_log_subsys[i]), 0,
339 CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL); 339 CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
340 } 340 }
341#endif 341#endif
342} 342}
343 343
344static int 344static int
345lfs_modcmd(modcmd_t cmd, void *arg) 345lfs_modcmd(modcmd_t cmd, void *arg)
346{ 346{
347 int error; 347 int error;
348 348
349 switch (cmd) { 349 switch (cmd) {
350 case MODULE_CMD_INIT: 350 case MODULE_CMD_INIT:
351 error = vfs_attach(&lfs_vfsops); 351 error = vfs_attach(&lfs_vfsops);
352 if (error != 0) 352 if (error != 0)
353 break; 353 break;
354 lfs_sysctl_setup(lfs_sysctl_log); 354 lfs_sysctl_setup(lfs_sysctl_log);
355 break; 355 break;
356 case MODULE_CMD_FINI: 356 case MODULE_CMD_FINI:
357 error = vfs_detach(&lfs_vfsops); 357 error = vfs_detach(&lfs_vfsops);
358 if (error != 0) 358 if (error != 0)
359 break; 359 break;
360 sysctl_teardown(&lfs_sysctl_log); 360 sysctl_teardown(&lfs_sysctl_log);
361 break; 361 break;
362 default: 362 default:
363 error = ENOTTY; 363 error = ENOTTY;
364 break; 364 break;
365 } 365 }
366 366
367 return (error); 367 return (error);
368} 368}
369 369
370/* 370/*
371 * XXX Same structure as FFS inodes? Should we share a common pool? 371 * XXX Same structure as FFS inodes? Should we share a common pool?
372 */ 372 */
373struct pool lfs_inode_pool; 373struct pool lfs_inode_pool;
374struct pool lfs_dinode_pool; 374struct pool lfs_dinode_pool;
375struct pool lfs_inoext_pool; 375struct pool lfs_inoext_pool;
376struct pool lfs_lbnentry_pool; 376struct pool lfs_lbnentry_pool;
377 377
378/* 378/*
379 * The writer daemon. UVM keeps track of how many dirty pages we are holding 379 * The writer daemon. UVM keeps track of how many dirty pages we are holding
380 * in lfs_subsys_pages; the daemon flushes the filesystem when this value 380 * in lfs_subsys_pages; the daemon flushes the filesystem when this value
381 * crosses the (user-defined) threshhold LFS_MAX_PAGES. 381 * crosses the (user-defined) threshhold LFS_MAX_PAGES.
382 */ 382 */
383static void 383static void
384lfs_writerd(void *arg) 384lfs_writerd(void *arg)
385{ 385{
386 struct mount *mp, *nmp; 386 struct mount *mp, *nmp;
387 struct lfs *fs; 387 struct lfs *fs;
388 int fsflags; 388 int fsflags;
389 int loopcount; 389 int loopcount;
390 390
391 lfs_writer_daemon = curproc->p_pid; 391 lfs_writer_daemon = curproc->p_pid;
392 392
393 mutex_enter(&lfs_lock); 393 mutex_enter(&lfs_lock);
394 for (;;) { 394 for (;;) {
395 mtsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10, 395 mtsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10,
396 &lfs_lock); 396 &lfs_lock);
397 397
398 /* 398 /*
399 * Look through the list of LFSs to see if any of them 399 * Look through the list of LFSs to see if any of them
400 * have requested pageouts. 400 * have requested pageouts.
401 */ 401 */
402 mutex_enter(&mountlist_lock); 402 mutex_enter(&mountlist_lock);
403 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist; 403 for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
404 mp = nmp) { 404 mp = nmp) {
405 if (vfs_busy(mp, &nmp)) { 405 if (vfs_busy(mp, &nmp)) {
406 continue; 406 continue;
407 } 407 }
408 if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS, 408 if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
409 sizeof(mp->mnt_stat.f_fstypename)) == 0) { 409 sizeof(mp->mnt_stat.f_fstypename)) == 0) {
410 fs = VFSTOUFS(mp)->um_lfs; 410 fs = VFSTOUFS(mp)->um_lfs;
411 mutex_enter(&lfs_lock); 411 mutex_enter(&lfs_lock);
412 fsflags = 0; 412 fsflags = 0;
413 if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) || 413 if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
414 lfs_dirvcount > LFS_MAX_DIROP) && 414 lfs_dirvcount > LFS_MAX_DIROP) &&
415 fs->lfs_dirops == 0) 415 fs->lfs_dirops == 0)
416 fsflags |= SEGM_CKP; 416 fsflags |= SEGM_CKP;
417 if (fs->lfs_pdflush) { 417 if (fs->lfs_pdflush) {
418 DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n")); 418 DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
419 fs->lfs_pdflush = 0; 419 fs->lfs_pdflush = 0;
420 lfs_flush_fs(fs, fsflags); 420 lfs_flush_fs(fs, fsflags);
421 mutex_exit(&lfs_lock); 421 mutex_exit(&lfs_lock);
422 } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) { 422 } else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
423 DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n")); 423 DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
424 mutex_exit(&lfs_lock); 424 mutex_exit(&lfs_lock);
425 lfs_writer_enter(fs, "wrdirop"); 425 lfs_writer_enter(fs, "wrdirop");
426 lfs_flush_pchain(fs); 426 lfs_flush_pchain(fs);
427 lfs_writer_leave(fs); 427 lfs_writer_leave(fs);
428 } else 428 } else
429 mutex_exit(&lfs_lock); 429 mutex_exit(&lfs_lock);
430 } 430 }
431 vfs_unbusy(mp, false, &nmp); 431 vfs_unbusy(mp, false, &nmp);
432 } 432 }
433 mutex_exit(&mountlist_lock); 433 mutex_exit(&mountlist_lock);
434 434
435 /* 435 /*
436 * If global state wants a flush, flush everything. 436 * If global state wants a flush, flush everything.
437 */ 437 */
438 mutex_enter(&lfs_lock); 438 mutex_enter(&lfs_lock);
439 loopcount = 0; 439 loopcount = 0;
440 if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS || 440 if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
441 locked_queue_bytes > LFS_MAX_BYTES || 441 locked_queue_bytes > LFS_MAX_BYTES ||
442 lfs_subsys_pages > LFS_MAX_PAGES) { 442 lfs_subsys_pages > LFS_MAX_PAGES) {
443 443
444 if (lfs_do_flush) { 444 if (lfs_do_flush) {
445 DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n")); 445 DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n"));
446 } 446 }
447 if (locked_queue_count > LFS_MAX_BUFS) { 447 if (locked_queue_count > LFS_MAX_BUFS) {
448 DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n", 448 DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n",
449 locked_queue_count, LFS_MAX_BUFS)); 449 locked_queue_count, LFS_MAX_BUFS));
450 } 450 }
451 if (locked_queue_bytes > LFS_MAX_BYTES) { 451 if (locked_queue_bytes > LFS_MAX_BYTES) {
452 DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n", 452 DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n",
453 locked_queue_bytes, LFS_MAX_BYTES)); 453 locked_queue_bytes, LFS_MAX_BYTES));
454 } 454 }
455 if (lfs_subsys_pages > LFS_MAX_PAGES) { 455 if (lfs_subsys_pages > LFS_MAX_PAGES) {
456 DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n", 456 DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n",
457 lfs_subsys_pages, LFS_MAX_PAGES)); 457 lfs_subsys_pages, LFS_MAX_PAGES));
458 } 458 }
459 459
460 lfs_flush(NULL, SEGM_WRITERD, 0); 460 lfs_flush(NULL, SEGM_WRITERD, 0);
461 lfs_do_flush = 0; 461 lfs_do_flush = 0;
462 } 462 }
463 } 463 }
464 /* NOTREACHED */ 464 /* NOTREACHED */
465} 465}
466 466
467/* 467/*
468 * Initialize the filesystem, most work done by ufs_init. 468 * Initialize the filesystem, most work done by ufs_init.
469 */ 469 */
470void 470void
471lfs_init(void) 471lfs_init(void)
472{ 472{
473 473
474 malloc_type_attach(M_SEGMENT); 474 malloc_type_attach(M_SEGMENT);
475 pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0, 475 pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
476 "lfsinopl", &pool_allocator_nointr, IPL_NONE); 476 "lfsinopl", &pool_allocator_nointr, IPL_NONE);
477 pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0, 477 pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0,
478 "lfsdinopl", &pool_allocator_nointr, IPL_NONE); 478 "lfsdinopl", &pool_allocator_nointr, IPL_NONE);
479 pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0, 479 pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
480 "lfsinoextpl", &pool_allocator_nointr, IPL_NONE); 480 "lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
481 pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0, 481 pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
482 "lfslbnpool", &pool_allocator_nointr, IPL_NONE); 482 "lfslbnpool", &pool_allocator_nointr, IPL_NONE);
483 ufs_init(); 483 ufs_init();
484 484
485#ifdef DEBUG 485#ifdef DEBUG
486 memset(lfs_log, 0, sizeof(lfs_log)); 486 memset(lfs_log, 0, sizeof(lfs_log));
487#endif 487#endif
488 mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE); 488 mutex_init(&lfs_lock, MUTEX_DEFAULT, IPL_NONE);
489 cv_init(&locked_queue_cv, "lfsbuf"); 489 cv_init(&locked_queue_cv, "lfsbuf");
490 cv_init(&lfs_writing_cv, "lfsflush"); 490 cv_init(&lfs_writing_cv, "lfsflush");
491} 491}
492 492
493void 493void
494lfs_reinit(void) 494lfs_reinit(void)
495{ 495{
496 ufs_reinit(); 496 ufs_reinit();
497} 497}
498 498
499void 499void
500lfs_done(void) 500lfs_done(void)
501{ 501{
502 ufs_done(); 502 ufs_done();
503 mutex_destroy(&lfs_lock); 503 mutex_destroy(&lfs_lock);
504 cv_destroy(&locked_queue_cv); 504 cv_destroy(&locked_queue_cv);
505 cv_destroy(&lfs_writing_cv); 505 cv_destroy(&lfs_writing_cv);
506 pool_destroy(&lfs_inode_pool); 506 pool_destroy(&lfs_inode_pool);
507 pool_destroy(&lfs_dinode_pool); 507 pool_destroy(&lfs_dinode_pool);
508 pool_destroy(&lfs_inoext_pool); 508 pool_destroy(&lfs_inoext_pool);
509 pool_destroy(&lfs_lbnentry_pool); 509 pool_destroy(&lfs_lbnentry_pool);
510 malloc_type_detach(M_SEGMENT); 510 malloc_type_detach(M_SEGMENT);
511} 511}
512 512
513/* 513/*
514 * Called by main() when ufs is going to be mounted as root. 514 * Called by main() when ufs is going to be mounted as root.
515 */ 515 */
516int 516int
517lfs_mountroot(void) 517lfs_mountroot(void)
518{ 518{
519 extern struct vnode *rootvp; 519 extern struct vnode *rootvp;
520 struct mount *mp; 520 struct mount *mp;
521 struct lwp *l = curlwp; 521 struct lwp *l = curlwp;
522 int error; 522 int error;
523 523
524 if (device_class(root_device) != DV_DISK) 524 if (device_class(root_device) != DV_DISK)
525 return (ENODEV); 525 return (ENODEV);
526 526
527 if (rootdev == NODEV) 527 if (rootdev == NODEV)
528 return (ENODEV); 528 return (ENODEV);
529 if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) { 529 if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
530 vrele(rootvp); 530 vrele(rootvp);
531 return (error); 531 return (error);
532 } 532 }
533 if ((error = lfs_mountfs(rootvp, mp, l))) { 533 if ((error = lfs_mountfs(rootvp, mp, l))) {
534 vfs_unbusy(mp, false, NULL); 534 vfs_unbusy(mp, false, NULL);
535 vfs_destroy(mp); 535 vfs_destroy(mp);
536 return (error); 536 return (error);
537 } 537 }
538 mutex_enter(&mountlist_lock); 538 mutex_enter(&mountlist_lock);
539 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list); 539 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
540 mutex_exit(&mountlist_lock); 540 mutex_exit(&mountlist_lock);
541 (void)lfs_statvfs(mp, &mp->mnt_stat); 541 (void)lfs_statvfs(mp, &mp->mnt_stat);
542 vfs_unbusy(mp, false, NULL); 542 vfs_unbusy(mp, false, NULL);
543 setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp)); 543 setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp));
544 return (0); 544 return (0);
545} 545}
546 546
547/* 547/*
548 * VFS Operations. 548 * VFS Operations.
549 * 549 *
550 * mount system call 550 * mount system call
551 */ 551 */
552int 552int
553lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len) 553lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
554{ 554{
555 struct lwp *l = curlwp; 555 struct lwp *l = curlwp;
556 struct vnode *devvp; 556 struct vnode *devvp;
557 struct ufs_args *args = data; 557 struct ufs_args *args = data;
558 struct ufsmount *ump = NULL; 558 struct ufsmount *ump = NULL;
559 struct lfs *fs = NULL; /* LFS */ 559 struct lfs *fs = NULL; /* LFS */
560 int error = 0, update; 560 int error = 0, update;
561 mode_t accessmode; 561 mode_t accessmode;
562 562
563 if (*data_len < sizeof *args) 563 if (*data_len < sizeof *args)
564 return EINVAL; 564 return EINVAL;
565 565
566 if (mp->mnt_flag & MNT_GETARGS) { 566 if (mp->mnt_flag & MNT_GETARGS) {
567 ump = VFSTOUFS(mp); 567 ump = VFSTOUFS(mp);
568 if (ump == NULL) 568 if (ump == NULL)
569 return EIO; 569 return EIO;
570 args->fspec = NULL; 570 args->fspec = NULL;
571 *data_len = sizeof *args; 571 *data_len = sizeof *args;
572 return 0; 572 return 0;
573 } 573 }
574 574
575 update = mp->mnt_flag & MNT_UPDATE; 575 update = mp->mnt_flag & MNT_UPDATE;
576 576
577 /* Check arguments */ 577 /* Check arguments */
578 if (args->fspec != NULL) { 578 if (args->fspec != NULL) {
579 /* 579 /*
580 * Look up the name and verify that it's sane. 580 * Look up the name and verify that it's sane.
