Mon Aug 9 15:50:13 2010 UTC ()
Return error if we try to mount a file system with block size > MAXBSIZE.

Note: there is a billion ways to make the kernel panic by trying
to mount a garbage file system and I don't imagine we'll ever get
close to fixing even half of them.  However, for this one failing
gracefully is a bonus since Xen DomU only does 32k MAXBSIZE and
the 64k MAXBSIZE file systems are out there (PR port-xen/43727).

Tested by compiling sys/rump with CPPFLAGS+=-DMAXPHYS=32768 (all
tests in tests/fs still pass).  I don't know how we're going to
translate this into an easy regression test, though.  Maybe with
a hacked newfs?


(pooka)
diff -r1.260 -r1.261 src/sys/ufs/ffs/ffs_vfsops.c

cvs diff -r1.260 -r1.261 src/sys/ufs/ffs/ffs_vfsops.c (switch to unified diff)

--- src/sys/ufs/ffs/ffs_vfsops.c 2010/07/21 17:52:13 1.260
+++ src/sys/ufs/ffs/ffs_vfsops.c 2010/08/09 15:50:13 1.261
@@ -1,1934 +1,1946 @@ @@ -1,1934 +1,1946 @@
1/* $NetBSD: ffs_vfsops.c,v 1.260 2010/07/21 17:52:13 hannken Exp $ */ 1/* $NetBSD: ffs_vfsops.c,v 1.261 2010/08/09 15:50:13 pooka Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc. 4 * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * This code is derived from software contributed to The NetBSD Foundation 7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc, and by Andrew Doran. 8 * by Wasabi Systems, Inc, and by Andrew Doran.
9 * 9 *
10 * Redistribution and use in source and binary forms, with or without 10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions 11 * modification, are permitted provided that the following conditions
12 * are met: 12 * are met:
13 * 1. Redistributions of source code must retain the above copyright 13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer. 14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright 15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the 16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution. 17 * documentation and/or other materials provided with the distribution.
18 * 18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE. 29 * POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31 31
32/* 32/*
33 * Copyright (c) 1989, 1991, 1993, 1994 33 * Copyright (c) 1989, 1991, 1993, 1994
34 * The Regents of the University of California. All rights reserved. 34 * The Regents of the University of California. All rights reserved.
35 * 35 *
36 * Redistribution and use in source and binary forms, with or without 36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions 37 * modification, are permitted provided that the following conditions
38 * are met: 38 * are met:
39 * 1. Redistributions of source code must retain the above copyright 39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer. 40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright 41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the 42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution. 43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors 44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software 45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission. 46 * without specific prior written permission.
47 * 47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE. 58 * SUCH DAMAGE.
59 * 59 *
60 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95 60 * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
61 */ 61 */
62 62
