Wed Aug 5 19:53:42 2009 UTC ()
Fix ktrace of data from iovec based system calls.
Fixes PR/41819


(dsl)
diff -r1.148 -r1.149 src/sys/kern/kern_ktrace.c

cvs diff -r1.148 -r1.149 src/sys/kern/kern_ktrace.c (switch to unified diff)

--- src/sys/kern/kern_ktrace.c 2009/01/11 02:45:52 1.148
+++ src/sys/kern/kern_ktrace.c 2009/08/05 19:53:42 1.149
@@ -1,1583 +1,1584 @@ @@ -1,1583 +1,1584 @@
1/* $NetBSD: kern_ktrace.c,v 1.148 2009/01/11 02:45:52 christos Exp $ */ 1/* $NetBSD: kern_ktrace.c,v 1.149 2009/08/05 19:53:42 dsl Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * This code is derived from software contributed to The NetBSD Foundation 7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran. 8 * by Andrew Doran.
9 * 9 *
10 * Redistribution and use in source and binary forms, with or without 10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions 11 * modification, are permitted provided that the following conditions
12 * are met: 12 * are met:
13 * 1. Redistributions of source code must retain the above copyright 13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer. 14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright 15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the 16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution. 17 * documentation and/or other materials provided with the distribution.
18 * 18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE. 29 * POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31 31
32/* 32/*
33 * Copyright (c) 1989, 1993 33 * Copyright (c) 1989, 1993
34 * The Regents of the University of California. All rights reserved. 34 * The Regents of the University of California. All rights reserved.
35 * 35 *
36 * Redistribution and use in source and binary forms, with or without 36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions 37 * modification, are permitted provided that the following conditions
38 * are met: 38 * are met:
39 * 1. Redistributions of source code must retain the above copyright 39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer. 40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright 41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the 42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution. 43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors 44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software 45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission. 46 * without specific prior written permission.
47 * 47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE. 58 * SUCH DAMAGE.
59 * 59 *
60 * @(#)kern_ktrace.c 8.5 (Berkeley) 5/14/95 60 * @(#)kern_ktrace.c 8.5 (Berkeley) 5/14/95
61 */ 61 */
62 62
63#include <sys/cdefs.h> 63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: kern_ktrace.c,v 1.148 2009/01/11 02:45:52 christos Exp $"); 64__KERNEL_RCSID(0, "$NetBSD: kern_ktrace.c,v 1.149 2009/08/05 19:53:42 dsl Exp $");
65 65
66#include <sys/param.h> 66#include <sys/param.h>
67#include <sys/systm.h> 67#include <sys/systm.h>
68#include <sys/proc.h> 68#include <sys/proc.h>
69#include <sys/file.h> 69#include <sys/file.h>
70#include <sys/namei.h> 70#include <sys/namei.h>
71#include <sys/vnode.h> 71#include <sys/vnode.h>
72#include <sys/kernel.h> 72#include <sys/kernel.h>
73#include <sys/kthread.h> 73#include <sys/kthread.h>
74#include <sys/ktrace.h> 74#include <sys/ktrace.h>
75#include <sys/kmem.h> 75#include <sys/kmem.h>
76#include <sys/syslog.h> 76#include <sys/syslog.h>
77#include <sys/filedesc.h> 77#include <sys/filedesc.h>
78#include <sys/ioctl.h> 78#include <sys/ioctl.h>
79#include <sys/callout.h> 79#include <sys/callout.h>
80#include <sys/kauth.h> 80#include <sys/kauth.h>
81 81
82#include <sys/mount.h> 82#include <sys/mount.h>
83#include <sys/sa.h> 83#include <sys/sa.h>
84#include <sys/syscallargs.h> 84#include <sys/syscallargs.h>
85 85
86/* 86/*
87 * TODO: 87 * TODO:
88 * - need better error reporting? 88 * - need better error reporting?
89 * - userland utility to sort ktrace.out by timestamp. 89 * - userland utility to sort ktrace.out by timestamp.
90 * - keep minimum information in ktrace_entry when rest of alloc failed. 90 * - keep minimum information in ktrace_entry when rest of alloc failed.
91 * - per trace control of configurable parameters. 91 * - per trace control of configurable parameters.
92 */ 92 */
93 93
94struct ktrace_entry { 94struct ktrace_entry {
95 TAILQ_ENTRY(ktrace_entry) kte_list; 95 TAILQ_ENTRY(ktrace_entry) kte_list;
96 struct ktr_header kte_kth; 96 struct ktr_header kte_kth;
97 void *kte_buf; 97 void *kte_buf;
98 size_t kte_bufsz;  98 size_t kte_bufsz;
99#define KTE_SPACE 32 99#define KTE_SPACE 32
100 uint8_t kte_space[KTE_SPACE]; 100 uint8_t kte_space[KTE_SPACE];
101}; 101};
102 102
103struct ktr_desc { 103struct ktr_desc {
104 TAILQ_ENTRY(ktr_desc) ktd_list; 104 TAILQ_ENTRY(ktr_desc) ktd_list;
105 int ktd_flags; 105 int ktd_flags;
106#define KTDF_WAIT 0x0001 106#define KTDF_WAIT 0x0001
107#define KTDF_DONE 0x0002 107#define KTDF_DONE 0x0002
108#define KTDF_BLOCKING 0x0004 108#define KTDF_BLOCKING 0x0004
109#define KTDF_INTERACTIVE 0x0008 109#define KTDF_INTERACTIVE 0x0008
110 int ktd_error; 110 int ktd_error;
111#define KTDE_ENOMEM 0x0001 111#define KTDE_ENOMEM 0x0001
112#define KTDE_ENOSPC 0x0002 112#define KTDE_ENOSPC 0x0002
113 int ktd_errcnt; 113 int ktd_errcnt;
114 int ktd_ref; /* # of reference */ 114 int ktd_ref; /* # of reference */
115 int ktd_qcount; /* # of entry in the queue */ 115 int ktd_qcount; /* # of entry in the queue */
116 116
117 /* 117 /*
118 * Params to control behaviour. 118 * Params to control behaviour.
119 */ 119 */
120 int ktd_delayqcnt; /* # of entry allowed to delay */ 120 int ktd_delayqcnt; /* # of entry allowed to delay */
121 int ktd_wakedelay; /* delay of wakeup in *tick* */ 121 int ktd_wakedelay; /* delay of wakeup in *tick* */
122 int ktd_intrwakdl; /* ditto, but when interactive */ 122 int ktd_intrwakdl; /* ditto, but when interactive */
123 123
124 file_t *ktd_fp; /* trace output file */ 124 file_t *ktd_fp; /* trace output file */
125 lwp_t *ktd_lwp; /* our kernel thread */ 125 lwp_t *ktd_lwp; /* our kernel thread */
126 TAILQ_HEAD(, ktrace_entry) ktd_queue; 126 TAILQ_HEAD(, ktrace_entry) ktd_queue;
127 callout_t ktd_wakch; /* delayed wakeup */ 127 callout_t ktd_wakch; /* delayed wakeup */
128 kcondvar_t ktd_sync_cv; 128 kcondvar_t ktd_sync_cv;
129 kcondvar_t ktd_cv; 129 kcondvar_t ktd_cv;
130}; 130};
131 131
132static int ktealloc(struct ktrace_entry **, void **, lwp_t *, int, 132static int ktealloc(struct ktrace_entry **, void **, lwp_t *, int,
133 size_t); 133 size_t);
134static void ktrwrite(struct ktr_desc *, struct ktrace_entry *); 134static void ktrwrite(struct ktr_desc *, struct ktrace_entry *);
135static int ktrace_common(lwp_t *, int, int, int, file_t *); 135static int ktrace_common(lwp_t *, int, int, int, file_t *);
136static int ktrops(lwp_t *, struct proc *, int, int, 136static int ktrops(lwp_t *, struct proc *, int, int,
137 struct ktr_desc *); 137 struct ktr_desc *);
138static int ktrsetchildren(lwp_t *, struct proc *, int, int, 138static int ktrsetchildren(lwp_t *, struct proc *, int, int,
139 struct ktr_desc *); 139 struct ktr_desc *);
140static int ktrcanset(lwp_t *, struct proc *); 140static int ktrcanset(lwp_t *, struct proc *);
141static int ktrsamefile(file_t *, file_t *); 141static int ktrsamefile(file_t *, file_t *);
142static void ktr_kmem(lwp_t *, int, const void *, size_t); 142static void ktr_kmem(lwp_t *, int, const void *, size_t);
143static void ktr_io(lwp_t *, int, enum uio_rw, struct iovec *, size_t); 143static void ktr_io(lwp_t *, int, enum uio_rw, struct iovec *, size_t);
144 144
145static struct ktr_desc * 145static struct ktr_desc *
146 ktd_lookup(file_t *); 146 ktd_lookup(file_t *);
147static void ktdrel(struct ktr_desc *); 147static void ktdrel(struct ktr_desc *);
148static void ktdref(struct ktr_desc *); 148static void ktdref(struct ktr_desc *);
149static void ktraddentry(lwp_t *, struct ktrace_entry *, int); 149static void ktraddentry(lwp_t *, struct ktrace_entry *, int);
150/* Flags for ktraddentry (3rd arg) */ 150/* Flags for ktraddentry (3rd arg) */
151#define KTA_NOWAIT 0x0000 151#define KTA_NOWAIT 0x0000
152#define KTA_WAITOK 0x0001 152#define KTA_WAITOK 0x0001
153#define KTA_LARGE 0x0002 153#define KTA_LARGE 0x0002
154static void ktefree(struct ktrace_entry *); 154static void ktefree(struct ktrace_entry *);
155static void ktd_logerrl(struct ktr_desc *, int); 155static void ktd_logerrl(struct ktr_desc *, int);
156static void ktrace_thread(void *); 156static void ktrace_thread(void *);
157static int ktrderefall(struct ktr_desc *, int); 157static int ktrderefall(struct ktr_desc *, int);
158 158
159/* 159/*
160 * Default vaules. 160 * Default vaules.
161 */ 161 */
162#define KTD_MAXENTRY 1000 /* XXX: tune */ 162#define KTD_MAXENTRY 1000 /* XXX: tune */
163#define KTD_TIMEOUT 5 /* XXX: tune */ 163#define KTD_TIMEOUT 5 /* XXX: tune */
164#define KTD_DELAYQCNT 100 /* XXX: tune */ 164#define KTD_DELAYQCNT 100 /* XXX: tune */
165#define KTD_WAKEDELAY 5000 /* XXX: tune */ 165#define KTD_WAKEDELAY 5000 /* XXX: tune */
166#define KTD_INTRWAKDL 100 /* XXX: tune */ 166#define KTD_INTRWAKDL 100 /* XXX: tune */
167 167
168/* 168/*
169 * Patchable variables. 169 * Patchable variables.
170 */ 170 */
171int ktd_maxentry = KTD_MAXENTRY; /* max # of entry in the queue */ 171int ktd_maxentry = KTD_MAXENTRY; /* max # of entry in the queue */
172int ktd_timeout = KTD_TIMEOUT; /* timeout in seconds */ 172int ktd_timeout = KTD_TIMEOUT; /* timeout in seconds */
173int ktd_delayqcnt = KTD_DELAYQCNT; /* # of entry allowed to delay */ 173int ktd_delayqcnt = KTD_DELAYQCNT; /* # of entry allowed to delay */
174int ktd_wakedelay = KTD_WAKEDELAY; /* delay of wakeup in *ms* */ 174int ktd_wakedelay = KTD_WAKEDELAY; /* delay of wakeup in *ms* */
175int ktd_intrwakdl = KTD_INTRWAKDL; /* ditto, but when interactive */ 175int ktd_intrwakdl = KTD_INTRWAKDL; /* ditto, but when interactive */
176 176
177kmutex_t ktrace_lock; 177kmutex_t ktrace_lock;
178int ktrace_on; 178int ktrace_on;
179static TAILQ_HEAD(, ktr_desc) ktdq = TAILQ_HEAD_INITIALIZER(ktdq); 179static TAILQ_HEAD(, ktr_desc) ktdq = TAILQ_HEAD_INITIALIZER(ktdq);
180static pool_cache_t kte_cache; 180static pool_cache_t kte_cache;
181 181
182static void 182static void
183ktd_wakeup(struct ktr_desc *ktd) 183ktd_wakeup(struct ktr_desc *ktd)
184{ 184{
185 185
186 callout_stop(&ktd->ktd_wakch); 186 callout_stop(&ktd->ktd_wakch);
187 cv_signal(&ktd->ktd_cv); 187 cv_signal(&ktd->ktd_cv);
188} 188}
189 189
190static void 190static void
191ktd_callout(void *arg) 191ktd_callout(void *arg)
192{ 192{
193 193
194 mutex_enter(&ktrace_lock); 194 mutex_enter(&ktrace_lock);
195 ktd_wakeup(arg); 195 ktd_wakeup(arg);
196 mutex_exit(&ktrace_lock); 196 mutex_exit(&ktrace_lock);
197} 197}
198 198
199static void 199static void
200ktd_logerrl(struct ktr_desc *ktd, int error) 200ktd_logerrl(struct ktr_desc *ktd, int error)
201{ 201{
202 202
203 ktd->ktd_error |= error; 203 ktd->ktd_error |= error;
204 ktd->ktd_errcnt++; 204 ktd->ktd_errcnt++;
205} 205}
206 206
207#if 0 207#if 0
208static void 208static void
209ktd_logerr(struct proc *p, int error) 209ktd_logerr(struct proc *p, int error)
210{ 210{
211 struct ktr_desc *ktd; 211 struct ktr_desc *ktd;
212 212
213 KASSERT(mutex_owned(&ktrace_lock)); 213 KASSERT(mutex_owned(&ktrace_lock));
214 214
215 ktd = p->p_tracep; 215 ktd = p->p_tracep;
216 if (ktd == NULL) 216 if (ktd == NULL)
217 return; 217 return;
218 218
219 ktd_logerrl(ktd, error); 219 ktd_logerrl(ktd, error);
220} 220}
221#endif 221#endif
222 222
223static inline int 223static inline int
224ktrenter(lwp_t *l) 224ktrenter(lwp_t *l)
225{ 225{
226 226
227 if ((l->l_pflag & LP_KTRACTIVE) != 0) 227 if ((l->l_pflag & LP_KTRACTIVE) != 0)
228 return 1; 228 return 1;
229 l->l_pflag |= LP_KTRACTIVE; 229 l->l_pflag |= LP_KTRACTIVE;
230 return 0; 230 return 0;
231} 231}
232 232
233static inline void 233static inline void
234ktrexit(lwp_t *l) 234ktrexit(lwp_t *l)
235{ 235{
236 236
237 l->l_pflag &= ~LP_KTRACTIVE; 237 l->l_pflag &= ~LP_KTRACTIVE;
238} 238}
239 239
240/* 240/*
241 * Initialise the ktrace system. 241 * Initialise the ktrace system.