581 */ 581 */
582 error = namei_simple_user(args->fspec, 582 error = namei_simple_user(args->fspec,
583 NSM_FOLLOW_NOEMULROOT, &devvp); 583 NSM_FOLLOW_NOEMULROOT, &devvp);
584 if (error != 0) 584 if (error != 0)
585 return (error); 585 return (error);
586 586
587 if (!update) { 587 if (!update) {
588 /* 588 /*
589 * Be sure this is a valid block device 589 * Be sure this is a valid block device
590 */ 590 */
591 if (devvp->v_type != VBLK) 591 if (devvp->v_type != VBLK)
592 error = ENOTBLK; 592 error = ENOTBLK;
593 else if (bdevsw_lookup(devvp->v_rdev) == NULL) 593 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
594 error = ENXIO; 594 error = ENXIO;
595 } else { 595 } else {
596 /* 596 /*
597 * Be sure we're still naming the same device 597 * Be sure we're still naming the same device
598 * used for our initial mount 598 * used for our initial mount
599 */ 599 */
600 ump = VFSTOUFS(mp); 600 ump = VFSTOUFS(mp);
601 if (devvp != ump->um_devvp) 601 if (devvp != ump->um_devvp)
602 error = EINVAL; 602 error = EINVAL;
603 } 603 }
604 } else { 604 } else {
605 if (!update) { 605 if (!update) {
606 /* New mounts must have a filename for the device */ 606 /* New mounts must have a filename for the device */
607 return (EINVAL); 607 return (EINVAL);
608 } else { 608 } else {
609 /* Use the extant mount */ 609 /* Use the extant mount */
610 ump = VFSTOUFS(mp); 610 ump = VFSTOUFS(mp);
611 devvp = ump->um_devvp; 611 devvp = ump->um_devvp;
612 vref(devvp); 612 vref(devvp);
613 } 613 }
614 } 614 }
615 615
616 616
617 /* 617 /*
618 * If mount by non-root, then verify that user has necessary 618 * If mount by non-root, then verify that user has necessary
619 * permissions on the device. 619 * permissions on the device.
620 */ 620 */
621 if (error == 0) { 621 if (error == 0) {
622 accessmode = VREAD; 622 accessmode = VREAD;
623 if (update ? 623 if (update ?
624 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 : 624 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
625 (mp->mnt_flag & MNT_RDONLY) == 0) 625 (mp->mnt_flag & MNT_RDONLY) == 0)
626 accessmode |= VWRITE; 626 accessmode |= VWRITE;
627 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 627 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
628 error = genfs_can_mount(devvp, accessmode, l->l_cred); 628 error = genfs_can_mount(devvp, accessmode, l->l_cred);
629 VOP_UNLOCK(devvp, 0); 629 VOP_UNLOCK(devvp, 0);
630 } 630 }
631 631
632 if (error) { 632 if (error) {
633 vrele(devvp); 633 vrele(devvp);
634 return (error); 634 return (error);
635 } 635 }
636 636
637 if (!update) { 637 if (!update) {
638 int flags; 638 int flags;
639 639
640 if (mp->mnt_flag & MNT_RDONLY) 640 if (mp->mnt_flag & MNT_RDONLY)
641 flags = FREAD; 641 flags = FREAD;
642 else 642 else
643 flags = FREAD|FWRITE; 643 flags = FREAD|FWRITE;
644 error = VOP_OPEN(devvp, flags, FSCRED); 644 error = VOP_OPEN(devvp, flags, FSCRED);
645 if (error) 645 if (error)
646 goto fail; 646 goto fail;
647 error = lfs_mountfs(devvp, mp, l); /* LFS */ 647 error = lfs_mountfs(devvp, mp, l); /* LFS */
648 if (error) { 648 if (error) {
649 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 649 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
650 (void)VOP_CLOSE(devvp, flags, NOCRED); 650 (void)VOP_CLOSE(devvp, flags, NOCRED);
651 VOP_UNLOCK(devvp, 0); 651 VOP_UNLOCK(devvp, 0);
652 goto fail; 652 goto fail;
653 } 653 }
654 654
655 ump = VFSTOUFS(mp); 655 ump = VFSTOUFS(mp);
656 fs = ump->um_lfs; 656 fs = ump->um_lfs;
657 } else { 657 } else {
658 /* 658 /*
659 * Update the mount. 659 * Update the mount.
660 */ 660 */
661 661
662 /* 662 /*
663 * The initial mount got a reference on this 663 * The initial mount got a reference on this
664 * device, so drop the one obtained via 664 * device, so drop the one obtained via
665 * namei(), above. 665 * namei(), above.
666 */ 666 */
667 vrele(devvp); 667 vrele(devvp);
668 668
669 ump = VFSTOUFS(mp); 669 ump = VFSTOUFS(mp);
670 fs = ump->um_lfs; 670 fs = ump->um_lfs;
671 if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) { 671 if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
672 /* 672 /*
673 * Changing from read-only to read/write. 673 * Changing from read-only to read/write.
674 * Note in the superblocks that we're writing. 674 * Note in the superblocks that we're writing.
675 */ 675 */
676 fs->lfs_ronly = 0; 676 fs->lfs_ronly = 0;
677 if (fs->lfs_pflags & LFS_PF_CLEAN) { 677 if (fs->lfs_pflags & LFS_PF_CLEAN) {
678 fs->lfs_pflags &= ~LFS_PF_CLEAN; 678 fs->lfs_pflags &= ~LFS_PF_CLEAN;
679 lfs_writesuper(fs, fs->lfs_sboffs[0]); 679 lfs_writesuper(fs, fs->lfs_sboffs[0]);
680 lfs_writesuper(fs, fs->lfs_sboffs[1]); 680 lfs_writesuper(fs, fs->lfs_sboffs[1]);
681 } 681 }
682 } 682 }
683 if (args->fspec == NULL) 683 if (args->fspec == NULL)
684 return EINVAL; 684 return EINVAL;
685 } 685 }
686 686
687 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec, 687 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
688 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l); 688 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
689 if (error == 0) 689 if (error == 0)
690 (void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname, 690 (void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname,
691 sizeof(fs->lfs_fsmnt)); 691 sizeof(fs->lfs_fsmnt));
692 return error; 692 return error;
693 693
694fail: 694fail:
695 vrele(devvp); 695 vrele(devvp);
696 return (error); 696 return (error);
697} 697}
698 698
699 699
700/* 700/*
701 * Common code for mount and mountroot 701 * Common code for mount and mountroot
702 * LFS specific 702 * LFS specific
703 */ 703 */
704int 704int
705lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l) 705lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
706{ 706{
707 struct dlfs *tdfs, *dfs, *adfs; 707 struct dlfs *tdfs, *dfs, *adfs;
708 struct lfs *fs; 708 struct lfs *fs;
709 struct ufsmount *ump; 709 struct ufsmount *ump;
710 struct vnode *vp; 710 struct vnode *vp;
711 struct buf *bp, *abp; 711 struct buf *bp, *abp;
712 struct partinfo dpart; 712 struct partinfo dpart;
713 dev_t dev; 713 dev_t dev;
714 int error, i, ronly, secsize, fsbsize; 714 int error, i, ronly, secsize, fsbsize;
715 kauth_cred_t cred; 715 kauth_cred_t cred;
716 CLEANERINFO *cip; 716 CLEANERINFO *cip;
717 SEGUSE *sup; 717 SEGUSE *sup;
718 daddr_t sb_addr; 718 daddr_t sb_addr;
719 719
720 cred = l ? l->l_cred : NOCRED; 720 cred = l ? l->l_cred : NOCRED;
721 721
722 /* 722 /*
723 * Flush out any old buffers remaining from a previous use. 723 * Flush out any old buffers remaining from a previous use.
724 */ 724 */
725 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 725 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
726 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0); 726 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
727 VOP_UNLOCK(devvp, 0); 727 VOP_UNLOCK(devvp, 0);
728 if (error) 728 if (error)
729 return (error); 729 return (error);
730 730
731 ronly = (mp->mnt_flag & MNT_RDONLY) != 0; 731 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
732 if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) != 0) 732 if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) != 0)
733 secsize = DEV_BSIZE; 733 secsize = DEV_BSIZE;
734 else 734 else
735 secsize = dpart.disklab->d_secsize; 735 secsize = dpart.disklab->d_secsize;
736 736
737 /* Don't free random space on error. */ 737 /* Don't free random space on error. */
738 bp = NULL; 738 bp = NULL;
739 abp = NULL; 739 abp = NULL;
740 ump = NULL; 740 ump = NULL;
741 741
742 sb_addr = LFS_LABELPAD / secsize; 742 sb_addr = LFS_LABELPAD / secsize;
743 while (1) { 743 while (1) {
744 /* Read in the superblock. */ 744 /* Read in the superblock. */
745 error = bread(devvp, sb_addr, LFS_SBPAD, cred, 0, &bp); 745 error = bread(devvp, sb_addr, LFS_SBPAD, cred, 0, &bp);
746 if (error) 746 if (error)
747 goto out; 747 goto out;
748 dfs = (struct dlfs *)bp->b_data; 748 dfs = (struct dlfs *)bp->b_data;
749 749
750 /* Check the basics. */ 750 /* Check the basics. */
751 if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE || 751 if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE ||
752 dfs->dlfs_version > LFS_VERSION || 752 dfs->dlfs_version > LFS_VERSION ||
753 dfs->dlfs_bsize < sizeof(struct dlfs)) { 753 dfs->dlfs_bsize < sizeof(struct dlfs)) {
754 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n")); 754 DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
755 error = EINVAL; /* XXX needs translation */ 755 error = EINVAL; /* XXX needs translation */
756 goto out; 756 goto out;
757 } 757 }
758 if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) { 758 if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) {
759 DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n", 759 DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
760 dfs->dlfs_inodefmt)); 760 dfs->dlfs_inodefmt));
761 error = EINVAL; 761 error = EINVAL;
762 goto out; 762 goto out;
763 } 763 }
764 764
765 if (dfs->dlfs_version == 1) 765 if (dfs->dlfs_version == 1)
766 fsbsize = secsize; 766 fsbsize = secsize;
767 else { 767 else {
768 fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb + 768 fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb +
769 dfs->dlfs_fsbtodb); 769 dfs->dlfs_fsbtodb);
770 /* 770 /*
771 * Could be, if the frag size is large enough, that we 771 * Could be, if the frag size is large enough, that we
772 * don't have the "real" primary superblock. If that's 772 * don't have the "real" primary superblock. If that's
773 * the case, get the real one, and try again. 773 * the case, get the real one, and try again.
774 */ 774 */
775 if (sb_addr != dfs->dlfs_sboffs[0] << 775 if (sb_addr != dfs->dlfs_sboffs[0] <<
776 dfs->dlfs_fsbtodb) { 776 dfs->dlfs_fsbtodb) {
777 DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr" 777 DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
778 " 0x%llx is not right, trying 0x%llx\n", 778 " 0x%llx is not right, trying 0x%llx\n",
779 (long long)sb_addr, 779 (long long)sb_addr,
780 (long long)(dfs->dlfs_sboffs[0] << 780 (long long)(dfs->dlfs_sboffs[0] <<
781 dfs->dlfs_fsbtodb))); 781 dfs->dlfs_fsbtodb)));
782 sb_addr = dfs->dlfs_sboffs[0] << 782 sb_addr = dfs->dlfs_sboffs[0] <<
783 dfs->dlfs_fsbtodb; 783 dfs->dlfs_fsbtodb;
784 brelse(bp, 0); 784 brelse(bp, 0);
785 continue; 785 continue;
786 } 786 }
787 } 787 }
788 break; 788 break;
789 } 789 }
790 790
791 /* 791 /*
792 * Check the second superblock to see which is newer; then mount 792 * Check the second superblock to see which is newer; then mount
793 * using the older of the two. This is necessary to ensure that 793 * using the older of the two. This is necessary to ensure that
794 * the filesystem is valid if it was not unmounted cleanly. 794 * the filesystem is valid if it was not unmounted cleanly.
795 */ 795 */
796 796
797 if (dfs->dlfs_sboffs[1] && 797 if (dfs->dlfs_sboffs[1] &&
798 dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize) 798 dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
799 { 799 {
800 error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize), 800 error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize),
801 LFS_SBPAD, cred, 0, &abp); 801 LFS_SBPAD, cred, 0, &abp);
802 if (error) 802 if (error)
803 goto out; 803 goto out;
804 adfs = (struct dlfs *)abp->b_data; 804 adfs = (struct dlfs *)abp->b_data;
805 805
806 if (dfs->dlfs_version == 1) { 806 if (dfs->dlfs_version == 1) {
807 /* 1s resolution comparison */ 807 /* 1s resolution comparison */
808 if (adfs->dlfs_tstamp < dfs->dlfs_tstamp) 808 if (adfs->dlfs_tstamp < dfs->dlfs_tstamp)
809 tdfs = adfs; 809 tdfs = adfs;
810 else 810 else
811 tdfs = dfs; 811 tdfs = dfs;
812 } else { 812 } else {
813 /* monotonic infinite-resolution comparison */ 813 /* monotonic infinite-resolution comparison */
814 if (adfs->dlfs_serial < dfs->dlfs_serial) 814 if (adfs->dlfs_serial < dfs->dlfs_serial)
815 tdfs = adfs; 815 tdfs = adfs;
816 else 816 else
817 tdfs = dfs; 817 tdfs = dfs;
818 } 818 }
819 819
820 /* Check the basics. */ 820 /* Check the basics. */
821 if (tdfs->dlfs_magic != LFS_MAGIC || 821 if (tdfs->dlfs_magic != LFS_MAGIC ||
822 tdfs->dlfs_bsize > MAXBSIZE || 822 tdfs->dlfs_bsize > MAXBSIZE ||
823 tdfs->dlfs_version > LFS_VERSION || 823 tdfs->dlfs_version > LFS_VERSION ||
824 tdfs->dlfs_bsize < sizeof(struct dlfs)) { 824 tdfs->dlfs_bsize < sizeof(struct dlfs)) {
825 DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock" 825 DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
826 " sanity failed\n")); 826 " sanity failed\n"));
827 error = EINVAL; /* XXX needs translation */ 827 error = EINVAL; /* XXX needs translation */
828 goto out; 828 goto out;
829 } 829 }
830 } else { 830 } else {
831 DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock" 831 DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock"
832 " daddr=0x%x\n", dfs->dlfs_sboffs[1])); 832 " daddr=0x%x\n", dfs->dlfs_sboffs[1]));
833 error = EINVAL; 833 error = EINVAL;
834 goto out; 834 goto out;
835 } 835 }
836 836
837 /* Allocate the mount structure, copy the superblock into it. */ 837 /* Allocate the mount structure, copy the superblock into it. */
838 fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO); 838 fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO);
839 memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs)); 839 memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs));
840 840
841 /* Compatibility */ 841 /* Compatibility */
842 if (fs->lfs_version < 2) { 842 if (fs->lfs_version < 2) {
843 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE; 843 fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
844 fs->lfs_ibsize = fs->lfs_bsize; 844 fs->lfs_ibsize = fs->lfs_bsize;
845 fs->lfs_start = fs->lfs_sboffs[0]; 845 fs->lfs_start = fs->lfs_sboffs[0];
846 fs->lfs_tstamp = fs->lfs_otstamp; 846 fs->lfs_tstamp = fs->lfs_otstamp;
847 fs->lfs_fsbtodb = 0; 847 fs->lfs_fsbtodb = 0;
848 } 848 }
849 if (fs->lfs_resvseg == 0) 849 if (fs->lfs_resvseg == 0)
850 fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \ 850 fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \
851 MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1)); 851 MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1));
852 852
853 /* 853 /*
854 * If we aren't going to be able to write meaningfully to this 854 * If we aren't going to be able to write meaningfully to this
855 * filesystem, and were not mounted readonly, bomb out now. 855 * filesystem, and were not mounted readonly, bomb out now.