63#include <sys/cdefs.h> 63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.260 2010/07/21 17:52:13 hannken Exp $"); 64__KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.261 2010/08/09 15:50:13 pooka Exp $");
65 65
66#if defined(_KERNEL_OPT) 66#if defined(_KERNEL_OPT)
67#include "opt_ffs.h" 67#include "opt_ffs.h"
68#include "opt_quota.h" 68#include "opt_quota.h"
69#include "opt_wapbl.h" 69#include "opt_wapbl.h"
70#endif 70#endif
71 71
72#include <sys/param.h> 72#include <sys/param.h>
73#include <sys/systm.h> 73#include <sys/systm.h>
74#include <sys/namei.h> 74#include <sys/namei.h>
75#include <sys/proc.h> 75#include <sys/proc.h>
76#include <sys/kernel.h> 76#include <sys/kernel.h>
77#include <sys/vnode.h> 77#include <sys/vnode.h>
78#include <sys/socket.h> 78#include <sys/socket.h>
79#include <sys/mount.h> 79#include <sys/mount.h>
80#include <sys/buf.h> 80#include <sys/buf.h>
81#include <sys/device.h> 81#include <sys/device.h>
82#include <sys/mbuf.h> 82#include <sys/mbuf.h>
83#include <sys/file.h> 83#include <sys/file.h>
84#include <sys/disklabel.h> 84#include <sys/disklabel.h>
85#include <sys/ioctl.h> 85#include <sys/ioctl.h>
86#include <sys/errno.h> 86#include <sys/errno.h>
87#include <sys/malloc.h> 87#include <sys/malloc.h>
88#include <sys/pool.h> 88#include <sys/pool.h>
89#include <sys/lock.h> 89#include <sys/lock.h>
90#include <sys/sysctl.h> 90#include <sys/sysctl.h>
91#include <sys/conf.h> 91#include <sys/conf.h>
92#include <sys/kauth.h> 92#include <sys/kauth.h>
93#include <sys/wapbl.h> 93#include <sys/wapbl.h>
94#include <sys/fstrans.h> 94#include <sys/fstrans.h>
95#include <sys/module.h> 95#include <sys/module.h>
96 96
97#include <miscfs/genfs/genfs.h> 97#include <miscfs/genfs/genfs.h>
98#include <miscfs/specfs/specdev.h> 98#include <miscfs/specfs/specdev.h>
99 99
100#include <ufs/ufs/quota.h> 100#include <ufs/ufs/quota.h>
101#include <ufs/ufs/ufsmount.h> 101#include <ufs/ufs/ufsmount.h>
102#include <ufs/ufs/inode.h> 102#include <ufs/ufs/inode.h>
103#include <ufs/ufs/dir.h> 103#include <ufs/ufs/dir.h>
104#include <ufs/ufs/ufs_extern.h> 104#include <ufs/ufs/ufs_extern.h>
105#include <ufs/ufs/ufs_bswap.h> 105#include <ufs/ufs/ufs_bswap.h>
106#include <ufs/ufs/ufs_wapbl.h> 106#include <ufs/ufs/ufs_wapbl.h>
107 107
108#include <ufs/ffs/fs.h> 108#include <ufs/ffs/fs.h>
109#include <ufs/ffs/ffs_extern.h> 109#include <ufs/ffs/ffs_extern.h>
110 110
111MODULE(MODULE_CLASS_VFS, ffs, NULL); 111MODULE(MODULE_CLASS_VFS, ffs, NULL);
112 112
113static int ffs_vfs_fsync(vnode_t *, int); 113static int ffs_vfs_fsync(vnode_t *, int);
114 114
115static struct sysctllog *ffs_sysctl_log; 115static struct sysctllog *ffs_sysctl_log;
116 116
117/* how many times ffs_init() was called */ 117/* how many times ffs_init() was called */
118int ffs_initcount = 0; 118int ffs_initcount = 0;
119 119
120extern const struct vnodeopv_desc ffs_vnodeop_opv_desc; 120extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
121extern const struct vnodeopv_desc ffs_specop_opv_desc; 121extern const struct vnodeopv_desc ffs_specop_opv_desc;
122extern const struct vnodeopv_desc ffs_fifoop_opv_desc; 122extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
123 123
124const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = { 124const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
125 &ffs_vnodeop_opv_desc, 125 &ffs_vnodeop_opv_desc,
126 &ffs_specop_opv_desc, 126 &ffs_specop_opv_desc,