242 */ 242 */
243void 243void
244ktrinit(void) 244ktrinit(void)
245{ 245{
246 246
247 mutex_init(&ktrace_lock, MUTEX_DEFAULT, IPL_NONE); 247 mutex_init(&ktrace_lock, MUTEX_DEFAULT, IPL_NONE);
248 kte_cache = pool_cache_init(sizeof(struct ktrace_entry), 0, 0, 0, 248 kte_cache = pool_cache_init(sizeof(struct ktrace_entry), 0, 0, 0,
249 "ktrace", &pool_allocator_nointr, IPL_NONE, NULL, NULL, NULL); 249 "ktrace", &pool_allocator_nointr, IPL_NONE, NULL, NULL, NULL);
250} 250}
251 251
252/* 252/*
253 * Release a reference. Called with ktrace_lock held. 253 * Release a reference. Called with ktrace_lock held.
254 */ 254 */
255void 255void
256ktdrel(struct ktr_desc *ktd) 256ktdrel(struct ktr_desc *ktd)
257{ 257{
258 258
259 KASSERT(mutex_owned(&ktrace_lock)); 259 KASSERT(mutex_owned(&ktrace_lock));
260 260
261 KDASSERT(ktd->ktd_ref != 0); 261 KDASSERT(ktd->ktd_ref != 0);
262 KASSERT(ktd->ktd_ref > 0); 262 KASSERT(ktd->ktd_ref > 0);
263 KASSERT(ktrace_on > 0); 263 KASSERT(ktrace_on > 0);
264 ktrace_on--; 264 ktrace_on--;
265 if (--ktd->ktd_ref <= 0) { 265 if (--ktd->ktd_ref <= 0) {
266 ktd->ktd_flags |= KTDF_DONE; 266 ktd->ktd_flags |= KTDF_DONE;
267 cv_signal(&ktd->ktd_cv); 267 cv_signal(&ktd->ktd_cv);
268 } 268 }
269} 269}
270 270
271void 271void
272ktdref(struct ktr_desc *ktd) 272ktdref(struct ktr_desc *ktd)
273{ 273{
274 274
275 KASSERT(mutex_owned(&ktrace_lock)); 275 KASSERT(mutex_owned(&ktrace_lock));
276 276
277 ktd->ktd_ref++; 277 ktd->ktd_ref++;
278 ktrace_on++; 278 ktrace_on++;
279} 279}
280 280
281struct ktr_desc * 281struct ktr_desc *
282ktd_lookup(file_t *fp) 282ktd_lookup(file_t *fp)
283{ 283{
284 struct ktr_desc *ktd; 284 struct ktr_desc *ktd;
285 285
286 KASSERT(mutex_owned(&ktrace_lock)); 286 KASSERT(mutex_owned(&ktrace_lock));
287 287
288 for (ktd = TAILQ_FIRST(&ktdq); ktd != NULL; 288 for (ktd = TAILQ_FIRST(&ktdq); ktd != NULL;
289 ktd = TAILQ_NEXT(ktd, ktd_list)) { 289 ktd = TAILQ_NEXT(ktd, ktd_list)) {
290 if (ktrsamefile(ktd->ktd_fp, fp)) { 290 if (ktrsamefile(ktd->ktd_fp, fp)) {
291 ktdref(ktd); 291 ktdref(ktd);
292 break; 292 break;
293 } 293 }
294 } 294 }
295 295
296 return (ktd); 296 return (ktd);
297} 297}
298 298
299void 299void
300ktraddentry(lwp_t *l, struct ktrace_entry *kte, int flags) 300ktraddentry(lwp_t *l, struct ktrace_entry *kte, int flags)
301{ 301{
302 struct proc *p = l->l_proc; 302 struct proc *p = l->l_proc;
303 struct ktr_desc *ktd; 303 struct ktr_desc *ktd;
304#ifdef DEBUG 304#ifdef DEBUG
305 struct timeval t1, t2; 305 struct timeval t1, t2;
306#endif 306#endif
307 307
308 mutex_enter(&ktrace_lock); 308 mutex_enter(&ktrace_lock);
309 309
310 if (p->p_traceflag & KTRFAC_TRC_EMUL) { 310 if (p->p_traceflag & KTRFAC_TRC_EMUL) {
311 /* Add emulation trace before first entry for this process */ 311 /* Add emulation trace before first entry for this process */
312 p->p_traceflag &= ~KTRFAC_TRC_EMUL; 312 p->p_traceflag &= ~KTRFAC_TRC_EMUL;
313 mutex_exit(&ktrace_lock); 313 mutex_exit(&ktrace_lock);
314 ktrexit(l); 314 ktrexit(l);
315 ktremul(); 315 ktremul();
316 (void)ktrenter(l); 316 (void)ktrenter(l);
317 mutex_enter(&ktrace_lock); 317 mutex_enter(&ktrace_lock);
318 } 318 }
319 319
320 /* Tracing may have been cancelled. */ 320 /* Tracing may have been cancelled. */
321 ktd = p->p_tracep; 321 ktd = p->p_tracep;
322 if (ktd == NULL) 322 if (ktd == NULL)
323 goto freekte; 323 goto freekte;
324 324
325 /* 325 /*
326 * Bump reference count so that the object will remain while 326 * Bump reference count so that the object will remain while
327 * we are here. Note that the trace is controlled by other 327 * we are here. Note that the trace is controlled by other
328 * process. 328 * process.
329 */ 329 */
330 ktdref(ktd); 330 ktdref(ktd);
331 331
332 if (ktd->ktd_flags & KTDF_DONE) 332 if (ktd->ktd_flags & KTDF_DONE)
333 goto relktd; 333 goto relktd;
334 334
335 if (ktd->ktd_qcount > ktd_maxentry) { 335 if (ktd->ktd_qcount > ktd_maxentry) {
336 ktd_logerrl(ktd, KTDE_ENOSPC); 336 ktd_logerrl(ktd, KTDE_ENOSPC);
337 goto relktd; 337 goto relktd;
338 } 338 }
339 TAILQ_INSERT_TAIL(&ktd->ktd_queue, kte, kte_list); 339 TAILQ_INSERT_TAIL(&ktd->ktd_queue, kte, kte_list);
340 ktd->ktd_qcount++; 340 ktd->ktd_qcount++;
341 if (ktd->ktd_flags & KTDF_BLOCKING) 341 if (ktd->ktd_flags & KTDF_BLOCKING)
342 goto skip_sync; 342 goto skip_sync;
343 343
344 if (flags & KTA_WAITOK && 344 if (flags & KTA_WAITOK &&
345 (/* flags & KTA_LARGE */0 || ktd->ktd_flags & KTDF_WAIT || 345 (/* flags & KTA_LARGE */0 || ktd->ktd_flags & KTDF_WAIT ||
346 ktd->ktd_qcount > ktd_maxentry >> 1)) 346 ktd->ktd_qcount > ktd_maxentry >> 1))
347 /* 347 /*
348 * Sync with writer thread since we're requesting rather 348 * Sync with writer thread since we're requesting rather
349 * big one or many requests are pending. 349 * big one or many requests are pending.
350 */ 350 */
351 do { 351 do {
352 ktd->ktd_flags |= KTDF_WAIT; 352 ktd->ktd_flags |= KTDF_WAIT;
353 ktd_wakeup(ktd); 353 ktd_wakeup(ktd);
354#ifdef DEBUG 354#ifdef DEBUG
355 getmicrouptime(&t1); 355 getmicrouptime(&t1);
356#endif 356#endif
357 if (cv_timedwait(&ktd->ktd_sync_cv, &ktrace_lock, 357 if (cv_timedwait(&ktd->ktd_sync_cv, &ktrace_lock,
358 ktd_timeout * hz) != 0) { 358 ktd_timeout * hz) != 0) {
359 ktd->ktd_flags |= KTDF_BLOCKING; 359 ktd->ktd_flags |= KTDF_BLOCKING;
360 /* 360 /*
361 * Maybe the writer thread is blocking 361 * Maybe the writer thread is blocking
362 * completely for some reason, but 362 * completely for some reason, but
363 * don't stop target process forever. 363 * don't stop target process forever.
364 */ 364 */
365 log(LOG_NOTICE, "ktrace timeout\n"); 365 log(LOG_NOTICE, "ktrace timeout\n");
366 break; 366 break;
367 } 367 }
368#ifdef DEBUG 368#ifdef DEBUG
369 getmicrouptime(&t2); 369 getmicrouptime(&t2);
370 timersub(&t2, &t1, &t2); 370 timersub(&t2, &t1, &t2);
371 if (t2.tv_sec > 0) 371 if (t2.tv_sec > 0)
372 log(LOG_NOTICE, 372 log(LOG_NOTICE,
373 "ktrace long wait: %lld.%06ld\n", 373 "ktrace long wait: %lld.%06ld\n",
374 (long long)t2.tv_sec, (long)t2.tv_usec); 374 (long long)t2.tv_sec, (long)t2.tv_usec);
375#endif 375#endif
376 } while (p->p_tracep == ktd && 376 } while (p->p_tracep == ktd &&
377 (ktd->ktd_flags & (KTDF_WAIT | KTDF_DONE)) == KTDF_WAIT); 377 (ktd->ktd_flags & (KTDF_WAIT | KTDF_DONE)) == KTDF_WAIT);
378 else { 378 else {
379 /* Schedule delayed wakeup */ 379 /* Schedule delayed wakeup */
380 if (ktd->ktd_qcount > ktd->ktd_delayqcnt) 380 if (ktd->ktd_qcount > ktd->ktd_delayqcnt)
381 ktd_wakeup(ktd); /* Wakeup now */ 381 ktd_wakeup(ktd); /* Wakeup now */
382 else if (!callout_pending(&ktd->ktd_wakch)) 382 else if (!callout_pending(&ktd->ktd_wakch))
383 callout_reset(&ktd->ktd_wakch, 383 callout_reset(&ktd->ktd_wakch,
384 ktd->ktd_flags & KTDF_INTERACTIVE ? 384 ktd->ktd_flags & KTDF_INTERACTIVE ?
385 ktd->ktd_intrwakdl : ktd->ktd_wakedelay, 385 ktd->ktd_intrwakdl : ktd->ktd_wakedelay,
386 ktd_callout, ktd); 386 ktd_callout, ktd);
387 } 387 }
388 388
389skip_sync: 389skip_sync:
390 ktdrel(ktd); 390 ktdrel(ktd);
391 mutex_exit(&ktrace_lock); 391 mutex_exit(&ktrace_lock);
392 ktrexit(l); 392 ktrexit(l);
393 return; 393 return;
394 394
395relktd: 395relktd:
396 ktdrel(ktd); 396 ktdrel(ktd);
397 397
398freekte: 398freekte:
399 mutex_exit(&ktrace_lock); 399 mutex_exit(&ktrace_lock);
400 ktefree(kte); 400 ktefree(kte);
401 ktrexit(l); 401 ktrexit(l);
402} 402}
403 403
404void 404void
405ktefree(struct ktrace_entry *kte) 405ktefree(struct ktrace_entry *kte)
406{ 406{
407 407
408 if (kte->kte_buf != kte->kte_space) 408 if (kte->kte_buf != kte->kte_space)
409 kmem_free(kte->kte_buf, kte->kte_bufsz); 409 kmem_free(kte->kte_buf, kte->kte_bufsz);
410 pool_cache_put(kte_cache, kte); 410 pool_cache_put(kte_cache, kte);
411} 411}
412 412
413/* 413/*
414 * "deep" compare of two files for the purposes of clearing a trace. 414 * "deep" compare of two files for the purposes of clearing a trace.