856 */ 856 */
857 if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) { 857 if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
858 DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write," 858 DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
859 " we need BUFPAGES >= %lld\n", 859 " we need BUFPAGES >= %lld\n",
860 (long long)((bufmem_hiwater / bufmem_lowater) * 860 (long long)((bufmem_hiwater / bufmem_lowater) *
861 LFS_INVERSE_MAX_BYTES( 861 LFS_INVERSE_MAX_BYTES(
862 fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT))); 862 fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
863 free(fs, M_UFSMNT); 863 free(fs, M_UFSMNT);
864 error = EFBIG; /* XXX needs translation */ 864 error = EFBIG; /* XXX needs translation */
865 goto out; 865 goto out;
866 } 866 }
867 867
868 /* Before rolling forward, lock so vget will sleep for other procs */ 868 /* Before rolling forward, lock so vget will sleep for other procs */
869 if (l != NULL) { 869 if (l != NULL) {
870 fs->lfs_flags = LFS_NOTYET; 870 fs->lfs_flags = LFS_NOTYET;
871 fs->lfs_rfpid = l->l_proc->p_pid; 871 fs->lfs_rfpid = l->l_proc->p_pid;
872 } 872 }
873 873
874 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO); 874 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
875 ump->um_lfs = fs; 875 ump->um_lfs = fs;
876 ump->um_ops = &lfs_ufsops; 876 ump->um_ops = &lfs_ufsops;
877 ump->um_fstype = UFS1; 877 ump->um_fstype = UFS1;
878 if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */ 878 if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */
879 brelse(bp, BC_INVAL); 879 brelse(bp, BC_INVAL);
880 brelse(abp, BC_INVAL); 880 brelse(abp, BC_INVAL);
881 } else { 881 } else {
882 brelse(bp, 0); 882 brelse(bp, 0);
883 brelse(abp, 0); 883 brelse(abp, 0);
884 } 884 }
885 bp = NULL; 885 bp = NULL;
886 abp = NULL; 886 abp = NULL;
887 887
888 888
889 /* Set up the I/O information */ 889 /* Set up the I/O information */
890 fs->lfs_devbsize = secsize; 890 fs->lfs_devbsize = secsize;
891 fs->lfs_iocount = 0; 891 fs->lfs_iocount = 0;
892 fs->lfs_diropwait = 0; 892 fs->lfs_diropwait = 0;
893 fs->lfs_activesb = 0; 893 fs->lfs_activesb = 0;
894 fs->lfs_uinodes = 0; 894 fs->lfs_uinodes = 0;
895 fs->lfs_ravail = 0; 895 fs->lfs_ravail = 0;
896 fs->lfs_favail = 0; 896 fs->lfs_favail = 0;
897 fs->lfs_sbactive = 0; 897 fs->lfs_sbactive = 0;
898 898
899 /* Set up the ifile and lock aflags */ 899 /* Set up the ifile and lock aflags */
900 fs->lfs_doifile = 0; 900 fs->lfs_doifile = 0;
901 fs->lfs_writer = 0; 901 fs->lfs_writer = 0;
902 fs->lfs_dirops = 0; 902 fs->lfs_dirops = 0;
903 fs->lfs_nadirop = 0; 903 fs->lfs_nadirop = 0;
904 fs->lfs_seglock = 0; 904 fs->lfs_seglock = 0;
905 fs->lfs_pdflush = 0; 905 fs->lfs_pdflush = 0;
906 fs->lfs_sleepers = 0; 906 fs->lfs_sleepers = 0;
907 fs->lfs_pages = 0; 907 fs->lfs_pages = 0;
908 rw_init(&fs->lfs_fraglock); 908 rw_init(&fs->lfs_fraglock);
909 rw_init(&fs->lfs_iflock); 909 rw_init(&fs->lfs_iflock);
910 cv_init(&fs->lfs_stopcv, "lfsstop"); 910 cv_init(&fs->lfs_stopcv, "lfsstop");
911 911
912 /* Set the file system readonly/modify bits. */ 912 /* Set the file system readonly/modify bits. */
913 fs->lfs_ronly = ronly; 913 fs->lfs_ronly = ronly;
914 if (ronly == 0) 914 if (ronly == 0)
915 fs->lfs_fmod = 1; 915 fs->lfs_fmod = 1;
916 916
917 /* Initialize the mount structure. */ 917 /* Initialize the mount structure. */
918 dev = devvp->v_rdev; 918 dev = devvp->v_rdev;
919 mp->mnt_data = ump; 919 mp->mnt_data = ump;
920 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev; 920 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
921 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS); 921 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
922 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0]; 922 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
923 mp->mnt_stat.f_namemax = LFS_MAXNAMLEN; 923 mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
924 mp->mnt_stat.f_iosize = fs->lfs_bsize; 924 mp->mnt_stat.f_iosize = fs->lfs_bsize;
925 mp->mnt_flag |= MNT_LOCAL; 925 mp->mnt_flag |= MNT_LOCAL;
926 mp->mnt_fs_bshift = fs->lfs_bshift; 926 mp->mnt_fs_bshift = fs->lfs_bshift;
927 ump->um_flags = 0; 927 ump->um_flags = 0;
928 ump->um_mountp = mp; 928 ump->um_mountp = mp;
929 ump->um_dev = dev; 929 ump->um_dev = dev;
930 ump->um_devvp = devvp; 930 ump->um_devvp = devvp;
931 ump->um_bptrtodb = fs->lfs_fsbtodb; 931 ump->um_bptrtodb = fs->lfs_fsbtodb;
932 ump->um_seqinc = fragstofsb(fs, fs->lfs_frag); 932 ump->um_seqinc = fragstofsb(fs, fs->lfs_frag);
933 ump->um_nindir = fs->lfs_nindir; 933 ump->um_nindir = fs->lfs_nindir;
934 ump->um_lognindir = ffs(fs->lfs_nindir) - 1; 934 ump->um_lognindir = ffs(fs->lfs_nindir) - 1;
935 for (i = 0; i < MAXQUOTAS; i++) 935 for (i = 0; i < MAXQUOTAS; i++)
936 ump->um_quotas[i] = NULLVP; 936 ump->um_quotas[i] = NULLVP;
937 ump->um_maxsymlinklen = fs->lfs_maxsymlinklen; 937 ump->um_maxsymlinklen = fs->lfs_maxsymlinklen;
938 ump->um_dirblksiz = DIRBLKSIZ; 938 ump->um_dirblksiz = DIRBLKSIZ;
939 ump->um_maxfilesize = fs->lfs_maxfilesize; 939 ump->um_maxfilesize = fs->lfs_maxfilesize;
940 if (ump->um_maxsymlinklen > 0) 940 if (ump->um_maxsymlinklen > 0)
941 mp->mnt_iflag |= IMNT_DTYPE; 941 mp->mnt_iflag |= IMNT_DTYPE;
942 devvp->v_specmountpoint = mp; 942 devvp->v_specmountpoint = mp;
943 943
944 /* Set up reserved memory for pageout */ 944 /* Set up reserved memory for pageout */
945 lfs_setup_resblks(fs); 945 lfs_setup_resblks(fs);
946 /* Set up vdirop tailq */ 946 /* Set up vdirop tailq */
947 TAILQ_INIT(&fs->lfs_dchainhd); 947 TAILQ_INIT(&fs->lfs_dchainhd);
948 /* and paging tailq */ 948 /* and paging tailq */
949 TAILQ_INIT(&fs->lfs_pchainhd); 949 TAILQ_INIT(&fs->lfs_pchainhd);
950 /* and delayed segment accounting for truncation list */ 950 /* and delayed segment accounting for truncation list */
951 LIST_INIT(&fs->lfs_segdhd); 951 LIST_INIT(&fs->lfs_segdhd);
952 952
953 /* 953 /*
954 * We use the ifile vnode for almost every operation. Instead of 954 * We use the ifile vnode for almost every operation. Instead of
955 * retrieving it from the hash table each time we retrieve it here, 955 * retrieving it from the hash table each time we retrieve it here,
956 * artificially increment the reference count and keep a pointer 956 * artificially increment the reference count and keep a pointer
957 * to it in the incore copy of the superblock. 957 * to it in the incore copy of the superblock.
958 */ 958 */
959 if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) { 959 if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) {
960 DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error)); 960 DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
961 goto out; 961 goto out;
962 } 962 }
963 fs->lfs_ivnode = vp; 963 fs->lfs_ivnode = vp;
964 VREF(vp); 964 VREF(vp);
965 965
966 /* Set up inode bitmap and order free list */ 966 /* Set up inode bitmap and order free list */
967 lfs_order_freelist(fs); 967 lfs_order_freelist(fs);
968 968
969 /* Set up segment usage flags for the autocleaner. */ 969 /* Set up segment usage flags for the autocleaner. */
970 fs->lfs_nactive = 0; 970 fs->lfs_nactive = 0;
971 fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *), 971 fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *),
972 M_SEGMENT, M_WAITOK); 972 M_SEGMENT, M_WAITOK);
973 fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t), 973 fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
974 M_SEGMENT, M_WAITOK); 974 M_SEGMENT, M_WAITOK);
975 fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t), 975 fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
976 M_SEGMENT, M_WAITOK); 976 M_SEGMENT, M_WAITOK);
977 memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t)); 977 memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t));
978 for (i = 0; i < fs->lfs_nseg; i++) { 978 for (i = 0; i < fs->lfs_nseg; i++) {
979 int changed; 979 int changed;
980 980
981 LFS_SEGENTRY(sup, fs, i, bp); 981 LFS_SEGENTRY(sup, fs, i, bp);
982 changed = 0; 982 changed = 0;
983 if (!ronly) { 983 if (!ronly) {
984 if (sup->su_nbytes == 0 && 984 if (sup->su_nbytes == 0 &&
985 !(sup->su_flags & SEGUSE_EMPTY)) { 985 !(sup->su_flags & SEGUSE_EMPTY)) {
986 sup->su_flags |= SEGUSE_EMPTY; 986 sup->su_flags |= SEGUSE_EMPTY;
987 ++changed; 987 ++changed;
988 } else if (!(sup->su_nbytes == 0) && 988 } else if (!(sup->su_nbytes == 0) &&
989 (sup->su_flags & SEGUSE_EMPTY)) { 989 (sup->su_flags & SEGUSE_EMPTY)) {
990 sup->su_flags &= ~SEGUSE_EMPTY; 990 sup->su_flags &= ~SEGUSE_EMPTY;
991 ++changed; 991 ++changed;
992 } 992 }
993 if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) { 993 if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
994 sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL); 994 sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
995 ++changed; 995 ++changed;
996 } 996 }
997 } 997 }
998 fs->lfs_suflags[0][i] = sup->su_flags; 998 fs->lfs_suflags[0][i] = sup->su_flags;
999 if (changed) 999 if (changed)
1000 LFS_WRITESEGENTRY(sup, fs, i, bp); 1000 LFS_WRITESEGENTRY(sup, fs, i, bp);
1001 else 1001 else
1002 brelse(bp, 0); 1002 brelse(bp, 0);
1003 } 1003 }
1004 1004
1005#ifdef LFS_KERNEL_RFW 1005#ifdef LFS_KERNEL_RFW
1006 lfs_roll_forward(fs, mp, l); 1006 lfs_roll_forward(fs, mp, l);
1007#endif 1007#endif
1008 1008
1009 /* If writing, sb is not clean; record in case of immediate crash */ 1009 /* If writing, sb is not clean; record in case of immediate crash */
1010 if (!fs->lfs_ronly) { 1010 if (!fs->lfs_ronly) {
1011 fs->lfs_pflags &= ~LFS_PF_CLEAN; 1011 fs->lfs_pflags &= ~LFS_PF_CLEAN;
1012 lfs_writesuper(fs, fs->lfs_sboffs[0]); 1012 lfs_writesuper(fs, fs->lfs_sboffs[0]);
1013 lfs_writesuper(fs, fs->lfs_sboffs[1]); 1013 lfs_writesuper(fs, fs->lfs_sboffs[1]);
1014 } 1014 }
1015 1015
1016 /* Allow vget now that roll-forward is complete */ 1016 /* Allow vget now that roll-forward is complete */
1017 fs->lfs_flags &= ~(LFS_NOTYET); 1017 fs->lfs_flags &= ~(LFS_NOTYET);
1018 wakeup(&fs->lfs_flags); 1018 wakeup(&fs->lfs_flags);
1019 1019
1020 /* 1020 /*
1021 * Initialize the ifile cleaner info with information from 1021 * Initialize the ifile cleaner info with information from
1022 * the superblock. 1022 * the superblock.
1023 */ 1023 */
1024 LFS_CLEANERINFO(cip, fs, bp); 1024 LFS_CLEANERINFO(cip, fs, bp);
1025 cip->clean = fs->lfs_nclean; 1025 cip->clean = fs->lfs_nclean;
1026 cip->dirty = fs->lfs_nseg - fs->lfs_nclean; 1026 cip->dirty = fs->lfs_nseg - fs->lfs_nclean;
1027 cip->avail = fs->lfs_avail; 1027 cip->avail = fs->lfs_avail;
1028 cip->bfree = fs->lfs_bfree; 1028 cip->bfree = fs->lfs_bfree;
1029 (void) LFS_BWRITE_LOG(bp); /* Ifile */ 1029 (void) LFS_BWRITE_LOG(bp); /* Ifile */
1030 1030
1031 /* 1031 /*
1032 * Mark the current segment as ACTIVE, since we're going to 1032 * Mark the current segment as ACTIVE, since we're going to
1033 * be writing to it. 1033 * be writing to it.