127 &ffs_fifoop_opv_desc, 127 &ffs_fifoop_opv_desc,
128 NULL, 128 NULL,
129}; 129};
130 130
131struct vfsops ffs_vfsops = { 131struct vfsops ffs_vfsops = {
132 MOUNT_FFS, 132 MOUNT_FFS,
133 sizeof (struct ufs_args), 133 sizeof (struct ufs_args),
134 ffs_mount, 134 ffs_mount,
135 ufs_start, 135 ufs_start,
136 ffs_unmount, 136 ffs_unmount,
137 ufs_root, 137 ufs_root,
138 ufs_quotactl, 138 ufs_quotactl,
139 ffs_statvfs, 139 ffs_statvfs,
140 ffs_sync, 140 ffs_sync,
141 ffs_vget, 141 ffs_vget,
142 ffs_fhtovp, 142 ffs_fhtovp,
143 ffs_vptofh, 143 ffs_vptofh,
144 ffs_init, 144 ffs_init,
145 ffs_reinit, 145 ffs_reinit,
146 ffs_done, 146 ffs_done,
147 ffs_mountroot, 147 ffs_mountroot,
148 ffs_snapshot, 148 ffs_snapshot,
149 ffs_extattrctl, 149 ffs_extattrctl,
150 ffs_suspendctl, 150 ffs_suspendctl,
151 genfs_renamelock_enter, 151 genfs_renamelock_enter,
152 genfs_renamelock_exit, 152 genfs_renamelock_exit,
153 ffs_vfs_fsync, 153 ffs_vfs_fsync,
154 ffs_vnodeopv_descs, 154 ffs_vnodeopv_descs,
155 0, 155 0,
156 { NULL, NULL }, 156 { NULL, NULL },
157}; 157};
158 158
159static const struct genfs_ops ffs_genfsops = { 159static const struct genfs_ops ffs_genfsops = {
160 .gop_size = ffs_gop_size, 160 .gop_size = ffs_gop_size,
161 .gop_alloc = ufs_gop_alloc, 161 .gop_alloc = ufs_gop_alloc,
162 .gop_write = genfs_gop_write, 162 .gop_write = genfs_gop_write,
163 .gop_markupdate = ufs_gop_markupdate, 163 .gop_markupdate = ufs_gop_markupdate,
164}; 164};
165 165
166static const struct ufs_ops ffs_ufsops = { 166static const struct ufs_ops ffs_ufsops = {
167 .uo_itimes = ffs_itimes, 167 .uo_itimes = ffs_itimes,
168 .uo_update = ffs_update, 168 .uo_update = ffs_update,
169 .uo_truncate = ffs_truncate, 169 .uo_truncate = ffs_truncate,
170 .uo_valloc = ffs_valloc, 170 .uo_valloc = ffs_valloc,
171 .uo_vfree = ffs_vfree, 171 .uo_vfree = ffs_vfree,
172 .uo_balloc = ffs_balloc, 172 .uo_balloc = ffs_balloc,
173 .uo_unmark_vnode = (void (*)(vnode_t *))nullop, 173 .uo_unmark_vnode = (void (*)(vnode_t *))nullop,
174}; 174};
175 175
176static int 176static int
177ffs_modcmd(modcmd_t cmd, void *arg) 177ffs_modcmd(modcmd_t cmd, void *arg)
178{ 178{
179 int error; 179 int error;
180 180
181#if 0 181#if 0
182 extern int doasyncfree; 182 extern int doasyncfree;
183#endif 183#endif
184 extern int ffs_log_changeopt; 184 extern int ffs_log_changeopt;
185 185
186 switch (cmd) { 186 switch (cmd) {
187 case MODULE_CMD_INIT: 187 case MODULE_CMD_INIT:
188 error = vfs_attach(&ffs_vfsops); 188 error = vfs_attach(&ffs_vfsops);
189 if (error != 0) 189 if (error != 0)
190 break; 190 break;
191 191
192 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL, 192 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
193 CTLFLAG_PERMANENT, 193 CTLFLAG_PERMANENT,
194 CTLTYPE_NODE, "vfs", NULL, 194 CTLTYPE_NODE, "vfs", NULL,
195 NULL, 0, NULL, 0, 195 NULL, 0, NULL, 0,
196 CTL_VFS, CTL_EOL); 196 CTL_VFS, CTL_EOL);
197 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL, 197 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
198 CTLFLAG_PERMANENT, 198 CTLFLAG_PERMANENT,
199 CTLTYPE_NODE, "ffs", 199 CTLTYPE_NODE, "ffs",
200 SYSCTL_DESCR("Berkeley Fast File System"), 200 SYSCTL_DESCR("Berkeley Fast File System"),
201 NULL, 0, NULL, 0, 201 NULL, 0, NULL, 0,
202 CTL_VFS, 1, CTL_EOL); 202 CTL_VFS, 1, CTL_EOL);
203 203
204 /* 204 /*
205 * @@@ should we even bother with these first three? 205 * @@@ should we even bother with these first three?