415 * Returns true if they're the same open file, or if they point at the 415 * Returns true if they're the same open file, or if they point at the
416 * same underlying vnode/socket. 416 * same underlying vnode/socket.
417 */ 417 */
418 418
419int 419int
420ktrsamefile(file_t *f1, file_t *f2) 420ktrsamefile(file_t *f1, file_t *f2)
421{ 421{
422 422
423 return ((f1 == f2) || 423 return ((f1 == f2) ||
424 ((f1 != NULL) && (f2 != NULL) && 424 ((f1 != NULL) && (f2 != NULL) &&
425 (f1->f_type == f2->f_type) && 425 (f1->f_type == f2->f_type) &&
426 (f1->f_data == f2->f_data))); 426 (f1->f_data == f2->f_data)));
427} 427}
428 428
429void 429void
430ktrderef(struct proc *p) 430ktrderef(struct proc *p)
431{ 431{
432 struct ktr_desc *ktd = p->p_tracep; 432 struct ktr_desc *ktd = p->p_tracep;
433 433
434 KASSERT(mutex_owned(&ktrace_lock)); 434 KASSERT(mutex_owned(&ktrace_lock));
435 435
436 p->p_traceflag = 0; 436 p->p_traceflag = 0;
437 if (ktd == NULL) 437 if (ktd == NULL)
438 return; 438 return;
439 p->p_tracep = NULL; 439 p->p_tracep = NULL;
440 440
441 cv_broadcast(&ktd->ktd_sync_cv); 441 cv_broadcast(&ktd->ktd_sync_cv);
442 ktdrel(ktd); 442 ktdrel(ktd);
443} 443}
444 444
445void 445void
446ktradref(struct proc *p) 446ktradref(struct proc *p)
447{ 447{
448 struct ktr_desc *ktd = p->p_tracep; 448 struct ktr_desc *ktd = p->p_tracep;
449 449
450 KASSERT(mutex_owned(&ktrace_lock)); 450 KASSERT(mutex_owned(&ktrace_lock));
451 451
452 ktdref(ktd); 452 ktdref(ktd);
453} 453}
454 454
455int 455int
456ktrderefall(struct ktr_desc *ktd, int auth) 456ktrderefall(struct ktr_desc *ktd, int auth)
457{ 457{
458 lwp_t *curl = curlwp; 458 lwp_t *curl = curlwp;
459 struct proc *p; 459 struct proc *p;
460 int error = 0; 460 int error = 0;
461 461
462 mutex_enter(proc_lock); 462 mutex_enter(proc_lock);
463 PROCLIST_FOREACH(p, &allproc) { 463 PROCLIST_FOREACH(p, &allproc) {
464 if ((p->p_flag & PK_MARKER) != 0 || p->p_tracep != ktd) 464 if ((p->p_flag & PK_MARKER) != 0 || p->p_tracep != ktd)
465 continue; 465 continue;
466 mutex_enter(p->p_lock); 466 mutex_enter(p->p_lock);
467 mutex_enter(&ktrace_lock); 467 mutex_enter(&ktrace_lock);
468 if (p->p_tracep == ktd) { 468 if (p->p_tracep == ktd) {
469 if (!auth || ktrcanset(curl, p)) 469 if (!auth || ktrcanset(curl, p))
470 ktrderef(p); 470 ktrderef(p);
471 else 471 else
472 error = EPERM; 472 error = EPERM;
473 } 473 }
474 mutex_exit(&ktrace_lock); 474 mutex_exit(&ktrace_lock);
475 mutex_exit(p->p_lock); 475 mutex_exit(p->p_lock);
476 } 476 }
477 mutex_exit(proc_lock); 477 mutex_exit(proc_lock);
478 478
479 return error; 479 return error;
480} 480}
481 481
482int 482int
483ktealloc(struct ktrace_entry **ktep, void **bufp, lwp_t *l, int type, 483ktealloc(struct ktrace_entry **ktep, void **bufp, lwp_t *l, int type,
484 size_t sz) 484 size_t sz)
485{ 485{
486 struct proc *p = l->l_proc; 486 struct proc *p = l->l_proc;
487 struct ktrace_entry *kte; 487 struct ktrace_entry *kte;
488 struct ktr_header *kth; 488 struct ktr_header *kth;
489 struct timespec ts; 489 struct timespec ts;
490 void *buf; 490 void *buf;
491 491
492 if (ktrenter(l)) 492 if (ktrenter(l))
493 return EAGAIN; 493 return EAGAIN;
494 494
495 kte = pool_cache_get(kte_cache, PR_WAITOK); 495 kte = pool_cache_get(kte_cache, PR_WAITOK);
496 if (sz > sizeof(kte->kte_space)) { 496 if (sz > sizeof(kte->kte_space)) {
497 if ((buf = kmem_alloc(sz, KM_SLEEP)) == NULL) { 497 if ((buf = kmem_alloc(sz, KM_SLEEP)) == NULL) {
498 pool_cache_put(kte_cache, kte); 498 pool_cache_put(kte_cache, kte);
499 ktrexit(l); 499 ktrexit(l);
500 return ENOMEM; 500 return ENOMEM;
501 } 501 }
502 } else 502 } else
503 buf = kte->kte_space; 503 buf = kte->kte_space;
504 504
505 kte->kte_bufsz = sz; 505 kte->kte_bufsz = sz;
506 kte->kte_buf = buf; 506 kte->kte_buf = buf;
507 507
508 kth = &kte->kte_kth; 508 kth = &kte->kte_kth;
509 (void)memset(kth, 0, sizeof(*kth)); 509 (void)memset(kth, 0, sizeof(*kth));
510 kth->ktr_len = sz; 510 kth->ktr_len = sz;
511 kth->ktr_type = type; 511 kth->ktr_type = type;
512 kth->ktr_pid = p->p_pid; 512 kth->ktr_pid = p->p_pid;
513 memcpy(kth->ktr_comm, p->p_comm, MAXCOMLEN); 513 memcpy(kth->ktr_comm, p->p_comm, MAXCOMLEN);
514 kth->ktr_version = KTRFAC_VERSION(p->p_traceflag); 514 kth->ktr_version = KTRFAC_VERSION(p->p_traceflag);
515 515
516 nanotime(&ts); 516 nanotime(&ts);
517 switch (KTRFAC_VERSION(p->p_traceflag)) { 517 switch (KTRFAC_VERSION(p->p_traceflag)) {
518 case 0: 518 case 0:
519 /* This is the original format */ 519 /* This is the original format */
520 kth->ktr_otv.tv_sec = ts.tv_sec; 520 kth->ktr_otv.tv_sec = ts.tv_sec;
521 kth->ktr_otv.tv_usec = ts.tv_nsec / 1000; 521 kth->ktr_otv.tv_usec = ts.tv_nsec / 1000;
522 break; 522 break;
523 case 1:  523 case 1:
524 kth->ktr_olid = l->l_lid; 524 kth->ktr_olid = l->l_lid;
525 kth->ktr_ots.tv_sec = ts.tv_sec; 525 kth->ktr_ots.tv_sec = ts.tv_sec;
526 kth->ktr_ots.tv_nsec = ts.tv_nsec;  526 kth->ktr_ots.tv_nsec = ts.tv_nsec;
527 break;  527 break;
528 case 2: 528 case 2:
529 kth->ktr_lid = l->l_lid; 529 kth->ktr_lid = l->l_lid;
530 kth->ktr_ts.tv_sec = ts.tv_sec; 530 kth->ktr_ts.tv_sec = ts.tv_sec;
531 kth->ktr_ts.tv_nsec = ts.tv_nsec;  531 kth->ktr_ts.tv_nsec = ts.tv_nsec;
532 break;  532 break;
533 default: 533 default:
534 break;  534 break;
535 } 535 }
536 536
537 *ktep = kte; 537 *ktep = kte;
538 *bufp = buf; 538 *bufp = buf;
539 539
540 return 0; 540 return 0;
541} 541}
542 542
543void 543void
544ktr_syscall(register_t code, const register_t args[], int narg) 544ktr_syscall(register_t code, const register_t args[], int narg)
545{ 545{
546 lwp_t *l = curlwp; 546 lwp_t *l = curlwp;
547 struct proc *p = l->l_proc; 547 struct proc *p = l->l_proc;
548 struct ktrace_entry *kte; 548 struct ktrace_entry *kte;
549 struct ktr_syscall *ktp; 549 struct ktr_syscall *ktp;
550 register_t *argp; 550 register_t *argp;
551 size_t len; 551 size_t len;
552 u_int i; 552 u_int i;
553 553
554 if (!KTRPOINT(p, KTR_SYSCALL)) 554 if (!KTRPOINT(p, KTR_SYSCALL))
555 return; 555 return;
556 556
557 len = sizeof(struct ktr_syscall) + narg * sizeof argp[0]; 557 len = sizeof(struct ktr_syscall) + narg * sizeof argp[0];
558 558
559 if (ktealloc(&kte, (void *)&ktp, l, KTR_SYSCALL, len)) 559 if (ktealloc(&kte, (void *)&ktp, l, KTR_SYSCALL, len))
560 return; 560 return;
561 561
562 ktp->ktr_code = code; 562 ktp->ktr_code = code;
563 ktp->ktr_argsize = narg * sizeof argp[0]; 563 ktp->ktr_argsize = narg * sizeof argp[0];
564 argp = (register_t *)(ktp + 1); 564 argp = (register_t *)(ktp + 1);
565 for (i = 0; i < narg; i++) 565 for (i = 0; i < narg; i++)
566 *argp++ = args[i]; 566 *argp++ = args[i];
567 567
568 ktraddentry(l, kte, KTA_WAITOK); 568 ktraddentry(l, kte, KTA_WAITOK);
569} 569}
570 570
571void 571void
572ktr_sysret(register_t code, int error, register_t *retval) 572ktr_sysret(register_t code, int error, register_t *retval)
573{ 573{
574 lwp_t *l = curlwp; 574 lwp_t *l = curlwp;
575 struct ktrace_entry *kte; 575 struct ktrace_entry *kte;
576 struct ktr_sysret *ktp; 576 struct ktr_sysret *ktp;
577 577
578 if (!KTRPOINT(l->l_proc, KTR_SYSRET)) 578 if (!KTRPOINT(l->l_proc, KTR_SYSRET))
579 return; 579 return;
580 580
581 if (ktealloc(&kte, (void *)&ktp, l, KTR_SYSRET, 581 if (ktealloc(&kte, (void *)&ktp, l, KTR_SYSRET,
582 sizeof(struct ktr_sysret))) 582 sizeof(struct ktr_sysret)))
583 return; 583 return;
584 584
585 ktp->ktr_code = code; 585 ktp->ktr_code = code;
586 ktp->ktr_eosys = 0; /* XXX unused */ 586 ktp->ktr_eosys = 0; /* XXX unused */
587 ktp->ktr_error = error; 587 ktp->ktr_error = error;
588 ktp->ktr_retval = retval ? retval[0] : 0; 588 ktp->ktr_retval = retval ? retval[0] : 0;
589 ktp->ktr_retval_1 = retval ? retval[1] : 0; 589 ktp->ktr_retval_1 = retval ? retval[1] : 0;
590 590
591 ktraddentry(l, kte, KTA_WAITOK); 591 ktraddentry(l, kte, KTA_WAITOK);
592} 592}
593 593
594void 594void
595ktr_namei(const char *path, size_t pathlen) 595ktr_namei(const char *path, size_t pathlen)
596{ 596{
597 lwp_t *l = curlwp; 597 lwp_t *l = curlwp;
598 598
599 if (!KTRPOINT(l->l_proc, KTR_NAMEI)) 599 if (!KTRPOINT(l->l_proc, KTR_NAMEI))
600 return; 600 return;
601 601
602 ktr_kmem(l, KTR_NAMEI, path, pathlen); 602 ktr_kmem(l, KTR_NAMEI, path, pathlen);
603} 603}
604 604
605void 605void
606ktr_namei2(const char *eroot, size_t erootlen, 606ktr_namei2(const char *eroot, size_t erootlen,
607 const char *path, size_t pathlen) 607 const char *path, size_t pathlen)
608{ 608{
609 lwp_t *l = curlwp; 609 lwp_t *l = curlwp;
610 struct ktrace_entry *kte; 610 struct ktrace_entry *kte;
611 void *buf; 611 void *buf;
612 612
613 if (!KTRPOINT(l->l_proc, KTR_NAMEI)) 613 if (!KTRPOINT(l->l_proc, KTR_NAMEI))
614 return; 614 return;
615 615
616 if (ktealloc(&kte, &buf, l, KTR_NAMEI, erootlen + pathlen)) 616 if (ktealloc(&kte, &buf, l, KTR_NAMEI, erootlen + pathlen))
617 return; 617 return;
618 memcpy(buf, eroot, erootlen); 618 memcpy(buf, eroot, erootlen);
619 buf = (char *)buf + erootlen; 619 buf = (char *)buf + erootlen;
620 memcpy(buf, path, pathlen); 620 memcpy(buf, path, pathlen);