1034 */ 1034 */
1035 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); 1035 LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);
1036 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE; 1036 sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
1037 fs->lfs_nactive++; 1037 fs->lfs_nactive++;
1038 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); /* Ifile */ 1038 LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); /* Ifile */
1039 1039
1040 /* Now that roll-forward is done, unlock the Ifile */ 1040 /* Now that roll-forward is done, unlock the Ifile */
1041 vput(vp); 1041 vput(vp);
1042 1042
1043 /* Start the pagedaemon-anticipating daemon */ 1043 /* Start the pagedaemon-anticipating daemon */
1044 if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL, 1044 if (lfs_writer_daemon == 0 && kthread_create(PRI_BIO, 0, NULL,
1045 lfs_writerd, NULL, NULL, "lfs_writer") != 0) 1045 lfs_writerd, NULL, NULL, "lfs_writer") != 0)
1046 panic("fork lfs_writer"); 1046 panic("fork lfs_writer");
1047 1047
1048 printf("WARNING: the log-structured file system is experimental\n" 1048 printf("WARNING: the log-structured file system is experimental\n"
1049 "WARNING: it may cause system crashes and/or corrupt data\n"); 1049 "WARNING: it may cause system crashes and/or corrupt data\n");
1050 1050
1051 return (0); 1051 return (0);
1052 1052
1053out: 1053out:
1054 if (bp) 1054 if (bp)
1055 brelse(bp, 0); 1055 brelse(bp, 0);
1056 if (abp) 1056 if (abp)
1057 brelse(abp, 0); 1057 brelse(abp, 0);
1058 if (ump) { 1058 if (ump) {
1059 free(ump->um_lfs, M_UFSMNT); 1059 free(ump->um_lfs, M_UFSMNT);
1060 free(ump, M_UFSMNT); 1060 free(ump, M_UFSMNT);
1061 mp->mnt_data = NULL; 1061 mp->mnt_data = NULL;
1062 } 1062 }
1063 1063
1064 return (error); 1064 return (error);
1065} 1065}
1066 1066
1067/* 1067/*
1068 * unmount system call 1068 * unmount system call
1069 */ 1069 */
1070int 1070int
1071lfs_unmount(struct mount *mp, int mntflags) 1071lfs_unmount(struct mount *mp, int mntflags)
1072{ 1072{
1073 struct lwp *l = curlwp; 1073 struct lwp *l = curlwp;
1074 struct ufsmount *ump; 1074 struct ufsmount *ump;
1075 struct lfs *fs; 1075 struct lfs *fs;
1076 int error, flags, ronly; 1076 int error, flags, ronly;
1077 vnode_t *vp; 1077 vnode_t *vp;
1078 1078
1079 flags = 0; 1079 flags = 0;
1080 if (mntflags & MNT_FORCE) 1080 if (mntflags & MNT_FORCE)
1081 flags |= FORCECLOSE; 1081 flags |= FORCECLOSE;
1082 1082
1083 ump = VFSTOUFS(mp); 1083 ump = VFSTOUFS(mp);
1084 fs = ump->um_lfs; 1084 fs = ump->um_lfs;
1085 1085
1086 /* Two checkpoints */ 1086 /* Two checkpoints */
1087 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC); 1087 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
1088 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC); 1088 lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
1089 1089
1090 /* wake up the cleaner so it can die */ 1090 /* wake up the cleaner so it can die */
1091 lfs_wakeup_cleaner(fs); 1091 lfs_wakeup_cleaner(fs);
1092 mutex_enter(&lfs_lock); 1092 mutex_enter(&lfs_lock);
1093 while (fs->lfs_sleepers) 1093 while (fs->lfs_sleepers)
1094 mtsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0, 1094 mtsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0,
1095 &lfs_lock); 1095 &lfs_lock);
1096 mutex_exit(&lfs_lock); 1096 mutex_exit(&lfs_lock);
1097 1097
1098#ifdef QUOTA 1098#ifdef QUOTA
1099 if (mp->mnt_flag & MNT_QUOTA) { 1099 if (mp->mnt_flag & MNT_QUOTA) {
1100 int i; 1100 int i;
1101 error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags); 1101 error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags);
1102 if (error) 1102 if (error)
1103 return (error); 1103 return (error);
1104 for (i = 0; i < MAXQUOTAS; i++) { 1104 for (i = 0; i < MAXQUOTAS; i++) {
1105 if (ump->um_quotas[i] == NULLVP) 1105 if (ump->um_quotas[i] == NULLVP)
1106 continue; 1106 continue;
1107 quotaoff(l, mp, i); 1107 quotaoff(l, mp, i);
1108 } 1108 }
1109 /* 1109 /*
1110 * Here we fall through to vflush again to ensure 1110 * Here we fall through to vflush again to ensure
1111 * that we have gotten rid of all the system vnodes. 1111 * that we have gotten rid of all the system vnodes.
1112 */ 1112 */
1113 } 1113 }
1114#endif 1114#endif
1115 if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0) 1115 if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
1116 return (error); 1116 return (error);
1117 if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0) 1117 if ((error = VFS_SYNC(mp, 1, l->l_cred)) != 0)
1118 return (error); 1118 return (error);
1119 vp = fs->lfs_ivnode; 1119 vp = fs->lfs_ivnode;
1120 mutex_enter(&vp->v_interlock); 1120 mutex_enter(&vp->v_interlock);
1121 if (LIST_FIRST(&vp->v_dirtyblkhd)) 1121 if (LIST_FIRST(&vp->v_dirtyblkhd))
1122 panic("lfs_unmount: still dirty blocks on ifile vnode"); 1122 panic("lfs_unmount: still dirty blocks on ifile vnode");
1123 mutex_exit(&vp->v_interlock); 1123 mutex_exit(&vp->v_interlock);
1124 1124
1125 /* Explicitly write the superblock, to update serial and pflags */ 1125 /* Explicitly write the superblock, to update serial and pflags */
1126 fs->lfs_pflags |= LFS_PF_CLEAN; 1126 fs->lfs_pflags |= LFS_PF_CLEAN;
1127 lfs_writesuper(fs, fs->lfs_sboffs[0]); 1127 lfs_writesuper(fs, fs->lfs_sboffs[0]);
1128 lfs_writesuper(fs, fs->lfs_sboffs[1]); 1128 lfs_writesuper(fs, fs->lfs_sboffs[1]);
1129 mutex_enter(&lfs_lock); 1129 mutex_enter(&lfs_lock);
1130 while (fs->lfs_iocount) 1130 while (fs->lfs_iocount)
1131 mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0, 1131 mtsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
1132 &lfs_lock); 1132 &lfs_lock);
1133 mutex_exit(&lfs_lock); 1133 mutex_exit(&lfs_lock);
1134 1134
1135 /* Finish with the Ifile, now that we're done with it */ 1135 /* Finish with the Ifile, now that we're done with it */
1136 vgone(fs->lfs_ivnode); 1136 vgone(fs->lfs_ivnode);
1137 1137
1138 ronly = !fs->lfs_ronly; 1138 ronly = !fs->lfs_ronly;
1139 if (ump->um_devvp->v_type != VBAD) 1139 if (ump->um_devvp->v_type != VBAD)
1140 ump->um_devvp->v_specmountpoint = NULL; 1140 ump->um_devvp->v_specmountpoint = NULL;
1141 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 1141 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1142 error = VOP_CLOSE(ump->um_devvp, 1142 error = VOP_CLOSE(ump->um_devvp,
1143 ronly ? FREAD : FREAD|FWRITE, NOCRED); 1143 ronly ? FREAD : FREAD|FWRITE, NOCRED);
1144 vput(ump->um_devvp); 1144 vput(ump->um_devvp);
1145 1145
1146 /* Complain about page leakage */ 1146 /* Complain about page leakage */
1147 if (fs->lfs_pages > 0) 1147 if (fs->lfs_pages > 0)
1148 printf("lfs_unmount: still claim %d pages (%d in subsystem)\n", 1148 printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
1149 fs->lfs_pages, lfs_subsys_pages); 1149 fs->lfs_pages, lfs_subsys_pages);
1150 1150
1151 /* Free per-mount data structures */ 1151 /* Free per-mount data structures */
1152 free(fs->lfs_ino_bitmap, M_SEGMENT); 1152 free(fs->lfs_ino_bitmap, M_SEGMENT);
1153 free(fs->lfs_suflags[0], M_SEGMENT); 1153 free(fs->lfs_suflags[0], M_SEGMENT);
1154 free(fs->lfs_suflags[1], M_SEGMENT); 1154 free(fs->lfs_suflags[1], M_SEGMENT);
1155 free(fs->lfs_suflags, M_SEGMENT); 1155 free(fs->lfs_suflags, M_SEGMENT);
1156 lfs_free_resblks(fs); 1156 lfs_free_resblks(fs);
1157 cv_destroy(&fs->lfs_stopcv); 1157 cv_destroy(&fs->lfs_stopcv);
1158 rw_destroy(&fs->lfs_fraglock); 1158 rw_destroy(&fs->lfs_fraglock);
1159 rw_destroy(&fs->lfs_iflock); 1159 rw_destroy(&fs->lfs_iflock);
1160 free(fs, M_UFSMNT); 1160 free(fs, M_UFSMNT);
1161 free(ump, M_UFSMNT); 1161 free(ump, M_UFSMNT);
1162 1162
1163 mp->mnt_data = NULL; 1163 mp->mnt_data = NULL;
1164 mp->mnt_flag &= ~MNT_LOCAL; 1164 mp->mnt_flag &= ~MNT_LOCAL;
1165 return (error); 1165 return (error);
1166} 1166}
1167 1167
1168/* 1168/*
1169 * Get file system statistics. 1169 * Get file system statistics.
1170 * 1170 *
1171 * NB: We don't lock to access the superblock here, because it's not 1171 * NB: We don't lock to access the superblock here, because it's not
1172 * really that important if we get it wrong. 1172 * really that important if we get it wrong.
1173 */ 1173 */
1174int 1174int
1175lfs_statvfs(struct mount *mp, struct statvfs *sbp) 1175lfs_statvfs(struct mount *mp, struct statvfs *sbp)
1176{ 1176{
1177 struct lfs *fs; 1177 struct lfs *fs;
1178 struct ufsmount *ump; 1178 struct ufsmount *ump;
1179 1179
1180 ump = VFSTOUFS(mp); 1180 ump = VFSTOUFS(mp);
1181 fs = ump->um_lfs; 1181 fs = ump->um_lfs;
1182 if (fs->lfs_magic != LFS_MAGIC) 1182 if (fs->lfs_magic != LFS_MAGIC)
1183 panic("lfs_statvfs: magic"); 1183 panic("lfs_statvfs: magic");
1184 1184
1185 sbp->f_bsize = fs->lfs_bsize; 1185 sbp->f_bsize = fs->lfs_bsize;
1186 sbp->f_frsize = fs->lfs_fsize; 1186 sbp->f_frsize = fs->lfs_fsize;
1187 sbp->f_iosize = fs->lfs_bsize; 1187 sbp->f_iosize = fs->lfs_bsize;
1188 sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks); 1188 sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks);
1189 1189
1190 sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs)); 1190 sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs));
1191 KASSERT(sbp->f_bfree <= fs->lfs_dsize); 1191 KASSERT(sbp->f_bfree <= fs->lfs_dsize);
1192#if 0 1192#if 0
1193 if (sbp->f_bfree < 0) 1193 if (sbp->f_bfree < 0)
1194 sbp->f_bfree = 0; 1194 sbp->f_bfree = 0;
1195#endif 1195#endif
1196 1196
1197 sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs)); 1197 sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs));
1198 if (sbp->f_bfree > sbp->f_bresvd) 1198 if (sbp->f_bfree > sbp->f_bresvd)
1199 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd; 1199 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1200 else 1200 else
1201 sbp->f_bavail = 0; 1201 sbp->f_bavail = 0;
1202 1202
1203 sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs); 1203 sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs);
1204 sbp->f_ffree = sbp->f_files - fs->lfs_nfiles; 1204 sbp->f_ffree = sbp->f_files - fs->lfs_nfiles;
1205 sbp->f_favail = sbp->f_ffree; 1205 sbp->f_favail = sbp->f_ffree;
1206 sbp->f_fresvd = 0; 1206 sbp->f_fresvd = 0;
1207 copy_statvfs_info(sbp, mp); 1207 copy_statvfs_info(sbp, mp);
1208 return (0); 1208 return (0);
1209} 1209}
1210 1210
1211/* 1211/*
1212 * Go through the disk queues to initiate sandbagged IO; 1212 * Go through the disk queues to initiate sandbagged IO;
1213 * go through the inodes to write those that have been modified; 1213 * go through the inodes to write those that have been modified;
1214 * initiate the writing of the super block if it has been modified. 1214 * initiate the writing of the super block if it has been modified.
1215 * 1215 *
1216 * Note: we are always called with the filesystem marked `MPBUSY'. 1216 * Note: we are always called with the filesystem marked `MPBUSY'.
1217 */ 1217 */
1218int 1218int
1219lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred) 1219lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1220{ 1220{
1221 int error; 1221 int error;
1222 struct lfs *fs; 1222 struct lfs *fs;
1223 1223
1224 fs = VFSTOUFS(mp)->um_lfs; 1224 fs = VFSTOUFS(mp)->um_lfs;
1225 if (fs->lfs_ronly) 1225 if (fs->lfs_ronly)
1226 return 0; 1226 return 0;
1227 1227
1228 /* Snapshots should not hose the syncer */ 1228 /* Snapshots should not hose the syncer */
1229 /* 1229 /*
1230 * XXX Sync can block here anyway, since we don't have a very 1230 * XXX Sync can block here anyway, since we don't have a very
1231 * XXX good idea of how much data is pending. If it's more 1231 * XXX good idea of how much data is pending. If it's more
1232 * XXX than a segment and lfs_nextseg is close to the end of 1232 * XXX than a segment and lfs_nextseg is close to the end of
1233 * XXX the log, we'll likely block. 1233 * XXX the log, we'll likely block.
1234 */ 1234 */
1235 mutex_enter(&lfs_lock); 1235 mutex_enter(&lfs_lock);
1236 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) { 1236 if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
1237 mutex_exit(&lfs_lock); 1237 mutex_exit(&lfs_lock);
1238 return 0; 1238 return 0;
1239 } 1239 }
1240 mutex_exit(&lfs_lock); 1240 mutex_exit(&lfs_lock);
1241 1241
1242 lfs_writer_enter(fs, "lfs_dirops"); 1242 lfs_writer_enter(fs, "lfs_dirops");
1243 1243
1244 /* All syncs must be checkpoints until roll-forward is implemented. */ 1244 /* All syncs must be checkpoints until roll-forward is implemented. */
1245 DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset)); 1245 DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset));
1246 error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0)); 1246 error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
1247 lfs_writer_leave(fs); 1247 lfs_writer_leave(fs);
1248#ifdef QUOTA 1248#ifdef QUOTA
1249 qsync(mp); 1249 qsync(mp);
1250#endif 1250#endif
1251 return (error); 1251 return (error);
1252} 1252}
1253 1253
1254extern kmutex_t ufs_hashlock; 1254extern kmutex_t ufs_hashlock;
1255 1255
1256/* 1256/*
1257 * Look up an LFS dinode number to find its incore vnode. If not already 1257 * Look up an LFS dinode number to find its incore vnode. If not already
1258 * in core, read it in from the specified device. Return the inode locked. 1258 * in core, read it in from the specified device. Return the inode locked.
1259 * Detection and handling of mount points must be done by the calling routine. 1259 * Detection and handling of mount points must be done by the calling routine.