206 */ 206 */
207 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL, 207 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
208 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 208 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
209 CTLTYPE_INT, "doclusterread", NULL, 209 CTLTYPE_INT, "doclusterread", NULL,
210 sysctl_notavail, 0, NULL, 0, 210 sysctl_notavail, 0, NULL, 0,
211 CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL); 211 CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
212 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL, 212 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
213 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 213 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
214 CTLTYPE_INT, "doclusterwrite", NULL, 214 CTLTYPE_INT, "doclusterwrite", NULL,
215 sysctl_notavail, 0, NULL, 0, 215 sysctl_notavail, 0, NULL, 0,
216 CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL); 216 CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
217 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL, 217 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
218 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 218 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
219 CTLTYPE_INT, "doreallocblks", NULL, 219 CTLTYPE_INT, "doreallocblks", NULL,
220 sysctl_notavail, 0, NULL, 0, 220 sysctl_notavail, 0, NULL, 0,
221 CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL); 221 CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
222#if 0 222#if 0
223 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL, 223 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
224 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 224 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
225 CTLTYPE_INT, "doasyncfree", 225 CTLTYPE_INT, "doasyncfree",
226 SYSCTL_DESCR("Release dirty blocks asynchronously"), 226 SYSCTL_DESCR("Release dirty blocks asynchronously"),
227 NULL, 0, &doasyncfree, 0, 227 NULL, 0, &doasyncfree, 0,
228 CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL); 228 CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
229#endif 229#endif
230 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL, 230 sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
231 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 231 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
232 CTLTYPE_INT, "log_changeopt", 232 CTLTYPE_INT, "log_changeopt",
233 SYSCTL_DESCR("Log changes in optimization strategy"), 233 SYSCTL_DESCR("Log changes in optimization strategy"),
234 NULL, 0, &ffs_log_changeopt, 0, 234 NULL, 0, &ffs_log_changeopt, 0,
235 CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL); 235 CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
236 break; 236 break;
237 case MODULE_CMD_FINI: 237 case MODULE_CMD_FINI:
238 error = vfs_detach(&ffs_vfsops); 238 error = vfs_detach(&ffs_vfsops);
239 if (error != 0) 239 if (error != 0)
240 break; 240 break;
241 sysctl_teardown(&ffs_sysctl_log); 241 sysctl_teardown(&ffs_sysctl_log);
242 break; 242 break;
243 default: 243 default:
244 error = ENOTTY; 244 error = ENOTTY;
245 break; 245 break;
246 } 246 }
247 247
248 return (error); 248 return (error);
249} 249}
250 250
251pool_cache_t ffs_inode_cache; 251pool_cache_t ffs_inode_cache;
252pool_cache_t ffs_dinode1_cache; 252pool_cache_t ffs_dinode1_cache;
253pool_cache_t ffs_dinode2_cache; 253pool_cache_t ffs_dinode2_cache;
254 254
255static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t); 255static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
256static void ffs_oldfscompat_write(struct fs *, struct ufsmount *); 256static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
257 257
258/* 258/*
259 * Called by main() when ffs is going to be mounted as root. 259 * Called by main() when ffs is going to be mounted as root.
260 */ 260 */
261 261
262int 262int
263ffs_mountroot(void) 263ffs_mountroot(void)
264{ 264{
265 struct fs *fs; 265 struct fs *fs;
266 struct mount *mp; 266 struct mount *mp;
267 struct lwp *l = curlwp; /* XXX */ 267 struct lwp *l = curlwp; /* XXX */
268 struct ufsmount *ump; 268 struct ufsmount *ump;
269 int error; 269 int error;
270 270
271 if (device_class(root_device) != DV_DISK) 271 if (device_class(root_device) != DV_DISK)
272 return (ENODEV); 272 return (ENODEV);
273 273
274 if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) { 274 if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
275 vrele(rootvp); 275 vrele(rootvp);
276 return (error); 276 return (error);
277 } 277 }
278 278
279 /* 279 /*
280 * We always need to be able to mount the root file system. 280 * We always need to be able to mount the root file system.