621 ktraddentry(l, kte, KTA_WAITOK); 621 ktraddentry(l, kte, KTA_WAITOK);
622} 622}
623 623
624void 624void
625ktr_emul(void) 625ktr_emul(void)
626{ 626{
627 lwp_t *l = curlwp; 627 lwp_t *l = curlwp;
628 const char *emul = l->l_proc->p_emul->e_name; 628 const char *emul = l->l_proc->p_emul->e_name;
629 629
630 if (!KTRPOINT(l->l_proc, KTR_EMUL)) 630 if (!KTRPOINT(l->l_proc, KTR_EMUL))
631 return; 631 return;
632 632
633 ktr_kmem(l, KTR_EMUL, emul, strlen(emul)); 633 ktr_kmem(l, KTR_EMUL, emul, strlen(emul));
634} 634}
635 635
636void 636void
637ktr_execarg(const void *bf, size_t len) 637ktr_execarg(const void *bf, size_t len)
638{ 638{
639 lwp_t *l = curlwp; 639 lwp_t *l = curlwp;
640 640
641 if (!KTRPOINT(l->l_proc, KTR_EXEC_ARG)) 641 if (!KTRPOINT(l->l_proc, KTR_EXEC_ARG))
642 return; 642 return;
643 643
644 ktr_kmem(l, KTR_EXEC_ARG, bf, len); 644 ktr_kmem(l, KTR_EXEC_ARG, bf, len);
645} 645}
646 646
647void 647void
648ktr_execenv(const void *bf, size_t len) 648ktr_execenv(const void *bf, size_t len)
649{ 649{
650 lwp_t *l = curlwp; 650 lwp_t *l = curlwp;
651 651
652 if (!KTRPOINT(l->l_proc, KTR_EXEC_ENV)) 652 if (!KTRPOINT(l->l_proc, KTR_EXEC_ENV))
653 return; 653 return;
654 654
655 ktr_kmem(l, KTR_EXEC_ENV, bf, len); 655 ktr_kmem(l, KTR_EXEC_ENV, bf, len);
656} 656}
657 657
658static void 658static void
659ktr_kmem(lwp_t *l, int type, const void *bf, size_t len) 659ktr_kmem(lwp_t *l, int type, const void *bf, size_t len)
660{ 660{
661 struct ktrace_entry *kte; 661 struct ktrace_entry *kte;
662 void *buf; 662 void *buf;
663 663
664 if (ktealloc(&kte, &buf, l, type, len)) 664 if (ktealloc(&kte, &buf, l, type, len))
665 return; 665 return;
666 memcpy(buf, bf, len); 666 memcpy(buf, bf, len);
667 ktraddentry(l, kte, KTA_WAITOK); 667 ktraddentry(l, kte, KTA_WAITOK);
668} 668}
669 669
670static void 670static void
671ktr_io(lwp_t *l, int fd, enum uio_rw rw, struct iovec *iov, size_t len) 671ktr_io(lwp_t *l, int fd, enum uio_rw rw, struct iovec *iov, size_t len)
672{ 672{
673 struct ktrace_entry *kte; 673 struct ktrace_entry *kte;
674 struct ktr_genio *ktp; 674 struct ktr_genio *ktp;
675 size_t resid = len, cnt, buflen; 675 size_t resid = len, cnt, buflen;
676 void *cp; 676 char *cp;
677 677
678 next: 678 next:
679 buflen = min(PAGE_SIZE, resid + sizeof(struct ktr_genio)); 679 buflen = min(PAGE_SIZE, resid + sizeof(struct ktr_genio));
680 680
681 if (ktealloc(&kte, (void *)&ktp, l, KTR_GENIO, buflen)) 681 if (ktealloc(&kte, (void *)&ktp, l, KTR_GENIO, buflen))
682 return; 682 return;
683 683
684 ktp->ktr_fd = fd; 684 ktp->ktr_fd = fd;
685 ktp->ktr_rw = rw; 685 ktp->ktr_rw = rw;
686 686
687 cp = (void *)(ktp + 1); 687 cp = (void *)(ktp + 1);
688 buflen -= sizeof(struct ktr_genio); 688 buflen -= sizeof(struct ktr_genio);
689 kte->kte_kth.ktr_len = sizeof(struct ktr_genio); 689 kte->kte_kth.ktr_len = sizeof(struct ktr_genio);
690 690
691 while (buflen > 0) { 691 while (buflen > 0) {
692 cnt = min(iov->iov_len, buflen); 692 cnt = min(iov->iov_len, buflen);
693 if (copyin(iov->iov_base, cp, cnt) != 0) 693 if (copyin(iov->iov_base, cp, cnt) != 0)
694 goto out; 694 goto out;
695 kte->kte_kth.ktr_len += cnt; 695 kte->kte_kth.ktr_len += cnt;
 696 cp += cnt;
696 buflen -= cnt; 697 buflen -= cnt;
697 resid -= cnt; 698 resid -= cnt;
698 iov->iov_len -= cnt; 699 iov->iov_len -= cnt;
699 if (iov->iov_len == 0) 700 if (iov->iov_len == 0)
700 iov++; 701 iov++;
701 else 702 else
702 iov->iov_base = (char *)iov->iov_base + cnt; 703 iov->iov_base = (char *)iov->iov_base + cnt;
703 } 704 }
704 705
705 /* 706 /*
706 * Don't push so many entry at once. It will cause kmem map 707 * Don't push so many entry at once. It will cause kmem map
707 * shortage. 708 * shortage.
708 */ 709 */
709 ktraddentry(l, kte, KTA_WAITOK | KTA_LARGE); 710 ktraddentry(l, kte, KTA_WAITOK | KTA_LARGE);
710 if (resid > 0) { 711 if (resid > 0) {
711 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) { 712 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
712 (void)ktrenter(l); 713 (void)ktrenter(l);
713 preempt(); 714 preempt();
714 ktrexit(l); 715 ktrexit(l);
715 } 716 }
716 717
717 goto next; 718 goto next;
718 } 719 }
719 720
720 return; 721 return;
721 722
722out: 723out:
723 ktefree(kte); 724 ktefree(kte);
724 ktrexit(l); 725 ktrexit(l);
725} 726}
726 727
727void 728void
728ktr_genio(int fd, enum uio_rw rw, const void *addr, size_t len, int error) 729ktr_genio(int fd, enum uio_rw rw, const void *addr, size_t len, int error)
729{ 730{
730 lwp_t *l = curlwp; 731 lwp_t *l = curlwp;
731 struct iovec iov; 732 struct iovec iov;
732 733
733 if (!KTRPOINT(l->l_proc, KTR_GENIO) || error != 0) 734 if (!KTRPOINT(l->l_proc, KTR_GENIO) || error != 0)
734 return; 735 return;
735 iov.iov_base = __UNCONST(addr); 736 iov.iov_base = __UNCONST(addr);
736 iov.iov_len = len; 737 iov.iov_len = len;
737 ktr_io(l, fd, rw, &iov, len); 738 ktr_io(l, fd, rw, &iov, len);
738} 739}
739 740
740void 741void
741ktr_geniov(int fd, enum uio_rw rw, struct iovec *iov, size_t len, int error) 742ktr_geniov(int fd, enum uio_rw rw, struct iovec *iov, size_t len, int error)
742{ 743{
743 lwp_t *l = curlwp; 744 lwp_t *l = curlwp;
744 745
745 if (!KTRPOINT(l->l_proc, KTR_GENIO) || error != 0) 746 if (!KTRPOINT(l->l_proc, KTR_GENIO) || error != 0)
746 return; 747 return;
747 ktr_io(l, fd, rw, iov, len); 748 ktr_io(l, fd, rw, iov, len);
748} 749}
749 750
750void 751void
751ktr_mibio(int fd, enum uio_rw rw, const void *addr, size_t len, int error) 752ktr_mibio(int fd, enum uio_rw rw, const void *addr, size_t len, int error)
752{ 753{
753 lwp_t *l = curlwp; 754 lwp_t *l = curlwp;
754 struct iovec iov; 755 struct iovec iov;
755 756
756 if (!KTRPOINT(l->l_proc, KTR_MIB) || error != 0) 757 if (!KTRPOINT(l->l_proc, KTR_MIB) || error != 0)
757 return; 758 return;
758 iov.iov_base = __UNCONST(addr); 759 iov.iov_base = __UNCONST(addr);
759 iov.iov_len = len; 760 iov.iov_len = len;
760 ktr_io(l, fd, rw, &iov, len); 761 ktr_io(l, fd, rw, &iov, len);
761} 762}
762 763
763void 764void
764ktr_psig(int sig, sig_t action, const sigset_t *mask, 765ktr_psig(int sig, sig_t action, const sigset_t *mask,
765 const ksiginfo_t *ksi) 766 const ksiginfo_t *ksi)
766{ 767{
767 struct ktrace_entry *kte; 768 struct ktrace_entry *kte;
768 lwp_t *l = curlwp; 769 lwp_t *l = curlwp;
769 struct { 770 struct {
770 struct ktr_psig kp; 771 struct ktr_psig kp;
771 siginfo_t si; 772 siginfo_t si;
772 } *kbuf; 773 } *kbuf;
773 774
774 if (!KTRPOINT(l->l_proc, KTR_PSIG)) 775 if (!KTRPOINT(l->l_proc, KTR_PSIG))
775 return; 776 return;
776 777
777 if (ktealloc(&kte, (void *)&kbuf, l, KTR_PSIG, sizeof(*kbuf))) 778 if (ktealloc(&kte, (void *)&kbuf, l, KTR_PSIG, sizeof(*kbuf)))
778 return; 779 return;
779 780
780 kbuf->kp.signo = (char)sig; 781 kbuf->kp.signo = (char)sig;
781 kbuf->kp.action = action; 782 kbuf->kp.action = action;
782 kbuf->kp.mask = *mask; 783 kbuf->kp.mask = *mask;
783 784
784 if (ksi) { 785 if (ksi) {
785 kbuf->kp.code = KSI_TRAPCODE(ksi); 786 kbuf->kp.code = KSI_TRAPCODE(ksi);
786 (void)memset(&kbuf->si, 0, sizeof(kbuf->si)); 787 (void)memset(&kbuf->si, 0, sizeof(kbuf->si));
787 kbuf->si._info = ksi->ksi_info; 788 kbuf->si._info = ksi->ksi_info;
788 kte->kte_kth.ktr_len = sizeof(*kbuf); 789 kte->kte_kth.ktr_len = sizeof(*kbuf);
789 } else { 790 } else {
790 kbuf->kp.code = 0; 791 kbuf->kp.code = 0;
791 kte->kte_kth.ktr_len = sizeof(struct ktr_psig); 792 kte->kte_kth.ktr_len = sizeof(struct ktr_psig);
792 } 793 }
793 794
794 ktraddentry(l, kte, KTA_WAITOK); 795 ktraddentry(l, kte, KTA_WAITOK);
795} 796}
796 797
797void 798void
798ktr_csw(int out, int user) 799ktr_csw(int out, int user)
799{ 800{
800 lwp_t *l = curlwp; 801 lwp_t *l = curlwp;
801 struct proc *p = l->l_proc; 802 struct proc *p = l->l_proc;
802 struct ktrace_entry *kte; 803 struct ktrace_entry *kte;
803 struct ktr_csw *kc; 804 struct ktr_csw *kc;
804 805
805 if (!KTRPOINT(p, KTR_CSW)) 806 if (!KTRPOINT(p, KTR_CSW))
806 return; 807 return;
807 808
808 /* 809 /*
809 * Don't record context switches resulting from blocking on  810 * Don't record context switches resulting from blocking on
810 * locks; it's too easy to get duff results. 811 * locks; it's too easy to get duff results.
811 */ 812 */
812 if (l->l_syncobj == &mutex_syncobj || l->l_syncobj == &rw_syncobj) 813 if (l->l_syncobj == &mutex_syncobj || l->l_syncobj == &rw_syncobj)
813 return; 814 return;
814 815
815 /* 816 /*
816 * We can't sleep if we're already going to sleep (if original 817 * We can't sleep if we're already going to sleep (if original
817 * condition is met during sleep, we hang up). 818 * condition is met during sleep, we hang up).
818 * 819 *
819 * XXX This is not ideal: it would be better to maintain a pool 820 * XXX This is not ideal: it would be better to maintain a pool
820 * of ktes and actually push this to the kthread when context 821 * of ktes and actually push this to the kthread when context
821 * switch happens, however given the points where we are called 822 * switch happens, however given the points where we are called
822 * from that is difficult to do.  823 * from that is difficult to do.