1260 */ 1260 */
1261int 1261int
1262lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp) 1262lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1263{ 1263{
1264 struct lfs *fs; 1264 struct lfs *fs;
1265 struct ufs1_dinode *dip; 1265 struct ufs1_dinode *dip;
1266 struct inode *ip; 1266 struct inode *ip;
1267 struct buf *bp; 1267 struct buf *bp;
1268 struct ifile *ifp; 1268 struct ifile *ifp;
1269 struct vnode *vp; 1269 struct vnode *vp;
1270 struct ufsmount *ump; 1270 struct ufsmount *ump;
1271 daddr_t daddr; 1271 daddr_t daddr;
1272 dev_t dev; 1272 dev_t dev;
1273 int error, retries; 1273 int error, retries;
1274 struct timespec ts; 1274 struct timespec ts;
1275 1275
1276 memset(&ts, 0, sizeof ts); /* XXX gcc */ 1276 memset(&ts, 0, sizeof ts); /* XXX gcc */
1277 1277
1278 ump = VFSTOUFS(mp); 1278 ump = VFSTOUFS(mp);
1279 dev = ump->um_dev; 1279 dev = ump->um_dev;
1280 fs = ump->um_lfs; 1280 fs = ump->um_lfs;
1281 1281
1282 /* 1282 /*
1283 * If the filesystem is not completely mounted yet, suspend 1283 * If the filesystem is not completely mounted yet, suspend
1284 * any access requests (wait for roll-forward to complete). 1284 * any access requests (wait for roll-forward to complete).
1285 */ 1285 */
1286 mutex_enter(&lfs_lock); 1286 mutex_enter(&lfs_lock);
1287 while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid) 1287 while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
1288 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0, 1288 mtsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
1289 &lfs_lock); 1289 &lfs_lock);
1290 mutex_exit(&lfs_lock); 1290 mutex_exit(&lfs_lock);
1291 1291
1292retry: 1292retry:
1293 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL) 1293 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1294 return (0); 1294 return (0);
1295 1295
1296 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) { 1296 if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
1297 *vpp = NULL; 1297 *vpp = NULL;
1298 return (error); 1298 return (error);
1299 } 1299 }
1300 1300
1301 mutex_enter(&ufs_hashlock); 1301 mutex_enter(&ufs_hashlock);
1302 if (ufs_ihashget(dev, ino, 0) != NULL) { 1302 if (ufs_ihashget(dev, ino, 0) != NULL) {
1303 mutex_exit(&ufs_hashlock); 1303 mutex_exit(&ufs_hashlock);
1304 ungetnewvnode(vp); 1304 ungetnewvnode(vp);
1305 goto retry; 1305 goto retry;
1306 } 1306 }
1307 1307
1308 /* Translate the inode number to a disk address. */ 1308 /* Translate the inode number to a disk address. */
1309 if (ino == LFS_IFILE_INUM) 1309 if (ino == LFS_IFILE_INUM)
1310 daddr = fs->lfs_idaddr; 1310 daddr = fs->lfs_idaddr;
1311 else { 1311 else {
1312 /* XXX bounds-check this too */ 1312 /* XXX bounds-check this too */
1313 LFS_IENTRY(ifp, fs, ino, bp); 1313 LFS_IENTRY(ifp, fs, ino, bp);
1314 daddr = ifp->if_daddr; 1314 daddr = ifp->if_daddr;
1315 if (fs->lfs_version > 1) { 1315 if (fs->lfs_version > 1) {
1316 ts.tv_sec = ifp->if_atime_sec; 1316 ts.tv_sec = ifp->if_atime_sec;
1317 ts.tv_nsec = ifp->if_atime_nsec; 1317 ts.tv_nsec = ifp->if_atime_nsec;
1318 } 1318 }
1319 1319
1320 brelse(bp, 0); 1320 brelse(bp, 0);
1321 if (daddr == LFS_UNUSED_DADDR) { 1321 if (daddr == LFS_UNUSED_DADDR) {
1322 *vpp = NULLVP; 1322 *vpp = NULLVP;
1323 mutex_exit(&ufs_hashlock); 1323 mutex_exit(&ufs_hashlock);
1324 ungetnewvnode(vp); 1324 ungetnewvnode(vp);
1325 return (ENOENT); 1325 return (ENOENT);
1326 } 1326 }
1327 } 1327 }
1328 1328
1329 /* Allocate/init new vnode/inode. */ 1329 /* Allocate/init new vnode/inode. */
1330 lfs_vcreate(mp, ino, vp); 1330 lfs_vcreate(mp, ino, vp);
1331 1331
1332 /* 1332 /*
1333 * Put it onto its hash chain and lock it so that other requests for 1333 * Put it onto its hash chain and lock it so that other requests for
1334 * this inode will block if they arrive while we are sleeping waiting 1334 * this inode will block if they arrive while we are sleeping waiting
1335 * for old data structures to be purged or for the contents of the 1335 * for old data structures to be purged or for the contents of the
1336 * disk portion of this inode to be read. 1336 * disk portion of this inode to be read.
1337 */ 1337 */
1338 ip = VTOI(vp); 1338 ip = VTOI(vp);
1339 ufs_ihashins(ip); 1339 ufs_ihashins(ip);
1340 mutex_exit(&ufs_hashlock); 1340 mutex_exit(&ufs_hashlock);
1341 1341
1342 /* 1342 /*
1343 * XXX 1343 * XXX
1344 * This may not need to be here, logically it should go down with 1344 * This may not need to be here, logically it should go down with
1345 * the i_devvp initialization. 1345 * the i_devvp initialization.
1346 * Ask Kirk. 1346 * Ask Kirk.
1347 */ 1347 */
1348 ip->i_lfs = ump->um_lfs; 1348 ip->i_lfs = ump->um_lfs;
1349 1349
1350 /* Read in the disk contents for the inode, copy into the inode. */ 1350 /* Read in the disk contents for the inode, copy into the inode. */
1351 retries = 0; 1351 retries = 0;
1352 again: 1352 again:
1353 error = bread(ump->um_devvp, fsbtodb(fs, daddr), 1353 error = bread(ump->um_devvp, fsbtodb(fs, daddr),
1354 (fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize), 1354 (fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize),
1355 NOCRED, 0, &bp); 1355 NOCRED, 0, &bp);
1356 if (error) { 1356 if (error) {
1357 /* 1357 /*
1358 * The inode does not contain anything useful, so it would 1358 * The inode does not contain anything useful, so it would
1359 * be misleading to leave it on its hash chain. With mode 1359 * be misleading to leave it on its hash chain. With mode
1360 * still zero, it will be unlinked and returned to the free 1360 * still zero, it will be unlinked and returned to the free
1361 * list by vput(). 1361 * list by vput().
1362 */ 1362 */
1363 vput(vp); 1363 vput(vp);
1364 brelse(bp, 0); 1364 brelse(bp, 0);
1365 *vpp = NULL; 1365 *vpp = NULL;
1366 return (error); 1366 return (error);
1367 } 1367 }
1368 1368
1369 dip = lfs_ifind(fs, ino, bp); 1369 dip = lfs_ifind(fs, ino, bp);
1370 if (dip == NULL) { 1370 if (dip == NULL) {
1371 /* Assume write has not completed yet; try again */ 1371 /* Assume write has not completed yet; try again */
1372 brelse(bp, BC_INVAL); 1372 brelse(bp, BC_INVAL);
1373 ++retries; 1373 ++retries;
1374 if (retries > LFS_IFIND_RETRIES) { 1374 if (retries > LFS_IFIND_RETRIES) {
1375#ifdef DEBUG 1375#ifdef DEBUG
1376 /* If the seglock is held look at the bpp to see 1376 /* If the seglock is held look at the bpp to see
1377 what is there anyway */ 1377 what is there anyway */
1378 mutex_enter(&lfs_lock); 1378 mutex_enter(&lfs_lock);
1379 if (fs->lfs_seglock > 0) { 1379 if (fs->lfs_seglock > 0) {
1380 struct buf **bpp; 1380 struct buf **bpp;
1381 struct ufs1_dinode *dp; 1381 struct ufs1_dinode *dp;
1382 int i; 1382 int i;
1383 1383
1384 for (bpp = fs->lfs_sp->bpp; 1384 for (bpp = fs->lfs_sp->bpp;
1385 bpp != fs->lfs_sp->cbpp; ++bpp) { 1385 bpp != fs->lfs_sp->cbpp; ++bpp) {
1386 if ((*bpp)->b_vp == fs->lfs_ivnode && 1386 if ((*bpp)->b_vp == fs->lfs_ivnode &&
1387 bpp != fs->lfs_sp->bpp) { 1387 bpp != fs->lfs_sp->bpp) {
1388 /* Inode block */ 1388 /* Inode block */
1389 printf("lfs_vget: block 0x%" PRIx64 ": ", 1389 printf("lfs_vget: block 0x%" PRIx64 ": ",
1390 (*bpp)->b_blkno); 1390 (*bpp)->b_blkno);
1391 dp = (struct ufs1_dinode *)(*bpp)->b_data; 1391 dp = (struct ufs1_dinode *)(*bpp)->b_data;
1392 for (i = 0; i < INOPB(fs); i++) 1392 for (i = 0; i < INOPB(fs); i++)
1393 if (dp[i].di_u.inumber) 1393 if (dp[i].di_u.inumber)
1394 printf("%d ", dp[i].di_u.inumber); 1394 printf("%d ", dp[i].di_u.inumber);
1395 printf("\n"); 1395 printf("\n");
1396 } 1396 }
1397 } 1397 }
1398 } 1398 }
1399 mutex_exit(&lfs_lock); 1399 mutex_exit(&lfs_lock);
1400#endif /* DEBUG */ 1400#endif /* DEBUG */
1401 panic("lfs_vget: dinode not found"); 1401 panic("lfs_vget: dinode not found");
1402 } 1402 }
1403 mutex_enter(&lfs_lock); 1403 mutex_enter(&lfs_lock);
1404 if (fs->lfs_iocount) { 1404 if (fs->lfs_iocount) {
1405 DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino)); 1405 DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino));
1406 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1, 1406 (void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
1407 "lfs ifind", 1, &lfs_lock); 1407 "lfs ifind", 1, &lfs_lock);
1408 } else 1408 } else
1409 retries = LFS_IFIND_RETRIES; 1409 retries = LFS_IFIND_RETRIES;
1410 mutex_exit(&lfs_lock); 1410 mutex_exit(&lfs_lock);
1411 goto again; 1411 goto again;
1412 } 1412 }
1413 *ip->i_din.ffs1_din = *dip; 1413 *ip->i_din.ffs1_din = *dip;
1414 brelse(bp, 0); 1414 brelse(bp, 0);
1415 1415
1416 if (fs->lfs_version > 1) { 1416 if (fs->lfs_version > 1) {
1417 ip->i_ffs1_atime = ts.tv_sec; 1417 ip->i_ffs1_atime = ts.tv_sec;
1418 ip->i_ffs1_atimensec = ts.tv_nsec; 1418 ip->i_ffs1_atimensec = ts.tv_nsec;
1419 } 1419 }
1420 1420
1421 lfs_vinit(mp, &vp); 1421 lfs_vinit(mp, &vp);
1422 1422
1423 *vpp = vp; 1423 *vpp = vp;
1424 1424
1425 KASSERT(VOP_ISLOCKED(vp)); 1425 KASSERT(VOP_ISLOCKED(vp));
1426 1426
1427 return (0); 1427 return (0);
1428} 1428}
1429 1429
1430/* 1430/*
1431 * File handle to vnode 1431 * File handle to vnode
1432 */ 1432 */
1433int 1433int
1434lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp) 1434lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1435{ 1435{
1436 struct lfid lfh; 1436 struct lfid lfh;
1437 struct buf *bp; 1437 struct buf *bp;
1438 IFILE *ifp; 1438 IFILE *ifp;
1439 int32_t daddr; 1439 int32_t daddr;
1440 struct lfs *fs; 1440 struct lfs *fs;
1441 vnode_t *vp; 1441 vnode_t *vp;
1442 1442
1443 if (fhp->fid_len != sizeof(struct lfid)) 1443 if (fhp->fid_len != sizeof(struct lfid))
1444 return EINVAL; 1444 return EINVAL;
1445 1445
1446 memcpy(&lfh, fhp, sizeof(lfh)); 1446 memcpy(&lfh, fhp, sizeof(lfh));
1447 if (lfh.lfid_ino < LFS_IFILE_INUM) 1447 if (lfh.lfid_ino < LFS_IFILE_INUM)
1448 return ESTALE; 1448 return ESTALE;
1449 1449
1450 fs = VFSTOUFS(mp)->um_lfs; 1450 fs = VFSTOUFS(mp)->um_lfs;
1451 if (lfh.lfid_ident != fs->lfs_ident) 1451 if (lfh.lfid_ident != fs->lfs_ident)
1452 return ESTALE; 1452 return ESTALE;
1453 1453
1454 if (lfh.lfid_ino > 1454 if (lfh.lfid_ino >
1455 ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) - 1455 ((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) -
1456 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb) 1456 fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb)
1457 return ESTALE; 1457 return ESTALE;
1458 1458
1459 mutex_enter(&ufs_ihash_lock); 1459 mutex_enter(&ufs_ihash_lock);
1460 vp = ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino); 1460 vp = ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino);
1461 mutex_exit(&ufs_ihash_lock); 1461 mutex_exit(&ufs_ihash_lock);
1462 if (vp == NULL) { 1462 if (vp == NULL) {
1463 LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp); 1463 LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp);
1464 daddr = ifp->if_daddr; 1464 daddr = ifp->if_daddr;
1465 brelse(bp, 0); 1465 brelse(bp, 0);
1466 if (daddr == LFS_UNUSED_DADDR) 1466 if (daddr == LFS_UNUSED_DADDR)
1467 return ESTALE; 1467 return ESTALE;
1468 } 1468 }
1469 1469
1470 return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp)); 1470 return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp));
1471} 1471}
1472 1472
1473/* 1473/*
1474 * Vnode pointer to File handle 1474 * Vnode pointer to File handle
1475 */ 1475 */
1476/* ARGSUSED */ 1476/* ARGSUSED */
1477int 1477int
1478lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size) 1478lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1479{ 1479{
1480 struct inode *ip; 1480 struct inode *ip;
1481 struct lfid lfh; 1481 struct lfid lfh;
1482 1482
1483 if (*fh_size < sizeof(struct lfid)) { 1483 if (*fh_size < sizeof(struct lfid)) {
1484 *fh_size = sizeof(struct lfid); 1484 *fh_size = sizeof(struct lfid);
1485 return E2BIG; 1485 return E2BIG;
1486 } 1486 }
1487 *fh_size = sizeof(struct lfid); 1487 *fh_size = sizeof(struct lfid);
1488 ip = VTOI(vp); 1488 ip = VTOI(vp);
1489 memset(&lfh, 0, sizeof(lfh)); 1489 memset(&lfh, 0, sizeof(lfh));
1490 lfh.lfid_len = sizeof(struct lfid); 1490 lfh.lfid_len = sizeof(struct lfid);
1491 lfh.lfid_ino = ip->i_number; 1491 lfh.lfid_ino = ip->i_number;
1492 lfh.lfid_gen = ip->i_gen; 1492 lfh.lfid_gen = ip->i_gen;
1493 lfh.lfid_ident = ip->i_lfs->lfs_ident; 1493 lfh.lfid_ident = ip->i_lfs->lfs_ident;
1494 memcpy(fhp, &lfh, sizeof(lfh)); 1494 memcpy(fhp, &lfh, sizeof(lfh));
1495 return (0); 1495 return (0);
1496} 1496}
1497 1497
1498/* 1498/*
1499 * ufs_bmaparray callback function for writing. 1499 * ufs_bmaparray callback function for writing.