281 */ 281 */
282 mp->mnt_flag |= MNT_FORCE; 282 mp->mnt_flag |= MNT_FORCE;
283 if ((error = ffs_mountfs(rootvp, mp, l)) != 0) { 283 if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
284 vfs_unbusy(mp, false, NULL); 284 vfs_unbusy(mp, false, NULL);
285 vfs_destroy(mp); 285 vfs_destroy(mp);
286 return (error); 286 return (error);
287 } 287 }
288 mp->mnt_flag &= ~MNT_FORCE; 288 mp->mnt_flag &= ~MNT_FORCE;
289 mutex_enter(&mountlist_lock); 289 mutex_enter(&mountlist_lock);
290 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list); 290 CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
291 mutex_exit(&mountlist_lock); 291 mutex_exit(&mountlist_lock);
292 ump = VFSTOUFS(mp); 292 ump = VFSTOUFS(mp);
293 fs = ump->um_fs; 293 fs = ump->um_fs;
294 memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt)); 294 memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
295 (void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0); 295 (void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
296 (void)ffs_statvfs(mp, &mp->mnt_stat); 296 (void)ffs_statvfs(mp, &mp->mnt_stat);
297 vfs_unbusy(mp, false, NULL); 297 vfs_unbusy(mp, false, NULL);
298 setrootfstime((time_t)fs->fs_time); 298 setrootfstime((time_t)fs->fs_time);
299 return (0); 299 return (0);
300} 300}
301 301
302/* 302/*
303 * VFS Operations. 303 * VFS Operations.
304 * 304 *
305 * mount system call 305 * mount system call
306 */ 306 */
307int 307int
308ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len) 308ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
309{ 309{
310 struct lwp *l = curlwp; 310 struct lwp *l = curlwp;
311 struct vnode *devvp = NULL; 311 struct vnode *devvp = NULL;
312 struct ufs_args *args = data; 312 struct ufs_args *args = data;
313 struct ufsmount *ump = NULL; 313 struct ufsmount *ump = NULL;
314 struct fs *fs; 314 struct fs *fs;
315 int error = 0, flags, update; 315 int error = 0, flags, update;
316 mode_t accessmode; 316 mode_t accessmode;
317 317
318 if (*data_len < sizeof *args) 318 if (*data_len < sizeof *args)
319 return EINVAL; 319 return EINVAL;
320 320
321 if (mp->mnt_flag & MNT_GETARGS) { 321 if (mp->mnt_flag & MNT_GETARGS) {
322 ump = VFSTOUFS(mp); 322 ump = VFSTOUFS(mp);
323 if (ump == NULL) 323 if (ump == NULL)
324 return EIO; 324 return EIO;
325 args->fspec = NULL; 325 args->fspec = NULL;
326 *data_len = sizeof *args; 326 *data_len = sizeof *args;
327 return 0; 327 return 0;
328 } 328 }
329 329
330 update = mp->mnt_flag & MNT_UPDATE; 330 update = mp->mnt_flag & MNT_UPDATE;
331 331
332 /* Check arguments */ 332 /* Check arguments */
333 if (args->fspec != NULL) { 333 if (args->fspec != NULL) {
334 /* 334 /*
335 * Look up the name and verify that it's sane. 335 * Look up the name and verify that it's sane.