823 */ 824 */
824 if (out) { 825 if (out) {
825 struct timespec ts; 826 struct timespec ts;
826 if (ktrenter(l)) 827 if (ktrenter(l))
827 return; 828 return;
828 829
829 nanotime(&l->l_ktrcsw); 830 nanotime(&l->l_ktrcsw);
830 l->l_pflag |= LP_KTRCSW; 831 l->l_pflag |= LP_KTRCSW;
831 nanotime(&ts); 832 nanotime(&ts);
832 if (user) 833 if (user)
833 l->l_pflag |= LP_KTRCSWUSER; 834 l->l_pflag |= LP_KTRCSWUSER;
834 else 835 else
835 l->l_pflag &= ~LP_KTRCSWUSER; 836 l->l_pflag &= ~LP_KTRCSWUSER;
836 837
837 ktrexit(l); 838 ktrexit(l);
838 return; 839 return;
839 } 840 }
840 841
841 /* 842 /*
842 * On the way back in, we need to record twice: once for entry, and 843 * On the way back in, we need to record twice: once for entry, and
843 * once for exit. 844 * once for exit.
844 */ 845 */
845 if ((l->l_pflag & LP_KTRCSW) != 0) { 846 if ((l->l_pflag & LP_KTRCSW) != 0) {
846 struct timespec *ts; 847 struct timespec *ts;
847 l->l_pflag &= ~LP_KTRCSW; 848 l->l_pflag &= ~LP_KTRCSW;
848 849
849 if (ktealloc(&kte, (void *)&kc, l, KTR_CSW, sizeof(*kc))) 850 if (ktealloc(&kte, (void *)&kc, l, KTR_CSW, sizeof(*kc)))
850 return; 851 return;
851 852
852 kc->out = 1; 853 kc->out = 1;
853 kc->user = ((l->l_pflag & LP_KTRCSWUSER) != 0); 854 kc->user = ((l->l_pflag & LP_KTRCSWUSER) != 0);
854 855
855 ts = &l->l_ktrcsw; 856 ts = &l->l_ktrcsw;
856 switch (KTRFAC_VERSION(p->p_traceflag)) { 857 switch (KTRFAC_VERSION(p->p_traceflag)) {
857 case 0: 858 case 0:
858 kte->kte_kth.ktr_otv.tv_sec = ts->tv_sec; 859 kte->kte_kth.ktr_otv.tv_sec = ts->tv_sec;
859 kte->kte_kth.ktr_otv.tv_usec = ts->tv_nsec / 1000; 860 kte->kte_kth.ktr_otv.tv_usec = ts->tv_nsec / 1000;
860 break; 861 break;
861 case 1:  862 case 1:
862 kte->kte_kth.ktr_ots.tv_sec = ts->tv_sec; 863 kte->kte_kth.ktr_ots.tv_sec = ts->tv_sec;
863 kte->kte_kth.ktr_ots.tv_nsec = ts->tv_nsec;  864 kte->kte_kth.ktr_ots.tv_nsec = ts->tv_nsec;
864 break;  865 break;
865 case 2: 866 case 2:
866 kte->kte_kth.ktr_ts.tv_sec = ts->tv_sec; 867 kte->kte_kth.ktr_ts.tv_sec = ts->tv_sec;
867 kte->kte_kth.ktr_ts.tv_nsec = ts->tv_nsec;  868 kte->kte_kth.ktr_ts.tv_nsec = ts->tv_nsec;
868 break;  869 break;
869 default: 870 default:
870 break;  871 break;
871 } 872 }
872 873
873 ktraddentry(l, kte, KTA_WAITOK); 874 ktraddentry(l, kte, KTA_WAITOK);
874 } 875 }
875 876
876 if (ktealloc(&kte, (void *)&kc, l, KTR_CSW, sizeof(*kc))) 877 if (ktealloc(&kte, (void *)&kc, l, KTR_CSW, sizeof(*kc)))
877 return; 878 return;
878 879
879 kc->out = 0; 880 kc->out = 0;
880 kc->user = user; 881 kc->user = user;
881 882
882 ktraddentry(l, kte, KTA_WAITOK); 883 ktraddentry(l, kte, KTA_WAITOK);
883} 884}
884 885
885bool 886bool
886ktr_point(int fac_bit) 887ktr_point(int fac_bit)
887{ 888{
888 return curlwp->l_proc->p_traceflag & fac_bit; 889 return curlwp->l_proc->p_traceflag & fac_bit;
889} 890}
890 891
891int 892int
892ktruser(const char *id, void *addr, size_t len, int ustr) 893ktruser(const char *id, void *addr, size_t len, int ustr)
893{ 894{
894 struct ktrace_entry *kte; 895 struct ktrace_entry *kte;
895 struct ktr_user *ktp; 896 struct ktr_user *ktp;
896 lwp_t *l = curlwp; 897 lwp_t *l = curlwp;
897 void *user_dta; 898 void *user_dta;
898 int error; 899 int error;
899 900
900 if (!KTRPOINT(l->l_proc, KTR_USER)) 901 if (!KTRPOINT(l->l_proc, KTR_USER))
901 return 0; 902 return 0;
902 903
903 if (len > KTR_USER_MAXLEN) 904 if (len > KTR_USER_MAXLEN)
904 return ENOSPC; 905 return ENOSPC;
905 906
906 error = ktealloc(&kte, (void *)&ktp, l, KTR_USER, sizeof(*ktp) + len); 907 error = ktealloc(&kte, (void *)&ktp, l, KTR_USER, sizeof(*ktp) + len);
907 if (error != 0) 908 if (error != 0)
908 return error; 909 return error;
909 910
910 if (ustr) { 911 if (ustr) {
911 if (copyinstr(id, ktp->ktr_id, KTR_USER_MAXIDLEN, NULL) != 0) 912 if (copyinstr(id, ktp->ktr_id, KTR_USER_MAXIDLEN, NULL) != 0)
912 ktp->ktr_id[0] = '\0'; 913 ktp->ktr_id[0] = '\0';
913 } else 914 } else
914 strncpy(ktp->ktr_id, id, KTR_USER_MAXIDLEN); 915 strncpy(ktp->ktr_id, id, KTR_USER_MAXIDLEN);
915 ktp->ktr_id[KTR_USER_MAXIDLEN-1] = '\0'; 916 ktp->ktr_id[KTR_USER_MAXIDLEN-1] = '\0';
916 917
917 user_dta = (void *)(ktp + 1); 918 user_dta = (void *)(ktp + 1);
918 if ((error = copyin(addr, (void *)user_dta, len)) != 0) 919 if ((error = copyin(addr, (void *)user_dta, len)) != 0)
919 len = 0; 920 len = 0;
920 921
921 ktraddentry(l, kte, KTA_WAITOK); 922 ktraddentry(l, kte, KTA_WAITOK);
922 return error; 923 return error;
923} 924}
924 925
925void 926void
926ktr_kuser(const char *id, void *addr, size_t len) 927ktr_kuser(const char *id, void *addr, size_t len)
927{ 928{
928 struct ktrace_entry *kte; 929 struct ktrace_entry *kte;
929 struct ktr_user *ktp; 930 struct ktr_user *ktp;
930 lwp_t *l = curlwp; 931 lwp_t *l = curlwp;
931 int error; 932 int error;
932 933
933 if (!KTRPOINT(l->l_proc, KTR_USER)) 934 if (!KTRPOINT(l->l_proc, KTR_USER))
934 return; 935 return;
935 936
936 if (len > KTR_USER_MAXLEN) 937 if (len > KTR_USER_MAXLEN)
937 return; 938 return;
938 939
939 error = ktealloc(&kte, (void *)&ktp, l, KTR_USER, sizeof(*ktp) + len); 940 error = ktealloc(&kte, (void *)&ktp, l, KTR_USER, sizeof(*ktp) + len);
940 if (error != 0) 941 if (error != 0)
941 return; 942 return;
942 943
943 strlcpy(ktp->ktr_id, id, KTR_USER_MAXIDLEN); 944 strlcpy(ktp->ktr_id, id, KTR_USER_MAXIDLEN);
944 945
945 memcpy(ktp + 1, addr, len); 946 memcpy(ktp + 1, addr, len);
946 947
947 ktraddentry(l, kte, KTA_WAITOK); 948 ktraddentry(l, kte, KTA_WAITOK);
948} 949}
949 950
950void 951void
951ktr_mmsg(const void *msgh, size_t size) 952ktr_mmsg(const void *msgh, size_t size)
952{ 953{
953 lwp_t *l = curlwp; 954 lwp_t *l = curlwp;
954 955
955 if (!KTRPOINT(l->l_proc, KTR_MMSG)) 956 if (!KTRPOINT(l->l_proc, KTR_MMSG))
956 return; 957 return;
957 958
958 ktr_kmem(l, KTR_MMSG, msgh, size); 959 ktr_kmem(l, KTR_MMSG, msgh, size);
959} 960}
960 961
961void 962void
962ktr_mool(const void *kaddr, size_t size, const void *uaddr) 963ktr_mool(const void *kaddr, size_t size, const void *uaddr)
963{ 964{
964 struct ktrace_entry *kte; 965 struct ktrace_entry *kte;
965 struct ktr_mool *kp; 966 struct ktr_mool *kp;
966 struct ktr_mool *bf; 967 struct ktr_mool *bf;
967 lwp_t *l = curlwp; 968 lwp_t *l = curlwp;
968 969
969 if (!KTRPOINT(l->l_proc, KTR_MOOL)) 970 if (!KTRPOINT(l->l_proc, KTR_MOOL))
970 return; 971 return;
971 972
972 if (ktealloc(&kte, (void *)&kp, l, KTR_MOOL, size + sizeof(*kp))) 973 if (ktealloc(&kte, (void *)&kp, l, KTR_MOOL, size + sizeof(*kp)))
973 return; 974 return;
974 975
975 kp->uaddr = uaddr; 976 kp->uaddr = uaddr;
976 kp->size = size; 977 kp->size = size;
977 bf = kp + 1; /* Skip uaddr and size */ 978 bf = kp + 1; /* Skip uaddr and size */
978 (void)memcpy(bf, kaddr, size); 979 (void)memcpy(bf, kaddr, size);
979 980
980 ktraddentry(l, kte, KTA_WAITOK); 981 ktraddentry(l, kte, KTA_WAITOK);
981} 982}
982 983
983void 984void
984ktr_saupcall(struct lwp *l, int type, int nevent, int nint, void *sas, 985ktr_saupcall(struct lwp *l, int type, int nevent, int nint, void *sas,
985 void *ap, void *ksas) 986 void *ap, void *ksas)
986{ 987{
987 struct ktrace_entry *kte; 988 struct ktrace_entry *kte;
988 struct ktr_saupcall *ktp; 989 struct ktr_saupcall *ktp;
989 size_t len, sz; 990 size_t len, sz;
990 struct sa_t **sapp; 991 struct sa_t **sapp;
991 int i; 992 int i;
992 993
993 if (!KTRPOINT(l->l_proc, KTR_SAUPCALL)) 994 if (!KTRPOINT(l->l_proc, KTR_SAUPCALL))
994 return; 995 return;
995 996
996 len = sizeof(struct ktr_saupcall); 997 len = sizeof(struct ktr_saupcall);
997 sz = len + sizeof(struct sa_t) * (nevent + nint + 1); 998 sz = len + sizeof(struct sa_t) * (nevent + nint + 1);
998 999
999 if (ktealloc(&kte, (void *)&ktp, l, KTR_SAUPCALL, sz)) 1000 if (ktealloc(&kte, (void *)&ktp, l, KTR_SAUPCALL, sz))
1000 return; 1001 return;
1001 1002
1002 ktp->ktr_type = type; 1003 ktp->ktr_type = type;
1003 ktp->ktr_nevent = nevent; 1004 ktp->ktr_nevent = nevent;
1004 ktp->ktr_nint = nint; 1005 ktp->ktr_nint = nint;
1005 ktp->ktr_sas = sas; 1006 ktp->ktr_sas = sas;
1006 ktp->ktr_ap = ap; 1007 ktp->ktr_ap = ap;
1007 1008
1008 /* Copy the sa_t's */ 1009 /* Copy the sa_t's */
1009 sapp = (struct sa_t **) ksas; 1010 sapp = (struct sa_t **) ksas;
1010 1011