1500 * 1500 *
1501 * Since blocks will be written to the new segment anyway, 1501 * Since blocks will be written to the new segment anyway,
1502 * we don't care about current daddr of them. 1502 * we don't care about current daddr of them.
1503 */ 1503 */
1504static bool 1504static bool
1505lfs_issequential_hole(const struct ufsmount *ump, 1505lfs_issequential_hole(const struct ufsmount *ump,
1506 daddr_t daddr0, daddr_t daddr1) 1506 daddr_t daddr0, daddr_t daddr1)
1507{ 1507{
1508 daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */ 1508 daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */
1509 daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */ 1509 daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */
1510 1510
1511 KASSERT(daddr0 == UNWRITTEN || 1511 KASSERT(daddr0 == UNWRITTEN ||
1512 (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR)); 1512 (0 <= daddr0 && daddr0 <= LFS_MAX_DADDR));
1513 KASSERT(daddr1 == UNWRITTEN || 1513 KASSERT(daddr1 == UNWRITTEN ||
1514 (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR)); 1514 (0 <= daddr1 && daddr1 <= LFS_MAX_DADDR));
1515 1515
1516 /* NOTE: all we want to know here is 'hole or not'. */ 1516 /* NOTE: all we want to know here is 'hole or not'. */
1517 /* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */ 1517 /* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */
1518 1518
1519 /* 1519 /*
1520 * treat UNWRITTENs and all resident blocks as 'contiguous' 1520 * treat UNWRITTENs and all resident blocks as 'contiguous'
1521 */ 1521 */
1522 if (daddr0 != 0 && daddr1 != 0) 1522 if (daddr0 != 0 && daddr1 != 0)
1523 return true; 1523 return true;
1524 1524
1525 /* 1525 /*
1526 * both are in hole? 1526 * both are in hole?
1527 */ 1527 */
1528 if (daddr0 == 0 && daddr1 == 0) 1528 if (daddr0 == 0 && daddr1 == 0)
1529 return true; /* all holes are 'contiguous' for us. */ 1529 return true; /* all holes are 'contiguous' for us. */
1530 1530
1531 return false; 1531 return false;
1532} 1532}
1533 1533
1534/* 1534/*
1535 * lfs_gop_write functions exactly like genfs_gop_write, except that 1535 * lfs_gop_write functions exactly like genfs_gop_write, except that
1536 * (1) it requires the seglock to be held by its caller, and sp->fip 1536 * (1) it requires the seglock to be held by its caller, and sp->fip
1537 * to be properly initialized (it will return without re-initializing 1537 * to be properly initialized (it will return without re-initializing
1538 * sp->fip, and without calling lfs_writeseg). 1538 * sp->fip, and without calling lfs_writeseg).
1539 * (2) it uses the remaining space in the segment, rather than VOP_BMAP, 1539 * (2) it uses the remaining space in the segment, rather than VOP_BMAP,
1540 * to determine how large a block it can write at once (though it does 1540 * to determine how large a block it can write at once (though it does
1541 * still use VOP_BMAP to find holes in the file); 1541 * still use VOP_BMAP to find holes in the file);
1542 * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks 1542 * (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
1543 * (leaving lfs_writeseg to deal with the cluster blocks, so we might 1543 * (leaving lfs_writeseg to deal with the cluster blocks, so we might
1544 * now have clusters of clusters, ick.) 1544 * now have clusters of clusters, ick.)
1545 */ 1545 */
1546static int 1546static int
1547lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, 1547lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1548 int flags) 1548 int flags)
1549{ 1549{
1550 int i, error, run, haveeof = 0; 1550 int i, error, run, haveeof = 0;
1551 int fs_bshift; 1551 int fs_bshift;
1552 vaddr_t kva; 1552 vaddr_t kva;
1553 off_t eof, offset, startoffset = 0; 1553 off_t eof, offset, startoffset = 0;
1554 size_t bytes, iobytes, skipbytes; 1554 size_t bytes, iobytes, skipbytes;
1555 daddr_t lbn, blkno; 1555 daddr_t lbn, blkno;
1556 struct vm_page *pg; 1556 struct vm_page *pg;
1557 struct buf *mbp, *bp; 1557 struct buf *mbp, *bp;
1558 struct vnode *devvp = VTOI(vp)->i_devvp; 1558 struct vnode *devvp = VTOI(vp)->i_devvp;
1559 struct inode *ip = VTOI(vp); 1559 struct inode *ip = VTOI(vp);
1560 struct lfs *fs = ip->i_lfs; 1560 struct lfs *fs = ip->i_lfs;
1561 struct segment *sp = fs->lfs_sp; 1561 struct segment *sp = fs->lfs_sp;
1562 UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist); 1562 UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
1563 1563
1564 ASSERT_SEGLOCK(fs); 1564 ASSERT_SEGLOCK(fs);
1565 1565
1566 /* The Ifile lives in the buffer cache */ 1566 /* The Ifile lives in the buffer cache */
1567 KASSERT(vp != fs->lfs_ivnode); 1567 KASSERT(vp != fs->lfs_ivnode);
1568 1568
1569 /* 1569 /*
1570 * We don't want to fill the disk before the cleaner has a chance 1570 * We don't want to fill the disk before the cleaner has a chance
1571 * to make room for us. If we're in danger of doing that, fail 1571 * to make room for us. If we're in danger of doing that, fail
1572 * with EAGAIN. The caller will have to notice this, unlock 1572 * with EAGAIN. The caller will have to notice this, unlock
1573 * so the cleaner can run, relock and try again. 1573 * so the cleaner can run, relock and try again.
1574 * 1574 *
1575 * We must write everything, however, if our vnode is being 1575 * We must write everything, however, if our vnode is being
1576 * reclaimed. 1576 * reclaimed.
1577 */ 1577 */
1578 if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp) 1578 if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp)
1579 goto tryagain; 1579 goto tryagain;
1580 1580
1581 /* 1581 /*
1582 * Sometimes things slip past the filters in lfs_putpages, 1582 * Sometimes things slip past the filters in lfs_putpages,
1583 * and the pagedaemon tries to write pages---problem is 1583 * and the pagedaemon tries to write pages---problem is
1584 * that the pagedaemon never acquires the segment lock. 1584 * that the pagedaemon never acquires the segment lock.
1585 * 1585 *
1586 * Alternatively, pages that were clean when we called 1586 * Alternatively, pages that were clean when we called
1587 * genfs_putpages may have become dirty in the meantime. In this 1587 * genfs_putpages may have become dirty in the meantime. In this
1588 * case the segment header is not properly set up for blocks 1588 * case the segment header is not properly set up for blocks
1589 * to be added to it. 1589 * to be added to it.
1590 * 1590 *
1591 * Unbusy and unclean the pages, and put them on the ACTIVE 1591 * Unbusy and unclean the pages, and put them on the ACTIVE
1592 * queue under the hypothesis that they couldn't have got here 1592 * queue under the hypothesis that they couldn't have got here
1593 * unless they were modified *quite* recently. 1593 * unless they were modified *quite* recently.
1594 * 1594 *
1595 * XXXUBC that last statement is an oversimplification of course. 1595 * XXXUBC that last statement is an oversimplification of course.
1596 */ 1596 */
1597 if (!LFS_SEGLOCK_HELD(fs) || 1597 if (!LFS_SEGLOCK_HELD(fs) ||
1598 (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) || 1598 (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) ||
1599 (pgs[0]->offset & fs->lfs_bmask) != 0) { 1599 (pgs[0]->offset & fs->lfs_bmask) != 0) {
1600 goto tryagain; 1600 goto tryagain;
1601 } 1601 }
1602 1602
1603 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x", 1603 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1604 vp, pgs, npages, flags); 1604 vp, pgs, npages, flags);
1605 1605
1606 GOP_SIZE(vp, vp->v_size, &eof, 0); 1606 GOP_SIZE(vp, vp->v_size, &eof, 0);
1607 haveeof = 1; 1607 haveeof = 1;
1608 1608
1609 if (vp->v_type == VREG) 1609 if (vp->v_type == VREG)
1610 fs_bshift = vp->v_mount->mnt_fs_bshift; 1610 fs_bshift = vp->v_mount->mnt_fs_bshift;
1611 else 1611 else
1612 fs_bshift = DEV_BSHIFT; 1612 fs_bshift = DEV_BSHIFT;
1613 error = 0; 1613 error = 0;
1614 pg = pgs[0]; 1614 pg = pgs[0];
1615 startoffset = pg->offset; 1615 startoffset = pg->offset;
1616 KASSERT(eof >= 0); 1616 KASSERT(eof >= 0);
1617 1617
1618 if (startoffset >= eof) { 1618 if (startoffset >= eof) {
1619 goto tryagain; 1619 goto tryagain;
1620 } else 1620 } else
1621 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset); 1621 bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
1622 skipbytes = 0; 1622 skipbytes = 0;
1623 1623
1624 KASSERT(bytes != 0); 1624 KASSERT(bytes != 0);
1625 1625
1626 /* Swap PG_DELWRI for PG_PAGEOUT */ 1626 /* Swap PG_DELWRI for PG_PAGEOUT */
1627 for (i = 0; i < npages; i++) { 1627 for (i = 0; i < npages; i++) {
1628 if (pgs[i]->flags & PG_DELWRI) { 1628 if (pgs[i]->flags & PG_DELWRI) {
1629 KASSERT(!(pgs[i]->flags & PG_PAGEOUT)); 1629 KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
1630 pgs[i]->flags &= ~PG_DELWRI; 1630 pgs[i]->flags &= ~PG_DELWRI;
1631 pgs[i]->flags |= PG_PAGEOUT; 1631 pgs[i]->flags |= PG_PAGEOUT;
1632 uvm_pageout_start(1); 1632 uvm_pageout_start(1);
1633 mutex_enter(&uvm_pageqlock); 1633 mutex_enter(&uvm_pageqlock);
1634 uvm_pageunwire(pgs[i]); 1634 uvm_pageunwire(pgs[i]);
1635 mutex_exit(&uvm_pageqlock); 1635 mutex_exit(&uvm_pageqlock);
1636 } 1636 }
1637 } 1637 }
1638 1638
1639 /* 1639 /*
1640 * Check to make sure we're starting on a block boundary. 1640 * Check to make sure we're starting on a block boundary.
1641 * We'll check later to make sure we always write entire 1641 * We'll check later to make sure we always write entire
1642 * blocks (or fragments). 1642 * blocks (or fragments).
1643 */ 1643 */
1644 if (startoffset & fs->lfs_bmask) 1644 if (startoffset & fs->lfs_bmask)
1645 printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n", 1645 printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n",
1646 startoffset, fs->lfs_bmask, 1646 startoffset, fs->lfs_bmask,
1647 startoffset & fs->lfs_bmask); 1647 startoffset & fs->lfs_bmask);
1648 KASSERT((startoffset & fs->lfs_bmask) == 0); 1648 KASSERT((startoffset & fs->lfs_bmask) == 0);
1649 if (bytes & fs->lfs_ffmask) { 1649 if (bytes & fs->lfs_ffmask) {
1650 printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes); 1650 printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
1651 panic("lfs_gop_write: non-integer blocks"); 1651 panic("lfs_gop_write: non-integer blocks");
1652 } 1652 }
1653 1653
1654 /* 1654 /*
1655 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK. 1655 * We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
1656 * If we would, write what we have and try again. If we don't 1656 * If we would, write what we have and try again. If we don't
1657 * have anything to write, we'll have to sleep. 1657 * have anything to write, we'll have to sleep.
1658 */ 1658 */
1659 if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE | 1659 if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1660 (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ? 1660 (((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ?
1661 UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) { 1661 UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
1662 DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n")); 1662 DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
1663#if 0 1663#if 0
1664 " with nfinfo=%d at offset 0x%x\n", 1664 " with nfinfo=%d at offset 0x%x\n",
1665 (int)((SEGSUM *)(sp->segsum))->ss_nfinfo, 1665 (int)((SEGSUM *)(sp->segsum))->ss_nfinfo,
1666 (unsigned)fs->lfs_offset)); 1666 (unsigned)fs->lfs_offset));
1667#endif 1667#endif
1668 lfs_updatemeta(sp); 1668 lfs_updatemeta(sp);
1669 lfs_release_finfo(fs); 1669 lfs_release_finfo(fs);
1670 (void) lfs_writeseg(fs, sp); 1670 (void) lfs_writeseg(fs, sp);
1671 1671
1672 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen); 1672 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
1673 1673
1674 /* 1674 /*
1675 * Having given up all of the pager_map we were holding, 1675 * Having given up all of the pager_map we were holding,
1676 * we can now wait for aiodoned to reclaim it for us 1676 * we can now wait for aiodoned to reclaim it for us
1677 * without fear of deadlock. 1677 * without fear of deadlock.
1678 */ 1678 */
1679 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE | 1679 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
1680 UVMPAGER_MAPIN_WAITOK); 1680 UVMPAGER_MAPIN_WAITOK);
1681 } 1681 }
1682 1682
1683 mutex_enter(&vp->v_interlock); 1683 mutex_enter(&vp->v_interlock);
1684 vp->v_numoutput += 2; /* one for biodone, one for aiodone */ 1684 vp->v_numoutput += 2; /* one for biodone, one for aiodone */
1685 mutex_exit(&vp->v_interlock); 1685 mutex_exit(&vp->v_interlock);
1686 1686
1687 mbp = getiobuf(NULL, true); 1687 mbp = getiobuf(NULL, true);
1688 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x", 1688 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1689 vp, mbp, vp->v_numoutput, bytes); 1689 vp, mbp, vp->v_numoutput, bytes);
1690 mbp->b_bufsize = npages << PAGE_SHIFT; 1690 mbp->b_bufsize = npages << PAGE_SHIFT;
1691 mbp->b_data = (void *)kva; 1691 mbp->b_data = (void *)kva;
1692 mbp->b_resid = mbp->b_bcount = bytes; 1692 mbp->b_resid = mbp->b_bcount = bytes;
1693 mbp->b_cflags = BC_BUSY|BC_AGE; 1693 mbp->b_cflags = BC_BUSY|BC_AGE;
1694 mbp->b_iodone = uvm_aio_biodone; 1694 mbp->b_iodone = uvm_aio_biodone;
1695 1695
1696 bp = NULL; 1696 bp = NULL;
1697 for (offset = startoffset; 1697 for (offset = startoffset;
1698 bytes > 0; 1698 bytes > 0;
1699 offset += iobytes, bytes -= iobytes) { 1699 offset += iobytes, bytes -= iobytes) {
1700 lbn = offset >> fs_bshift; 1700 lbn = offset >> fs_bshift;
1701 error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run, 1701 error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
1702 lfs_issequential_hole); 1702 lfs_issequential_hole);
1703 if (error) { 1703 if (error) {
1704 UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d", 1704 UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d",
1705 error,0,0,0); 1705 error,0,0,0);
1706 skipbytes += bytes; 1706 skipbytes += bytes;
1707 bytes = 0; 1707 bytes = 0;
1708 break; 1708 break;
1709 } 1709 }
1710 1710
1711 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset, 1711 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1712 bytes); 1712 bytes);
1713 if (blkno == (daddr_t)-1) { 1713 if (blkno == (daddr_t)-1) {
1714 skipbytes += iobytes; 1714 skipbytes += iobytes;
1715 continue; 1715 continue;
1716 } 1716 }
1717 1717
1718 /* 1718 /*
1719 * Discover how much we can really pack into this buffer. 1719 * Discover how much we can really pack into this buffer.