1011 for (i = nevent + nint; i >= 0; i--) { 1012 for (i = nevent + nint; i >= 0; i--) {
1012 memcpy((char *)ktp + len, *sapp, sizeof(struct sa_t)); 1013 memcpy((char *)ktp + len, *sapp, sizeof(struct sa_t));
1013 len += sizeof(struct sa_t); 1014 len += sizeof(struct sa_t);
1014 sapp++; 1015 sapp++;
1015 } 1016 }
1016 1017
1017 kte->kte_kth.ktr_len = len; 1018 kte->kte_kth.ktr_len = len;
1018 ktraddentry(l, kte, KTA_WAITOK); 1019 ktraddentry(l, kte, KTA_WAITOK);
1019} 1020}
1020 1021
1021void 1022void
1022ktr_mib(const int *name, u_int namelen) 1023ktr_mib(const int *name, u_int namelen)
1023{ 1024{
1024 struct ktrace_entry *kte; 1025 struct ktrace_entry *kte;
1025 int *namep; 1026 int *namep;
1026 size_t size; 1027 size_t size;
1027 lwp_t *l = curlwp; 1028 lwp_t *l = curlwp;
1028 1029
1029 if (!KTRPOINT(l->l_proc, KTR_MIB)) 1030 if (!KTRPOINT(l->l_proc, KTR_MIB))
1030 return; 1031 return;
1031 1032
1032 size = namelen * sizeof(*name); 1033 size = namelen * sizeof(*name);
1033 1034
1034 if (ktealloc(&kte, (void *)&namep, l, KTR_MIB, size)) 1035 if (ktealloc(&kte, (void *)&namep, l, KTR_MIB, size))
1035 return; 1036 return;
1036 1037
1037 (void)memcpy(namep, name, namelen * sizeof(*name)); 1038 (void)memcpy(namep, name, namelen * sizeof(*name));
1038 1039
1039 ktraddentry(l, kte, KTA_WAITOK); 1040 ktraddentry(l, kte, KTA_WAITOK);
1040} 1041}
1041 1042
1042/* Interface and common routines */ 1043/* Interface and common routines */
1043 1044
1044int 1045int
1045ktrace_common(lwp_t *curl, int ops, int facs, int pid, file_t *fp) 1046ktrace_common(lwp_t *curl, int ops, int facs, int pid, file_t *fp)
1046{ 1047{
1047 struct proc *curp; 1048 struct proc *curp;
1048 struct proc *p; 1049 struct proc *p;
1049 struct pgrp *pg; 1050 struct pgrp *pg;
1050 struct ktr_desc *ktd = NULL; 1051 struct ktr_desc *ktd = NULL;
1051 int ret = 0; 1052 int ret = 0;
1052 int error = 0; 1053 int error = 0;
1053 int descend; 1054 int descend;
1054 1055
1055 curp = curl->l_proc; 1056 curp = curl->l_proc;
1056 descend = ops & KTRFLAG_DESCEND; 1057 descend = ops & KTRFLAG_DESCEND;
1057 facs = facs & ~((unsigned) KTRFAC_PERSISTENT); 1058 facs = facs & ~((unsigned) KTRFAC_PERSISTENT);
1058 1059
1059 (void)ktrenter(curl); 1060 (void)ktrenter(curl);
1060 1061
1061 switch (KTROP(ops)) { 1062 switch (KTROP(ops)) {
1062 1063
1063 case KTROP_CLEARFILE: 1064 case KTROP_CLEARFILE:
1064 /* 1065 /*
1065 * Clear all uses of the tracefile 1066 * Clear all uses of the tracefile
1066 */ 1067 */
1067 mutex_enter(&ktrace_lock); 1068 mutex_enter(&ktrace_lock);
1068 ktd = ktd_lookup(fp); 1069 ktd = ktd_lookup(fp);
1069 mutex_exit(&ktrace_lock); 1070 mutex_exit(&ktrace_lock);
1070 if (ktd == NULL) 1071 if (ktd == NULL)
1071 goto done; 1072 goto done;
1072 error = ktrderefall(ktd, 1); 1073 error = ktrderefall(ktd, 1);
1073 goto done; 1074 goto done;
1074 1075
1075 case KTROP_SET: 1076 case KTROP_SET:
1076 mutex_enter(&ktrace_lock); 1077 mutex_enter(&ktrace_lock);
1077 ktd = ktd_lookup(fp); 1078 ktd = ktd_lookup(fp);
1078 mutex_exit(&ktrace_lock); 1079 mutex_exit(&ktrace_lock);
1079 if (ktd == NULL) { 1080 if (ktd == NULL) {
1080 ktd = kmem_alloc(sizeof(*ktd), KM_SLEEP); 1081 ktd = kmem_alloc(sizeof(*ktd), KM_SLEEP);
1081 TAILQ_INIT(&ktd->ktd_queue); 1082 TAILQ_INIT(&ktd->ktd_queue);
1082 callout_init(&ktd->ktd_wakch, CALLOUT_MPSAFE); 1083 callout_init(&ktd->ktd_wakch, CALLOUT_MPSAFE);
1083 cv_init(&ktd->ktd_cv, "ktrwait"); 1084 cv_init(&ktd->ktd_cv, "ktrwait");
1084 cv_init(&ktd->ktd_sync_cv, "ktrsync"); 1085 cv_init(&ktd->ktd_sync_cv, "ktrsync");
1085 ktd->ktd_flags = 0; 1086 ktd->ktd_flags = 0;
1086 ktd->ktd_qcount = 0; 1087 ktd->ktd_qcount = 0;
1087 ktd->ktd_error = 0; 1088 ktd->ktd_error = 0;
1088 ktd->ktd_errcnt = 0; 1089 ktd->ktd_errcnt = 0;
1089 ktd->ktd_delayqcnt = ktd_delayqcnt; 1090 ktd->ktd_delayqcnt = ktd_delayqcnt;
1090 ktd->ktd_wakedelay = mstohz(ktd_wakedelay); 1091 ktd->ktd_wakedelay = mstohz(ktd_wakedelay);
1091 ktd->ktd_intrwakdl = mstohz(ktd_intrwakdl); 1092 ktd->ktd_intrwakdl = mstohz(ktd_intrwakdl);
1092 ktd->ktd_ref = 0; 1093 ktd->ktd_ref = 0;
1093 ktd->ktd_fp = fp; 1094 ktd->ktd_fp = fp;
1094 mutex_enter(&ktrace_lock); 1095 mutex_enter(&ktrace_lock);
1095 ktdref(ktd); 1096 ktdref(ktd);
1096 mutex_exit(&ktrace_lock); 1097 mutex_exit(&ktrace_lock);
1097 1098
1098 /* 1099 /*
1099 * XXX: not correct. needs an way to detect 1100 * XXX: not correct. needs an way to detect
1100 * whether ktruss or ktrace. 1101 * whether ktruss or ktrace.
1101 */ 1102 */
1102 if (fp->f_type == DTYPE_PIPE) 1103 if (fp->f_type == DTYPE_PIPE)
1103 ktd->ktd_flags |= KTDF_INTERACTIVE; 1104 ktd->ktd_flags |= KTDF_INTERACTIVE;
1104 1105
1105 mutex_enter(&fp->f_lock); 1106 mutex_enter(&fp->f_lock);
1106 fp->f_count++; 1107 fp->f_count++;
1107 mutex_exit(&fp->f_lock); 1108 mutex_exit(&fp->f_lock);
1108 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 1109 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
1109 ktrace_thread, ktd, &ktd->ktd_lwp, "ktrace"); 1110 ktrace_thread, ktd, &ktd->ktd_lwp, "ktrace");
1110 if (error != 0) { 1111 if (error != 0) {
1111 kmem_free(ktd, sizeof(*ktd)); 1112 kmem_free(ktd, sizeof(*ktd));
1112 mutex_enter(&fp->f_lock); 1113 mutex_enter(&fp->f_lock);
1113 fp->f_count--; 1114 fp->f_count--;
1114 mutex_exit(&fp->f_lock); 1115 mutex_exit(&fp->f_lock);
1115 goto done; 1116 goto done;
1116 } 1117 }
1117 1118
1118 mutex_enter(&ktrace_lock); 1119 mutex_enter(&ktrace_lock);
1119 if (ktd_lookup(fp) != NULL) { 1120 if (ktd_lookup(fp) != NULL) {
1120 ktdrel(ktd); 1121 ktdrel(ktd);
1121 ktd = NULL; 1122 ktd = NULL;
1122 } else 1123 } else
1123 TAILQ_INSERT_TAIL(&ktdq, ktd, ktd_list); 1124 TAILQ_INSERT_TAIL(&ktdq, ktd, ktd_list);
1124 if (ktd == NULL) 1125 if (ktd == NULL)
1125 cv_wait(&lbolt, &ktrace_lock); 1126 cv_wait(&lbolt, &ktrace_lock);
1126 mutex_exit(&ktrace_lock); 1127 mutex_exit(&ktrace_lock);
1127 if (ktd == NULL) 1128 if (ktd == NULL)
1128 goto done; 1129 goto done;
1129 } 1130 }
1130 break; 1131 break;
1131 1132
1132 case KTROP_CLEAR: 1133 case KTROP_CLEAR:
1133 break; 1134 break;
1134 } 1135 }
1135 1136
1136 /* 1137 /*
1137 * need something to (un)trace (XXX - why is this here?) 1138 * need something to (un)trace (XXX - why is this here?)
1138 */ 1139 */
1139 if (!facs) { 1140 if (!facs) {
1140 error = EINVAL; 1141 error = EINVAL;
1141 goto done; 1142 goto done;
1142 } 1143 }
1143 1144
1144 /* 1145 /*
1145 * do it 1146 * do it
1146 */ 1147 */
1147 mutex_enter(proc_lock); 1148 mutex_enter(proc_lock);
1148 if (pid < 0) { 1149 if (pid < 0) {
1149 /* 1150 /*
1150 * by process group 1151 * by process group
1151 */ 1152 */
1152 pg = pg_find(-pid, PFIND_LOCKED); 1153 pg = pg_find(-pid, PFIND_LOCKED);
1153 if (pg == NULL) 1154 if (pg == NULL)
1154 error = ESRCH; 1155 error = ESRCH;
1155 else { 1156 else {
1156 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1157 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1157 if (descend) 1158 if (descend)
1158 ret |= ktrsetchildren(curl, p, ops, 1159 ret |= ktrsetchildren(curl, p, ops,
1159 facs, ktd); 1160 facs, ktd);
1160 else 1161 else
1161 ret |= ktrops(curl, p, ops, facs, 1162 ret |= ktrops(curl, p, ops, facs,
1162 ktd); 1163 ktd);
1163 } 1164 }
1164 } 1165 }
1165 1166
1166 } else { 1167 } else {
1167 /* 1168 /*
1168 * by pid 1169 * by pid
1169 */ 1170 */
1170 p = p_find(pid, PFIND_LOCKED); 1171 p = p_find(pid, PFIND_LOCKED);
1171 if (p == NULL) 1172 if (p == NULL)
1172 error = ESRCH; 1173 error = ESRCH;
1173 else if (descend) 1174 else if (descend)
1174 ret |= ktrsetchildren(curl, p, ops, facs, ktd); 1175 ret |= ktrsetchildren(curl, p, ops, facs, ktd);
1175 else 1176 else
1176 ret |= ktrops(curl, p, ops, facs, ktd); 1177 ret |= ktrops(curl, p, ops, facs, ktd);
1177 } 1178 }
1178 mutex_exit(proc_lock); 1179 mutex_exit(proc_lock);
1179 if (error == 0 && !ret) 1180 if (error == 0 && !ret)
1180 error = EPERM; 1181 error = EPERM;
1181done: 1182done:
1182 if (ktd != NULL) { 1183 if (ktd != NULL) {
1183 mutex_enter(&ktrace_lock); 1184 mutex_enter(&ktrace_lock);
1184 if (error != 0) { 1185 if (error != 0) {
1185 /* 1186 /*
1186 * Wakeup the thread so that it can be die if we 1187 * Wakeup the thread so that it can be die if we
1187 * can't trace any process. 1188 * can't trace any process.