1720 */ 1720 */
1721 /* If no room in the current segment, finish it up */ 1721 /* If no room in the current segment, finish it up */
1722 if (sp->sum_bytes_left < sizeof(int32_t) || 1722 if (sp->sum_bytes_left < sizeof(int32_t) ||
1723 sp->seg_bytes_left < (1 << fs->lfs_bshift)) { 1723 sp->seg_bytes_left < (1 << fs->lfs_bshift)) {
1724 int vers; 1724 int vers;
1725 1725
1726 lfs_updatemeta(sp); 1726 lfs_updatemeta(sp);
1727 vers = sp->fip->fi_version; 1727 vers = sp->fip->fi_version;
1728 lfs_release_finfo(fs); 1728 lfs_release_finfo(fs);
1729 (void) lfs_writeseg(fs, sp); 1729 (void) lfs_writeseg(fs, sp);
1730 1730
1731 lfs_acquire_finfo(fs, ip->i_number, vers); 1731 lfs_acquire_finfo(fs, ip->i_number, vers);
1732 } 1732 }
1733 /* Check both for space in segment and space in segsum */ 1733 /* Check both for space in segment and space in segsum */
1734 iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift) 1734 iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
1735 << fs_bshift); 1735 << fs_bshift);
1736 iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t)) 1736 iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
1737 << fs_bshift); 1737 << fs_bshift);
1738 KASSERT(iobytes > 0); 1738 KASSERT(iobytes > 0);
1739 1739
1740 /* if it's really one i/o, don't make a second buf */ 1740 /* if it's really one i/o, don't make a second buf */
1741 if (offset == startoffset && iobytes == bytes) { 1741 if (offset == startoffset && iobytes == bytes) {
1742 bp = mbp; 1742 bp = mbp;
1743 /* correct overcount if there is no second buffer */ 1743 /* correct overcount if there is no second buffer */
1744 mutex_enter(&vp->v_interlock); 1744 mutex_enter(&vp->v_interlock);
1745 --vp->v_numoutput; 1745 --vp->v_numoutput;
1746 mutex_exit(&vp->v_interlock); 1746 mutex_exit(&vp->v_interlock);
1747 } else { 1747 } else {
1748 bp = getiobuf(NULL, true); 1748 bp = getiobuf(NULL, true);
1749 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d", 1749 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1750 vp, bp, vp->v_numoutput, 0); 1750 vp, bp, vp->v_numoutput, 0);
1751 nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes); 1751 nestiobuf_setup(mbp, bp, offset - pg->offset, iobytes);
1752 /* 1752 /*
1753 * LFS doesn't like async I/O here, dies with 1753 * LFS doesn't like async I/O here, dies with
1754 * and assert in lfs_bwrite(). Is that assert 1754 * and assert in lfs_bwrite(). Is that assert
1755 * valid? I retained non-async behaviour when 1755 * valid? I retained non-async behaviour when
1756 * converted this to use nestiobuf --pooka 1756 * converted this to use nestiobuf --pooka
1757 */ 1757 */
1758 bp->b_flags &= ~B_ASYNC; 1758 bp->b_flags &= ~B_ASYNC;
 1759 /*
 1760 * LFS uses VOP_BWRITE instead of VOP_STRATEGY.
 1761 * Therefore biodone doesn't get called for
 1762 * the buffer. Therefore decrement the output
 1763 * counter that nestiobuf_setup() incremented.
 1764 */
 1765 mutex_enter(&vp->v_interlock);
 1766 vp->v_numoutput--;
 1767 mutex_exit(&vp->v_interlock);
1759 } 1768 }
1760 1769
1761 /* XXX This is silly ... is this necessary? */ 1770 /* XXX This is silly ... is this necessary? */
1762 mutex_enter(&bufcache_lock); 1771 mutex_enter(&bufcache_lock);
1763 mutex_enter(&vp->v_interlock); 1772 mutex_enter(&vp->v_interlock);
1764 bgetvp(vp, bp); 1773 bgetvp(vp, bp);
1765 mutex_exit(&vp->v_interlock); 1774 mutex_exit(&vp->v_interlock);
1766 mutex_exit(&bufcache_lock); 1775 mutex_exit(&bufcache_lock);
1767 1776
1768 bp->b_lblkno = lblkno(fs, offset); 1777 bp->b_lblkno = lblkno(fs, offset);
1769 bp->b_private = mbp; 1778 bp->b_private = mbp;
1770 if (devvp->v_type == VBLK) { 1779 if (devvp->v_type == VBLK) {
1771 bp->b_dev = devvp->v_rdev; 1780 bp->b_dev = devvp->v_rdev;
1772 } 1781 }
1773 VOP_BWRITE(bp); 1782 VOP_BWRITE(bp);
1774 while (lfs_gatherblock(sp, bp, NULL)) 1783 while (lfs_gatherblock(sp, bp, NULL))
1775 continue; 1784 continue;
1776 } 1785 }
1777 1786
1778 nestiobuf_done(mbp, skipbytes, error); 1787 nestiobuf_done(mbp, skipbytes, error);
1779 if (skipbytes) { 1788 if (skipbytes) {
1780 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0); 1789 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1781 } 1790 }
1782 UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0); 1791 UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
1783 return (0); 1792 return (0);
1784 1793
1785 tryagain: 1794 tryagain:
1786 /* 1795 /*
1787 * We can't write the pages, for whatever reason. 1796 * We can't write the pages, for whatever reason.
1788 * Clean up after ourselves, and make the caller try again. 1797 * Clean up after ourselves, and make the caller try again.
1789 */ 1798 */
1790 mutex_enter(&vp->v_interlock); 1799 mutex_enter(&vp->v_interlock);
1791 1800
1792 /* Tell why we're here, if we know */ 1801 /* Tell why we're here, if we know */
1793 if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) { 1802 if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
1794 DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n")); 1803 DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n"));
1795 } else if ((pgs[0]->offset & fs->lfs_bmask) != 0) { 1804 } else if ((pgs[0]->offset & fs->lfs_bmask) != 0) {
1796 DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n")); 1805 DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n"));
1797 } else if (haveeof && startoffset >= eof) { 1806 } else if (haveeof && startoffset >= eof) {
1798 DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64 1807 DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
1799 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number, 1808 " eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
1800 pgs[0]->offset, eof, npages)); 1809 pgs[0]->offset, eof, npages));
1801 } else if (LFS_STARVED_FOR_SEGS(fs)) { 1810 } else if (LFS_STARVED_FOR_SEGS(fs)) {
1802 DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n")); 1811 DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n"));
1803 } else { 1812 } else {
1804 DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n")); 1813 DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n"));
1805 } 1814 }
1806 1815
1807 mutex_enter(&uvm_pageqlock); 1816 mutex_enter(&uvm_pageqlock);
1808 for (i = 0; i < npages; i++) { 1817 for (i = 0; i < npages; i++) {
1809 pg = pgs[i]; 1818 pg = pgs[i];
1810 1819
1811 if (pg->flags & PG_PAGEOUT) 1820 if (pg->flags & PG_PAGEOUT)
1812 uvm_pageout_done(1); 1821 uvm_pageout_done(1);
1813 if (pg->flags & PG_DELWRI) { 1822 if (pg->flags & PG_DELWRI) {
1814 uvm_pageunwire(pg); 1823 uvm_pageunwire(pg);
1815 } 1824 }
1816 uvm_pageactivate(pg); 1825 uvm_pageactivate(pg);
1817 pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED); 1826 pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
1818 DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg, 1827 DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
1819 vp, pg->offset)); 1828 vp, pg->offset));
1820 DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags)); 1829 DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
1821 DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags)); 1830 DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
1822 DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon)); 1831 DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
1823 DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject)); 1832 DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
1824 DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i, 1833 DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
1825 pg->wire_count)); 1834 pg->wire_count));
1826 DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i, 1835 DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
1827 pg->loan_count)); 1836 pg->loan_count));
1828 } 1837 }
1829 /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */ 1838 /* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
1830 uvm_page_unbusy(pgs, npages); 1839 uvm_page_unbusy(pgs, npages);
1831 mutex_exit(&uvm_pageqlock); 1840 mutex_exit(&uvm_pageqlock);
1832 mutex_exit(&vp->v_interlock); 1841 mutex_exit(&vp->v_interlock);
1833 return EAGAIN; 1842 return EAGAIN;
1834} 1843}
1835 1844
1836/* 1845/*
1837 * finish vnode/inode initialization. 1846 * finish vnode/inode initialization.
1838 * used by lfs_vget and lfs_fastvget. 1847 * used by lfs_vget and lfs_fastvget.
1839 */ 1848 */
1840void 1849void
1841lfs_vinit(struct mount *mp, struct vnode **vpp) 1850lfs_vinit(struct mount *mp, struct vnode **vpp)
1842{ 1851{
1843 struct vnode *vp = *vpp; 1852 struct vnode *vp = *vpp;
1844 struct inode *ip = VTOI(vp); 1853 struct inode *ip = VTOI(vp);
1845 struct ufsmount *ump = VFSTOUFS(mp); 1854 struct ufsmount *ump = VFSTOUFS(mp);
1846 struct lfs *fs = ump->um_lfs; 1855 struct lfs *fs = ump->um_lfs;
1847 int i; 1856 int i;
1848 1857
1849 ip->i_mode = ip->i_ffs1_mode; 1858 ip->i_mode = ip->i_ffs1_mode;
1850 ip->i_nlink = ip->i_ffs1_nlink; 1859 ip->i_nlink = ip->i_ffs1_nlink;
1851 ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size; 1860 ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size;
1852 ip->i_flags = ip->i_ffs1_flags; 1861 ip->i_flags = ip->i_ffs1_flags;
1853 ip->i_gen = ip->i_ffs1_gen; 1862 ip->i_gen = ip->i_ffs1_gen;
1854 ip->i_uid = ip->i_ffs1_uid; 1863 ip->i_uid = ip->i_ffs1_uid;
1855 ip->i_gid = ip->i_ffs1_gid; 1864 ip->i_gid = ip->i_ffs1_gid;
1856 1865
1857 ip->i_lfs_effnblks = ip->i_ffs1_blocks; 1866 ip->i_lfs_effnblks = ip->i_ffs1_blocks;
1858 ip->i_lfs_odnlink = ip->i_ffs1_nlink; 1867 ip->i_lfs_odnlink = ip->i_ffs1_nlink;
1859 1868
1860 /* 1869 /*
1861 * Initialize the vnode from the inode, check for aliases. In all 1870 * Initialize the vnode from the inode, check for aliases. In all
1862 * cases re-init ip, the underlying vnode/inode may have changed. 1871 * cases re-init ip, the underlying vnode/inode may have changed.
1863 */ 1872 */
1864 ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp); 1873 ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
1865 ip = VTOI(vp); 1874 ip = VTOI(vp);
1866 1875
1867 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize)); 1876 memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
1868 if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) { 1877 if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) {
1869#ifdef DEBUG 1878#ifdef DEBUG
1870 for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift; 1879 for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
1871 i < NDADDR; i++) { 1880 i < NDADDR; i++) {
1872 if ((vp->v_type == VBLK || vp->v_type == VCHR) && 1881 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
1873 i == 0) 1882 i == 0)
1874 continue; 1883 continue;
1875 if (ip->i_ffs1_db[i] != 0) { 1884 if (ip->i_ffs1_db[i] != 0) {
1876inconsistent: 1885inconsistent:
1877 lfs_dump_dinode(ip->i_din.ffs1_din); 1886 lfs_dump_dinode(ip->i_din.ffs1_din);
1878 panic("inconsistent inode"); 1887 panic("inconsistent inode");
1879 } 1888 }
1880 } 1889 }
1881 for ( ; i < NDADDR + NIADDR; i++) { 1890 for ( ; i < NDADDR + NIADDR; i++) {
1882 if (ip->i_ffs1_ib[i - NDADDR] != 0) { 1891 if (ip->i_ffs1_ib[i - NDADDR] != 0) {
1883 goto inconsistent; 1892 goto inconsistent;
1884 } 1893 }
1885 } 1894 }
1886#endif /* DEBUG */ 1895#endif /* DEBUG */
1887 for (i = 0; i < NDADDR; i++) 1896 for (i = 0; i < NDADDR; i++)
1888 if (ip->i_ffs1_db[i] != 0) 1897 if (ip->i_ffs1_db[i] != 0)
1889 ip->i_lfs_fragsize[i] = blksize(fs, ip, i); 1898 ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
1890 } 1899 }
1891 1900
1892#ifdef DIAGNOSTIC 1901#ifdef DIAGNOSTIC
1893 if (vp->v_type == VNON) { 1902 if (vp->v_type == VNON) {
1894# ifdef DEBUG 1903# ifdef DEBUG
1895 lfs_dump_dinode(ip->i_din.ffs1_din); 1904 lfs_dump_dinode(ip->i_din.ffs1_din);
1896# endif 1905# endif
1897 panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n", 1906 panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
1898 (unsigned long long)ip->i_number, 1907 (unsigned long long)ip->i_number,
1899 (ip->i_mode & IFMT) >> 12); 1908 (ip->i_mode & IFMT) >> 12);
1900 } 1909 }
1901#endif /* DIAGNOSTIC */ 1910#endif /* DIAGNOSTIC */
1902 1911
1903 /* 1912 /*
1904 * Finish inode initialization now that aliasing has been resolved. 1913 * Finish inode initialization now that aliasing has been resolved.