1188 */ 1189 */
1189 ktd_wakeup(ktd); 1190 ktd_wakeup(ktd);
1190 } 1191 }
1191 if (KTROP(ops) == KTROP_SET || KTROP(ops) == KTROP_CLEARFILE) 1192 if (KTROP(ops) == KTROP_SET || KTROP(ops) == KTROP_CLEARFILE)
1192 ktdrel(ktd); 1193 ktdrel(ktd);
1193 mutex_exit(&ktrace_lock); 1194 mutex_exit(&ktrace_lock);
1194 } 1195 }
1195 ktrexit(curl); 1196 ktrexit(curl);
1196 return (error); 1197 return (error);
1197} 1198}
1198 1199
1199/* 1200/*
1200 * fktrace system call 1201 * fktrace system call
1201 */ 1202 */
1202/* ARGSUSED */ 1203/* ARGSUSED */
1203int 1204int
1204sys_fktrace(struct lwp *l, const struct sys_fktrace_args *uap, register_t *retval) 1205sys_fktrace(struct lwp *l, const struct sys_fktrace_args *uap, register_t *retval)
1205{ 1206{
1206 /* { 1207 /* {
1207 syscallarg(int) fd; 1208 syscallarg(int) fd;
1208 syscallarg(int) ops; 1209 syscallarg(int) ops;
1209 syscallarg(int) facs; 1210 syscallarg(int) facs;
1210 syscallarg(int) pid; 1211 syscallarg(int) pid;
1211 } */ 1212 } */
1212 file_t *fp; 1213 file_t *fp;
1213 int error, fd; 1214 int error, fd;
1214 1215
1215 fd = SCARG(uap, fd); 1216 fd = SCARG(uap, fd);
1216 if ((fp = fd_getfile(fd)) == NULL) 1217 if ((fp = fd_getfile(fd)) == NULL)
1217 return (EBADF); 1218 return (EBADF);
1218 if ((fp->f_flag & FWRITE) == 0) 1219 if ((fp->f_flag & FWRITE) == 0)
1219 error = EBADF; 1220 error = EBADF;
1220 else 1221 else
1221 error = ktrace_common(l, SCARG(uap, ops), 1222 error = ktrace_common(l, SCARG(uap, ops),
1222 SCARG(uap, facs), SCARG(uap, pid), fp); 1223 SCARG(uap, facs), SCARG(uap, pid), fp);
1223 fd_putfile(fd); 1224 fd_putfile(fd);
1224 return error; 1225 return error;
1225} 1226}
1226 1227
1227/* 1228/*
1228 * ktrace system call 1229 * ktrace system call
1229 */ 1230 */
1230/* ARGSUSED */ 1231/* ARGSUSED */
1231int 1232int
1232sys_ktrace(struct lwp *l, const struct sys_ktrace_args *uap, register_t *retval) 1233sys_ktrace(struct lwp *l, const struct sys_ktrace_args *uap, register_t *retval)
1233{ 1234{
1234 /* { 1235 /* {
1235 syscallarg(const char *) fname; 1236 syscallarg(const char *) fname;
1236 syscallarg(int) ops; 1237 syscallarg(int) ops;
1237 syscallarg(int) facs; 1238 syscallarg(int) facs;
1238 syscallarg(int) pid; 1239 syscallarg(int) pid;
1239 } */ 1240 } */
1240 struct vnode *vp = NULL; 1241 struct vnode *vp = NULL;
1241 file_t *fp = NULL; 1242 file_t *fp = NULL;
1242 struct nameidata nd; 1243 struct nameidata nd;
1243 int error = 0; 1244 int error = 0;
1244 int fd; 1245 int fd;
1245 1246
1246 if (ktrenter(l)) 1247 if (ktrenter(l))
1247 return EAGAIN; 1248 return EAGAIN;
1248 1249
1249 if (KTROP(SCARG(uap, ops)) != KTROP_CLEAR) { 1250 if (KTROP(SCARG(uap, ops)) != KTROP_CLEAR) {
1250 /* 1251 /*
1251 * an operation which requires a file argument. 1252 * an operation which requires a file argument.
1252 */ 1253 */
1253 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, SCARG(uap, fname)); 1254 NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, SCARG(uap, fname));
1254 if ((error = vn_open(&nd, FREAD|FWRITE, 0)) != 0) { 1255 if ((error = vn_open(&nd, FREAD|FWRITE, 0)) != 0) {
1255 ktrexit(l); 1256 ktrexit(l);
1256 return (error); 1257 return (error);
1257 } 1258 }
1258 vp = nd.ni_vp; 1259 vp = nd.ni_vp;
1259 VOP_UNLOCK(vp, 0); 1260 VOP_UNLOCK(vp, 0);
1260 if (vp->v_type != VREG) { 1261 if (vp->v_type != VREG) {
1261 vn_close(vp, FREAD|FWRITE, l->l_cred); 1262 vn_close(vp, FREAD|FWRITE, l->l_cred);
1262 ktrexit(l); 1263 ktrexit(l);
1263 return (EACCES); 1264 return (EACCES);
1264 } 1265 }
1265 /* 1266 /*
1266 * This uses up a file descriptor slot in the 1267 * This uses up a file descriptor slot in the
1267 * tracing process for the duration of this syscall. 1268 * tracing process for the duration of this syscall.
1268 * This is not expected to be a problem. 1269 * This is not expected to be a problem.
1269 */ 1270 */
1270 if ((error = fd_allocfile(&fp, &fd)) != 0) { 1271 if ((error = fd_allocfile(&fp, &fd)) != 0) {
1271 vn_close(vp, FWRITE, l->l_cred); 1272 vn_close(vp, FWRITE, l->l_cred);
1272 ktrexit(l); 1273 ktrexit(l);
1273 return error; 1274 return error;
1274 } 1275 }
1275 fp->f_flag = FWRITE; 1276 fp->f_flag = FWRITE;
1276 fp->f_type = DTYPE_VNODE; 1277 fp->f_type = DTYPE_VNODE;
1277 fp->f_ops = &vnops; 1278 fp->f_ops = &vnops;
1278 fp->f_data = (void *)vp; 1279 fp->f_data = (void *)vp;
1279 vp = NULL; 1280 vp = NULL;
1280 } 1281 }
1281 error = ktrace_common(l, SCARG(uap, ops), SCARG(uap, facs), 1282 error = ktrace_common(l, SCARG(uap, ops), SCARG(uap, facs),
1282 SCARG(uap, pid), fp); 1283 SCARG(uap, pid), fp);
1283 if (fp != NULL) { 1284 if (fp != NULL) {
1284 if (error != 0) { 1285 if (error != 0) {
1285 /* File unused. */ 1286 /* File unused. */
1286 fd_abort(curproc, fp, fd); 1287 fd_abort(curproc, fp, fd);
1287 } else { 1288 } else {
1288 /* File was used. */ 1289 /* File was used. */
1289 fd_abort(curproc, NULL, fd); 1290 fd_abort(curproc, NULL, fd);
1290 } 1291 }
1291 } 1292 }
1292 return (error); 1293 return (error);
1293} 1294}
1294 1295
1295int 1296int
1296ktrops(lwp_t *curl, struct proc *p, int ops, int facs, 1297ktrops(lwp_t *curl, struct proc *p, int ops, int facs,
1297 struct ktr_desc *ktd) 1298 struct ktr_desc *ktd)
1298{ 1299{
1299 int vers = ops & KTRFAC_VER_MASK; 1300 int vers = ops & KTRFAC_VER_MASK;
1300 int error = 0; 1301 int error = 0;
1301 1302
1302 mutex_enter(p->p_lock); 1303 mutex_enter(p->p_lock);
1303 mutex_enter(&ktrace_lock); 1304 mutex_enter(&ktrace_lock);
1304 1305
1305 if (!ktrcanset(curl, p)) 1306 if (!ktrcanset(curl, p))
1306 goto out; 1307 goto out;
1307 1308
1308 switch (vers) { 1309 switch (vers) {
1309 case KTRFACv0: 1310 case KTRFACv0:
1310 case KTRFACv1: 1311 case KTRFACv1:
1311 case KTRFACv2: 1312 case KTRFACv2:
1312 break; 1313 break;
1313 default: 1314 default:
1314 error = EINVAL; 1315 error = EINVAL;
1315 goto out; 1316 goto out;
1316 } 1317 }
1317 1318
1318 if (KTROP(ops) == KTROP_SET) { 1319 if (KTROP(ops) == KTROP_SET) {
1319 if (p->p_tracep != ktd) { 1320 if (p->p_tracep != ktd) {
1320 /* 1321 /*
1321 * if trace file already in use, relinquish 1322 * if trace file already in use, relinquish
1322 */ 1323 */
1323 ktrderef(p); 1324 ktrderef(p);
1324 p->p_tracep = ktd; 1325 p->p_tracep = ktd;
1325 ktradref(p); 1326 ktradref(p);
1326 } 1327 }
1327 p->p_traceflag |= facs; 1328 p->p_traceflag |= facs;
1328 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KTRACE, 1329 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KTRACE,
1329 p, KAUTH_ARG(KAUTH_REQ_PROCESS_KTRACE_PERSISTENT), NULL, 1330 p, KAUTH_ARG(KAUTH_REQ_PROCESS_KTRACE_PERSISTENT), NULL,
1330 NULL) == 0) 1331 NULL) == 0)
1331 p->p_traceflag |= KTRFAC_PERSISTENT; 1332 p->p_traceflag |= KTRFAC_PERSISTENT;
1332 } else { 1333 } else {
1333 /* KTROP_CLEAR */ 1334 /* KTROP_CLEAR */
1334 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) { 1335 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) {
1335 /* no more tracing */ 1336 /* no more tracing */
1336 ktrderef(p); 1337 ktrderef(p);
1337 } 1338 }
1338 } 1339 }
1339 1340
1340 if (p->p_traceflag) 1341 if (p->p_traceflag)
1341 p->p_traceflag |= vers; 1342 p->p_traceflag |= vers;
1342 /* 1343 /*
1343 * Emit an emulation record, every time there is a ktrace 1344 * Emit an emulation record, every time there is a ktrace
1344 * change/attach request. 1345 * change/attach request.
1345 */ 1346 */
1346 if (KTRPOINT(p, KTR_EMUL)) 1347 if (KTRPOINT(p, KTR_EMUL))
1347 p->p_traceflag |= KTRFAC_TRC_EMUL; 1348 p->p_traceflag |= KTRFAC_TRC_EMUL;
1348 1349
1349 p->p_trace_enabled = trace_is_enabled(p); 1350 p->p_trace_enabled = trace_is_enabled(p);
1350#ifdef __HAVE_SYSCALL_INTERN 1351#ifdef __HAVE_SYSCALL_INTERN
1351 (*p->p_emul->e_syscall_intern)(p); 1352 (*p->p_emul->e_syscall_intern)(p);
1352#endif 1353#endif
1353 1354
1354 out: 1355 out:
1355 mutex_exit(&ktrace_lock); 1356 mutex_exit(&ktrace_lock);
1356 mutex_exit(p->p_lock); 1357 mutex_exit(p->p_lock);
1357 1358
1358 return (1); 1359 return (1);
1359} 1360}
1360 1361
1361int 1362int
1362ktrsetchildren(lwp_t *curl, struct proc *top, int ops, int facs, 1363ktrsetchildren(lwp_t *curl, struct proc *top, int ops, int facs,
1363 struct ktr_desc *ktd) 1364 struct ktr_desc *ktd)
1364{ 1365{
1365 struct proc *p; 1366 struct proc *p;
1366 int ret = 0; 1367 int ret = 0;
1367 1368
1368 KASSERT(mutex_owned(proc_lock)); 1369 KASSERT(mutex_owned(proc_lock));
1369 1370
1370 p = top; 1371 p = top;
1371 for (;;) { 1372 for (;;) {
1372 ret |= ktrops(curl, p, ops, facs, ktd); 1373 ret |= ktrops(curl, p, ops, facs, ktd);
1373 /* 1374 /*
1374 * If this process has children, descend to them next, 1375 * If this process has children, descend to them next,
1375 * otherwise do any siblings, and if done with this level, 1376 * otherwise do any siblings, and if done with this level,
1376 * follow back up the tree (but not past top). 1377 * follow back up the tree (but not past top).