1905 */ 1914 */
1906 1915
1907 ip->i_devvp = ump->um_devvp; 1916 ip->i_devvp = ump->um_devvp;
1908 VREF(ip->i_devvp); 1917 VREF(ip->i_devvp);
1909 genfs_node_init(vp, &lfs_genfsops); 1918 genfs_node_init(vp, &lfs_genfsops);
1910 uvm_vnp_setsize(vp, ip->i_size); 1919 uvm_vnp_setsize(vp, ip->i_size);
1911 1920
1912 /* Initialize hiblk from file size */ 1921 /* Initialize hiblk from file size */
1913 ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1; 1922 ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1;
1914 1923
1915 *vpp = vp; 1924 *vpp = vp;
1916} 1925}
1917 1926
1918/* 1927/*
1919 * Resize the filesystem to contain the specified number of segments. 1928 * Resize the filesystem to contain the specified number of segments.
1920 */ 1929 */
1921int 1930int
1922lfs_resize_fs(struct lfs *fs, int newnsegs) 1931lfs_resize_fs(struct lfs *fs, int newnsegs)
1923{ 1932{
1924 SEGUSE *sup; 1933 SEGUSE *sup;
1925 struct buf *bp, *obp; 1934 struct buf *bp, *obp;
1926 daddr_t olast, nlast, ilast, noff, start, end; 1935 daddr_t olast, nlast, ilast, noff, start, end;
1927 struct vnode *ivp; 1936 struct vnode *ivp;
1928 struct inode *ip; 1937 struct inode *ip;
1929 int error, badnews, inc, oldnsegs; 1938 int error, badnews, inc, oldnsegs;
1930 int sbbytes, csbbytes, gain, cgain; 1939 int sbbytes, csbbytes, gain, cgain;
1931 int i; 1940 int i;
1932 1941
1933 /* Only support v2 and up */ 1942 /* Only support v2 and up */
1934 if (fs->lfs_version < 2) 1943 if (fs->lfs_version < 2)
1935 return EOPNOTSUPP; 1944 return EOPNOTSUPP;
1936 1945
1937 /* If we're doing nothing, do it fast */ 1946 /* If we're doing nothing, do it fast */
1938 oldnsegs = fs->lfs_nseg; 1947 oldnsegs = fs->lfs_nseg;
1939 if (newnsegs == oldnsegs) 1948 if (newnsegs == oldnsegs)
1940 return 0; 1949 return 0;
1941 1950
1942 /* We always have to have two superblocks */ 1951 /* We always have to have two superblocks */
1943 if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1])) 1952 if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1]))
1944 return EFBIG; 1953 return EFBIG;
1945 1954
1946 ivp = fs->lfs_ivnode; 1955 ivp = fs->lfs_ivnode;
1947 ip = VTOI(ivp); 1956 ip = VTOI(ivp);
1948 error = 0; 1957 error = 0;
1949 1958
1950 /* Take the segment lock so no one else calls lfs_newseg() */ 1959 /* Take the segment lock so no one else calls lfs_newseg() */
1951 lfs_seglock(fs, SEGM_PROT); 1960 lfs_seglock(fs, SEGM_PROT);
1952 1961
1953 /* 1962 /*
1954 * Make sure the segments we're going to be losing, if any, 1963 * Make sure the segments we're going to be losing, if any,
1955 * are in fact empty. We hold the seglock, so their status 1964 * are in fact empty. We hold the seglock, so their status
1956 * cannot change underneath us. Count the superblocks we lose, 1965 * cannot change underneath us. Count the superblocks we lose,
1957 * while we're at it. 1966 * while we're at it.
1958 */ 1967 */
1959 sbbytes = csbbytes = 0; 1968 sbbytes = csbbytes = 0;
1960 cgain = 0; 1969 cgain = 0;
1961 for (i = newnsegs; i < oldnsegs; i++) { 1970 for (i = newnsegs; i < oldnsegs; i++) {
1962 LFS_SEGENTRY(sup, fs, i, bp); 1971 LFS_SEGENTRY(sup, fs, i, bp);
1963 badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL); 1972 badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
1964 if (sup->su_flags & SEGUSE_SUPERBLOCK) 1973 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1965 sbbytes += LFS_SBPAD; 1974 sbbytes += LFS_SBPAD;
1966 if (!(sup->su_flags & SEGUSE_DIRTY)) { 1975 if (!(sup->su_flags & SEGUSE_DIRTY)) {
1967 ++cgain; 1976 ++cgain;
1968 if (sup->su_flags & SEGUSE_SUPERBLOCK) 1977 if (sup->su_flags & SEGUSE_SUPERBLOCK)
1969 csbbytes += LFS_SBPAD; 1978 csbbytes += LFS_SBPAD;
1970 } 1979 }
1971 brelse(bp, 0); 1980 brelse(bp, 0);
1972 if (badnews) { 1981 if (badnews) {
1973 error = EBUSY; 1982 error = EBUSY;
1974 goto out; 1983 goto out;
1975 } 1984 }
1976 } 1985 }
1977 1986
1978 /* Note old and new segment table endpoints, and old ifile size */ 1987 /* Note old and new segment table endpoints, and old ifile size */
1979 olast = fs->lfs_cleansz + fs->lfs_segtabsz; 1988 olast = fs->lfs_cleansz + fs->lfs_segtabsz;
1980 nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz; 1989 nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz;
1981 ilast = ivp->v_size >> fs->lfs_bshift; 1990 ilast = ivp->v_size >> fs->lfs_bshift;
1982 noff = nlast - olast; 1991 noff = nlast - olast;
1983 1992
1984 /* 1993 /*
1985 * Make sure no one can use the Ifile while we change it around. 1994 * Make sure no one can use the Ifile while we change it around.
1986 * Even after taking the iflock we need to make sure no one still 1995 * Even after taking the iflock we need to make sure no one still
1987 * is holding Ifile buffers, so we get each one, to drain them. 1996 * is holding Ifile buffers, so we get each one, to drain them.
1988 * (XXX this could be done better.) 1997 * (XXX this could be done better.)
1989 */ 1998 */
1990 rw_enter(&fs->lfs_iflock, RW_WRITER); 1999 rw_enter(&fs->lfs_iflock, RW_WRITER);
1991 vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY); 2000 vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY);
1992 for (i = 0; i < ilast; i++) { 2001 for (i = 0; i < ilast; i++) {
1993 bread(ivp, i, fs->lfs_bsize, NOCRED, 0, &bp); 2002 bread(ivp, i, fs->lfs_bsize, NOCRED, 0, &bp);
1994 brelse(bp, 0); 2003 brelse(bp, 0);
1995 } 2004 }
1996 2005
1997 /* Allocate new Ifile blocks */ 2006 /* Allocate new Ifile blocks */
1998 for (i = ilast; i < ilast + noff; i++) { 2007 for (i = ilast; i < ilast + noff; i++) {
1999 if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0, 2008 if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0,
2000 &bp) != 0) 2009 &bp) != 0)
2001 panic("balloc extending ifile"); 2010 panic("balloc extending ifile");
2002 memset(bp->b_data, 0, fs->lfs_bsize); 2011 memset(bp->b_data, 0, fs->lfs_bsize);
2003 VOP_BWRITE(bp); 2012 VOP_BWRITE(bp);
2004 } 2013 }
2005 2014
2006 /* Register new ifile size */ 2015 /* Register new ifile size */
2007 ip->i_size += noff * fs->lfs_bsize;  2016 ip->i_size += noff * fs->lfs_bsize;
2008 ip->i_ffs1_size = ip->i_size; 2017 ip->i_ffs1_size = ip->i_size;
2009 uvm_vnp_setsize(ivp, ip->i_size); 2018 uvm_vnp_setsize(ivp, ip->i_size);
2010 2019
2011 /* Copy the inode table to its new position */ 2020 /* Copy the inode table to its new position */
2012 if (noff != 0) { 2021 if (noff != 0) {
2013 if (noff < 0) { 2022 if (noff < 0) {
2014 start = nlast; 2023 start = nlast;
2015 end = ilast + noff; 2024 end = ilast + noff;
2016 inc = 1; 2025 inc = 1;
2017 } else { 2026 } else {
2018 start = ilast + noff - 1; 2027 start = ilast + noff - 1;
2019 end = nlast - 1; 2028 end = nlast - 1;
2020 inc = -1; 2029 inc = -1;
2021 } 2030 }
2022 for (i = start; i != end; i += inc) { 2031 for (i = start; i != end; i += inc) {
2023 if (bread(ivp, i, fs->lfs_bsize, NOCRED, 2032 if (bread(ivp, i, fs->lfs_bsize, NOCRED,
2024 B_MODIFY, &bp) != 0) 2033 B_MODIFY, &bp) != 0)
2025 panic("resize: bread dst blk failed"); 2034 panic("resize: bread dst blk failed");
2026 if (bread(ivp, i - noff, fs->lfs_bsize, 2035 if (bread(ivp, i - noff, fs->lfs_bsize,
2027 NOCRED, 0, &obp)) 2036 NOCRED, 0, &obp))
2028 panic("resize: bread src blk failed"); 2037 panic("resize: bread src blk failed");
2029 memcpy(bp->b_data, obp->b_data, fs->lfs_bsize); 2038 memcpy(bp->b_data, obp->b_data, fs->lfs_bsize);
2030 VOP_BWRITE(bp); 2039 VOP_BWRITE(bp);
2031 brelse(obp, 0); 2040 brelse(obp, 0);
2032 } 2041 }
2033 } 2042 }
2034 2043
2035 /* If we are expanding, write the new empty SEGUSE entries */ 2044 /* If we are expanding, write the new empty SEGUSE entries */
2036 if (newnsegs > oldnsegs) { 2045 if (newnsegs > oldnsegs) {
2037 for (i = oldnsegs; i < newnsegs; i++) { 2046 for (i = oldnsegs; i < newnsegs; i++) {
2038 if ((error = bread(ivp, i / fs->lfs_sepb + 2047 if ((error = bread(ivp, i / fs->lfs_sepb +
2039 fs->lfs_cleansz, fs->lfs_bsize, 2048 fs->lfs_cleansz, fs->lfs_bsize,
2040 NOCRED, B_MODIFY, &bp)) != 0) 2049 NOCRED, B_MODIFY, &bp)) != 0)
2041 panic("lfs: ifile read: %d", error); 2050 panic("lfs: ifile read: %d", error);
2042 while ((i + 1) % fs->lfs_sepb && i < newnsegs) { 2051 while ((i + 1) % fs->lfs_sepb && i < newnsegs) {
2043 sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb]; 2052 sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb];
2044 memset(sup, 0, sizeof(*sup)); 2053 memset(sup, 0, sizeof(*sup));
2045 i++; 2054 i++;
2046 } 2055 }
2047 VOP_BWRITE(bp); 2056 VOP_BWRITE(bp);
2048 } 2057 }
2049 } 2058 }
2050 2059
2051 /* Zero out unused superblock offsets */ 2060 /* Zero out unused superblock offsets */
2052 for (i = 2; i < LFS_MAXNUMSB; i++) 2061 for (i = 2; i < LFS_MAXNUMSB; i++)
2053 if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs) 2062 if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs)
2054 fs->lfs_sboffs[i] = 0x0; 2063 fs->lfs_sboffs[i] = 0x0;
2055 2064
2056 /* 2065 /*
2057 * Correct superblock entries that depend on fs size. 2066 * Correct superblock entries that depend on fs size.
2058 * The computations of these are as follows: 2067 * The computations of these are as follows:
2059 * 2068 *
2060 * size = segtod(fs, nseg) 2069 * size = segtod(fs, nseg)
2061 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD) 2070 * dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD)
2062 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used 2071 * bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used
2063 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD) 2072 * avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD)
2064 * + (segtod(fs, 1) - (offset - curseg)) 2073 * + (segtod(fs, 1) - (offset - curseg))
2065 * - segtod(fs, minfreeseg - (minfreeseg / 2)) 2074 * - segtod(fs, minfreeseg - (minfreeseg / 2))
2066 * 2075 *
2067 * XXX - we should probably adjust minfreeseg as well. 2076 * XXX - we should probably adjust minfreeseg as well.
2068 */ 2077 */
2069 gain = (newnsegs - oldnsegs); 2078 gain = (newnsegs - oldnsegs);
2070 fs->lfs_nseg = newnsegs; 2079 fs->lfs_nseg = newnsegs;
2071 fs->lfs_segtabsz = nlast - fs->lfs_cleansz; 2080 fs->lfs_segtabsz = nlast - fs->lfs_cleansz;
2072 fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize); 2081 fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize);
2073 fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes); 2082 fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes);
2074 fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes) 2083 fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes)
2075 - gain * btofsb(fs, fs->lfs_bsize / 2); 2084 - gain * btofsb(fs, fs->lfs_bsize / 2);
2076 if (gain > 0) { 2085 if (gain > 0) {
2077 fs->lfs_nclean += gain; 2086 fs->lfs_nclean += gain;
2078 fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize); 2087 fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize);
2079 } else { 2088 } else {
2080 fs->lfs_nclean -= cgain; 2089 fs->lfs_nclean -= cgain;
2081 fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) - 2090 fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) -
2082 btofsb(fs, csbbytes); 2091 btofsb(fs, csbbytes);
2083 } 2092 }
2084 2093
2085 /* Resize segment flag cache */ 2094 /* Resize segment flag cache */
2086 fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0], 2095 fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0],
2087 fs->lfs_nseg * sizeof(u_int32_t), 2096 fs->lfs_nseg * sizeof(u_int32_t),
2088 M_SEGMENT, M_WAITOK); 2097 M_SEGMENT, M_WAITOK);
2089 fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1], 2098 fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1],
2090 fs->lfs_nseg * sizeof(u_int32_t), 2099 fs->lfs_nseg * sizeof(u_int32_t),
2091 M_SEGMENT, M_WAITOK); 2100 M_SEGMENT, M_WAITOK);
2092 for (i = oldnsegs; i < newnsegs; i++) 2101 for (i = oldnsegs; i < newnsegs; i++)
2093 fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0; 2102 fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
2094 2103
2095 /* Truncate Ifile if necessary */ 2104 /* Truncate Ifile if necessary */
2096 if (noff < 0) 2105 if (noff < 0)
2097 lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0, 2106 lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0,
2098 NOCRED); 2107 NOCRED);
2099 2108
2100 /* Update cleaner info so the cleaner can die */ 2109 /* Update cleaner info so the cleaner can die */
2101 bread(ivp, 0, fs->lfs_bsize, NOCRED, B_MODIFY, &bp); 2110 bread(ivp, 0, fs->lfs_bsize, NOCRED, B_MODIFY, &bp);
2102 ((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean; 2111 ((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean;
2103 ((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean; 2112 ((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean;
2104 VOP_BWRITE(bp); 2113 VOP_BWRITE(bp);
2105 2114
2106 /* Let Ifile accesses proceed */ 2115 /* Let Ifile accesses proceed */
2107 VOP_UNLOCK(ivp, 0); 2116 VOP_UNLOCK(ivp, 0);
2108 rw_exit(&fs->lfs_iflock); 2117 rw_exit(&fs->lfs_iflock);
2109 2118
2110 out: 2119 out:
2111 lfs_segunlock(fs); 2120 lfs_segunlock(fs);
2112 return error; 2121 return error;
2113} 2122}