1377 */ 1378 */
1378 if (LIST_FIRST(&p->p_children) != NULL) { 1379 if (LIST_FIRST(&p->p_children) != NULL) {
1379 p = LIST_FIRST(&p->p_children); 1380 p = LIST_FIRST(&p->p_children);
1380 continue; 1381 continue;
1381 } 1382 }
1382 for (;;) { 1383 for (;;) {
1383 if (p == top) 1384 if (p == top)
1384 return (ret); 1385 return (ret);
1385 if (LIST_NEXT(p, p_sibling) != NULL) { 1386 if (LIST_NEXT(p, p_sibling) != NULL) {
1386 p = LIST_NEXT(p, p_sibling); 1387 p = LIST_NEXT(p, p_sibling);
1387 break; 1388 break;
1388 } 1389 }
1389 p = p->p_pptr; 1390 p = p->p_pptr;
1390 } 1391 }
1391 } 1392 }
1392 /*NOTREACHED*/ 1393 /*NOTREACHED*/
1393} 1394}
1394 1395
1395void 1396void
1396ktrwrite(struct ktr_desc *ktd, struct ktrace_entry *kte) 1397ktrwrite(struct ktr_desc *ktd, struct ktrace_entry *kte)
1397{ 1398{
1398 size_t hlen; 1399 size_t hlen;
1399 struct uio auio; 1400 struct uio auio;
1400 struct iovec aiov[64], *iov; 1401 struct iovec aiov[64], *iov;
1401 struct ktrace_entry *top = kte; 1402 struct ktrace_entry *top = kte;
1402 struct ktr_header *kth; 1403 struct ktr_header *kth;
1403 file_t *fp = ktd->ktd_fp; 1404 file_t *fp = ktd->ktd_fp;
1404 int error; 1405 int error;
1405next: 1406next:
1406 auio.uio_iov = iov = &aiov[0]; 1407 auio.uio_iov = iov = &aiov[0];
1407 auio.uio_offset = 0; 1408 auio.uio_offset = 0;
1408 auio.uio_rw = UIO_WRITE; 1409 auio.uio_rw = UIO_WRITE;
1409 auio.uio_resid = 0; 1410 auio.uio_resid = 0;
1410 auio.uio_iovcnt = 0; 1411 auio.uio_iovcnt = 0;
1411 UIO_SETUP_SYSSPACE(&auio); 1412 UIO_SETUP_SYSSPACE(&auio);
1412 do { 1413 do {
1413 struct timespec ts; 1414 struct timespec ts;
1414 lwpid_t lid; 1415 lwpid_t lid;
1415 kth = &kte->kte_kth; 1416 kth = &kte->kte_kth;
1416 1417
1417 hlen = sizeof(struct ktr_header); 1418 hlen = sizeof(struct ktr_header);
1418 switch (kth->ktr_version) { 1419 switch (kth->ktr_version) {
1419 case 0: 1420 case 0:
1420 ts = kth->ktr_time; 1421 ts = kth->ktr_time;
1421 1422
1422 kth->ktr_otv.tv_sec = ts.tv_sec; 1423 kth->ktr_otv.tv_sec = ts.tv_sec;
1423 kth->ktr_otv.tv_usec = ts.tv_nsec / 1000; 1424 kth->ktr_otv.tv_usec = ts.tv_nsec / 1000;
1424 kth->ktr_unused = NULL; 1425 kth->ktr_unused = NULL;
1425 hlen -= sizeof(kth->_v) - 1426 hlen -= sizeof(kth->_v) -
1426 MAX(sizeof(kth->_v._v0), sizeof(kth->_v._v1)); 1427 MAX(sizeof(kth->_v._v0), sizeof(kth->_v._v1));
1427 break; 1428 break;
1428 case 1: 1429 case 1:
1429 ts = kth->ktr_time; 1430 ts = kth->ktr_time;
1430 lid = kth->ktr_lid; 1431 lid = kth->ktr_lid;
1431 1432
1432 kth->ktr_ots.tv_sec = ts.tv_sec; 1433 kth->ktr_ots.tv_sec = ts.tv_sec;
1433 kth->ktr_ots.tv_nsec = ts.tv_nsec; 1434 kth->ktr_ots.tv_nsec = ts.tv_nsec;
1434 kth->ktr_olid = lid; 1435 kth->ktr_olid = lid;
1435 hlen -= sizeof(kth->_v) - 1436 hlen -= sizeof(kth->_v) -
1436 MAX(sizeof(kth->_v._v0), sizeof(kth->_v._v1)); 1437 MAX(sizeof(kth->_v._v0), sizeof(kth->_v._v1));
1437 break; 1438 break;
1438 } 1439 }
1439 iov->iov_base = (void *)kth; 1440 iov->iov_base = (void *)kth;
1440 iov++->iov_len = hlen; 1441 iov++->iov_len = hlen;
1441 auio.uio_resid += hlen; 1442 auio.uio_resid += hlen;
1442 auio.uio_iovcnt++; 1443 auio.uio_iovcnt++;
1443 if (kth->ktr_len > 0) { 1444 if (kth->ktr_len > 0) {
1444 iov->iov_base = kte->kte_buf; 1445 iov->iov_base = kte->kte_buf;
1445 iov++->iov_len = kth->ktr_len; 1446 iov++->iov_len = kth->ktr_len;
1446 auio.uio_resid += kth->ktr_len; 1447 auio.uio_resid += kth->ktr_len;
1447 auio.uio_iovcnt++; 1448 auio.uio_iovcnt++;
1448 } 1449 }
1449 } while ((kte = TAILQ_NEXT(kte, kte_list)) != NULL && 1450 } while ((kte = TAILQ_NEXT(kte, kte_list)) != NULL &&
1450 auio.uio_iovcnt < sizeof(aiov) / sizeof(aiov[0]) - 1); 1451 auio.uio_iovcnt < sizeof(aiov) / sizeof(aiov[0]) - 1);
1451 1452
1452again: 1453again:
1453 error = (*fp->f_ops->fo_write)(fp, &fp->f_offset, &auio, 1454 error = (*fp->f_ops->fo_write)(fp, &fp->f_offset, &auio,
1454 fp->f_cred, FOF_UPDATE_OFFSET); 1455 fp->f_cred, FOF_UPDATE_OFFSET);
1455 switch (error) { 1456 switch (error) {
1456 1457
1457 case 0: 1458 case 0:
1458 if (auio.uio_resid > 0) 1459 if (auio.uio_resid > 0)
1459 goto again; 1460 goto again;
1460 if (kte != NULL) 1461 if (kte != NULL)
1461 goto next; 1462 goto next;
1462 break; 1463 break;
1463 1464
1464 case EWOULDBLOCK: 1465 case EWOULDBLOCK:
1465 kpause("ktrzzz", false, 1, NULL); 1466 kpause("ktrzzz", false, 1, NULL);
1466 goto again; 1467 goto again;
1467 1468
1468 default: 1469 default:
1469 /* 1470 /*
1470 * If error encountered, give up tracing on this 1471 * If error encountered, give up tracing on this
1471 * vnode. Don't report EPIPE as this can easily 1472 * vnode. Don't report EPIPE as this can easily
1472 * happen with fktrace()/ktruss. 1473 * happen with fktrace()/ktruss.
1473 */ 1474 */
1474#ifndef DEBUG 1475#ifndef DEBUG
1475 if (error != EPIPE) 1476 if (error != EPIPE)
1476#endif 1477#endif
1477 log(LOG_NOTICE, 1478 log(LOG_NOTICE,
1478 "ktrace write failed, errno %d, tracing stopped\n", 1479 "ktrace write failed, errno %d, tracing stopped\n",
1479 error); 1480 error);
1480 (void)ktrderefall(ktd, 0); 1481 (void)ktrderefall(ktd, 0);
1481 } 1482 }
1482 1483
1483 while ((kte = top) != NULL) { 1484 while ((kte = top) != NULL) {
1484 top = TAILQ_NEXT(top, kte_list); 1485 top = TAILQ_NEXT(top, kte_list);
1485 ktefree(kte); 1486 ktefree(kte);
1486 } 1487 }
1487} 1488}
1488 1489
1489void 1490void
1490ktrace_thread(void *arg) 1491ktrace_thread(void *arg)
1491{ 1492{
1492 struct ktr_desc *ktd = arg; 1493 struct ktr_desc *ktd = arg;
1493 file_t *fp = ktd->ktd_fp; 1494 file_t *fp = ktd->ktd_fp;
1494 struct ktrace_entry *kte; 1495 struct ktrace_entry *kte;
1495 int ktrerr, errcnt; 1496 int ktrerr, errcnt;
1496 1497
1497 mutex_enter(&ktrace_lock); 1498 mutex_enter(&ktrace_lock);
1498 for (;;) { 1499 for (;;) {
1499 kte = TAILQ_FIRST(&ktd->ktd_queue); 1500 kte = TAILQ_FIRST(&ktd->ktd_queue);
1500 if (kte == NULL) { 1501 if (kte == NULL) {
1501 if (ktd->ktd_flags & KTDF_WAIT) { 1502 if (ktd->ktd_flags & KTDF_WAIT) {
1502 ktd->ktd_flags &= ~(KTDF_WAIT | KTDF_BLOCKING); 1503 ktd->ktd_flags &= ~(KTDF_WAIT | KTDF_BLOCKING);
1503 cv_broadcast(&ktd->ktd_sync_cv); 1504 cv_broadcast(&ktd->ktd_sync_cv);
1504 } 1505 }
1505 if (ktd->ktd_ref == 0) 1506 if (ktd->ktd_ref == 0)
1506 break; 1507 break;
1507 cv_wait(&ktd->ktd_cv, &ktrace_lock); 1508 cv_wait(&ktd->ktd_cv, &ktrace_lock);
1508 continue; 1509 continue;
1509 } 1510 }
1510 TAILQ_INIT(&ktd->ktd_queue); 1511 TAILQ_INIT(&ktd->ktd_queue);
1511 ktd->ktd_qcount = 0; 1512 ktd->ktd_qcount = 0;
1512 ktrerr = ktd->ktd_error; 1513 ktrerr = ktd->ktd_error;
1513 errcnt = ktd->ktd_errcnt; 1514 errcnt = ktd->ktd_errcnt;
1514 ktd->ktd_error = ktd->ktd_errcnt = 0; 1515 ktd->ktd_error = ktd->ktd_errcnt = 0;
1515 mutex_exit(&ktrace_lock); 1516 mutex_exit(&ktrace_lock);
1516 1517
1517 if (ktrerr) { 1518 if (ktrerr) {
1518 log(LOG_NOTICE, 1519 log(LOG_NOTICE,
1519 "ktrace failed, fp %p, error 0x%x, total %d\n", 1520 "ktrace failed, fp %p, error 0x%x, total %d\n",
1520 fp, ktrerr, errcnt); 1521 fp, ktrerr, errcnt);
1521 } 1522 }
1522 ktrwrite(ktd, kte); 1523 ktrwrite(ktd, kte);
1523 mutex_enter(&ktrace_lock); 1524 mutex_enter(&ktrace_lock);
1524 } 1525 }
1525 1526
1526 TAILQ_REMOVE(&ktdq, ktd, ktd_list); 1527 TAILQ_REMOVE(&ktdq, ktd, ktd_list);
1527 mutex_exit(&ktrace_lock); 1528 mutex_exit(&ktrace_lock);
1528 1529
1529 /* 1530 /*
1530 * ktrace file descriptor can't be watched (are not visible to 1531 * ktrace file descriptor can't be watched (are not visible to
1531 * userspace), so no kqueue stuff here 1532 * userspace), so no kqueue stuff here
1532 * XXX: The above comment is wrong, because the fktrace file 1533 * XXX: The above comment is wrong, because the fktrace file
1533 * descriptor is available in userland. 1534 * descriptor is available in userland.
1534 */ 1535 */
1535 closef(fp); 1536 closef(fp);
1536 1537
1537 cv_destroy(&ktd->ktd_sync_cv); 1538 cv_destroy(&ktd->ktd_sync_cv);
1538 cv_destroy(&ktd->ktd_cv); 1539 cv_destroy(&ktd->ktd_cv);
1539 1540
1540 callout_stop(&ktd->ktd_wakch); 1541 callout_stop(&ktd->ktd_wakch);
1541 callout_destroy(&ktd->ktd_wakch); 1542 callout_destroy(&ktd->ktd_wakch);
1542 kmem_free(ktd, sizeof(*ktd)); 1543 kmem_free(ktd, sizeof(*ktd));
1543 1544
1544 kthread_exit(0); 1545 kthread_exit(0);
1545} 1546}
1546 1547
1547/* 1548/*
1548 * Return true if caller has permission to set the ktracing state 1549 * Return true if caller has permission to set the ktracing state
1549 * of target. Essentially, the target can't possess any 1550 * of target. Essentially, the target can't possess any
1550 * more permissions than the caller. KTRFAC_PERSISTENT signifies that 1551 * more permissions than the caller. KTRFAC_PERSISTENT signifies that
1551 * the tracing will persist on sugid processes during exec; it is only 1552 * the tracing will persist on sugid processes during exec; it is only
1552 * settable by a process with appropriate credentials. 1553 * settable by a process with appropriate credentials.
1553 * 1554 *
1554 * TODO: check groups. use caller effective gid. 1555 * TODO: check groups. use caller effective gid.
1555 */ 1556 */
1556int 1557int
1557ktrcanset(lwp_t *calll, struct proc *targetp) 1558ktrcanset(lwp_t *calll, struct proc *targetp)
1558{ 1559{
1559 KASSERT(mutex_owned(targetp->p_lock)); 1560 KASSERT(mutex_owned(targetp->p_lock));
1560 KASSERT(mutex_owned(&ktrace_lock)); 1561 KASSERT(mutex_owned(&ktrace_lock));
1561 1562
1562 if (kauth_authorize_process(calll->l_cred, KAUTH_PROCESS_KTRACE, 1563 if (kauth_authorize_process(calll->l_cred, KAUTH_PROCESS_KTRACE,
1563 targetp, NULL, NULL, NULL) == 0) 1564 targetp, NULL, NULL, NULL) == 0)
1564 return (1); 1565 return (1);
1565 1566
1566 return (0); 1567 return (0);
1567} 1568}
1568 1569
1569/* 1570/*
1570 * Put user defined entry to ktrace records. 1571 * Put user defined entry to ktrace records.
1571 */ 1572 */
1572int 1573int
1573sys_utrace(struct lwp *l, const struct sys_utrace_args *uap, register_t *retval) 1574sys_utrace(struct lwp *l, const struct sys_utrace_args *uap, register_t *retval)
1574{ 1575{
1575 /* { 1576 /* {
1576 syscallarg(const char *) label; 1577 syscallarg(const char *) label;
1577 syscallarg(void *) addr; 1578 syscallarg(void *) addr;
1578 syscallarg(size_t) len; 1579 syscallarg(size_t) len;
1579 } */ 1580 } */
1580 1581
1581 return ktruser(SCARG(uap, label), SCARG(uap, addr), 1582 return ktruser(SCARG(uap, label), SCARG(uap, addr),
1582 SCARG(uap, len), 1); 1583 SCARG(uap, len), 1);
1583} 1584}