336 */ 336 */
337 error = namei_simple_user(args->fspec, 337 error = namei_simple_user(args->fspec,
338 NSM_FOLLOW_NOEMULROOT, &devvp); 338 NSM_FOLLOW_NOEMULROOT, &devvp);
339 if (error != 0) 339 if (error != 0)
340 return (error); 340 return (error);
341 341
342 if (!update) { 342 if (!update) {
343 /* 343 /*
344 * Be sure this is a valid block device 344 * Be sure this is a valid block device
345 */ 345 */
346 if (devvp->v_type != VBLK) 346 if (devvp->v_type != VBLK)
347 error = ENOTBLK; 347 error = ENOTBLK;
348 else if (bdevsw_lookup(devvp->v_rdev) == NULL) 348 else if (bdevsw_lookup(devvp->v_rdev) == NULL)
349 error = ENXIO; 349 error = ENXIO;
350 } else { 350 } else {
351 /* 351 /*
352 * Be sure we're still naming the same device 352 * Be sure we're still naming the same device
353 * used for our initial mount 353 * used for our initial mount
354 */ 354 */
355 ump = VFSTOUFS(mp); 355 ump = VFSTOUFS(mp);
356 if (devvp != ump->um_devvp) { 356 if (devvp != ump->um_devvp) {
357 if (devvp->v_rdev != ump->um_devvp->v_rdev) 357 if (devvp->v_rdev != ump->um_devvp->v_rdev)
358 error = EINVAL; 358 error = EINVAL;
359 else { 359 else {
360 vrele(devvp); 360 vrele(devvp);
361 devvp = ump->um_devvp; 361 devvp = ump->um_devvp;
362 vref(devvp); 362 vref(devvp);
363 } 363 }
364 } 364 }
365 } 365 }
366 } else { 366 } else {
367 if (!update) { 367 if (!update) {
368 /* New mounts must have a filename for the device */ 368 /* New mounts must have a filename for the device */
369 return (EINVAL); 369 return (EINVAL);
370 } else { 370 } else {
371 /* Use the extant mount */ 371 /* Use the extant mount */
372 ump = VFSTOUFS(mp); 372 ump = VFSTOUFS(mp);
373 devvp = ump->um_devvp; 373 devvp = ump->um_devvp;
374 vref(devvp); 374 vref(devvp);
375 } 375 }
376 } 376 }
377 377
378 /* 378 /*
379 * If mount by non-root, then verify that user has necessary 379 * If mount by non-root, then verify that user has necessary
380 * permissions on the device. 380 * permissions on the device.
381 * 381 *
382 * Permission to update a mount is checked higher, so here we presume 382 * Permission to update a mount is checked higher, so here we presume
383 * updating the mount is okay (for example, as far as securelevel goes) 383 * updating the mount is okay (for example, as far as securelevel goes)
384 * which leaves us with the normal check. 384 * which leaves us with the normal check.
385 */ 385 */
386 if (error == 0) { 386 if (error == 0) {
387 accessmode = VREAD; 387 accessmode = VREAD;
388 if (update ? 388 if (update ?
389 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 : 389 (mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
390 (mp->mnt_flag & MNT_RDONLY) == 0) 390 (mp->mnt_flag & MNT_RDONLY) == 0)
391 accessmode |= VWRITE; 391 accessmode |= VWRITE;
392 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 392 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
393 error = genfs_can_mount(devvp, accessmode, l->l_cred); 393 error = genfs_can_mount(devvp, accessmode, l->l_cred);
394 VOP_UNLOCK(devvp); 394 VOP_UNLOCK(devvp);
395 } 395 }
396 396
397 if (error) { 397 if (error) {
398 vrele(devvp); 398 vrele(devvp);
399 return (error); 399 return (error);
400 } 400 }
401 401
402#ifdef WAPBL 402#ifdef WAPBL
403 /* WAPBL can only be enabled on a r/w mount. */ 403 /* WAPBL can only be enabled on a r/w mount. */
404 if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) { 404 if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
405 mp->mnt_flag &= ~MNT_LOG; 405 mp->mnt_flag &= ~MNT_LOG;
406 } 406 }
407#else /* !WAPBL */ 407#else /* !WAPBL */
408 mp->mnt_flag &= ~MNT_LOG; 408 mp->mnt_flag &= ~MNT_LOG;
409#endif /* !WAPBL */ 409#endif /* !WAPBL */
410 410
411 if (!update) { 411 if (!update) {
412 int xflags; 412 int xflags;
413 413
414 if (mp->mnt_flag & MNT_RDONLY) 414 if (mp->mnt_flag & MNT_RDONLY)
415 xflags = FREAD; 415 xflags = FREAD;
416 else 416 else
417 xflags = FREAD | FWRITE; 417 xflags = FREAD | FWRITE;
418 error = VOP_OPEN(devvp, xflags, FSCRED); 418 error = VOP_OPEN(devvp, xflags, FSCRED);
419 if (error) 419 if (error)
420 goto fail; 420 goto fail;
421 error = ffs_mountfs(devvp, mp, l); 421 error = ffs_mountfs(devvp, mp, l);
422 if (error) { 422 if (error) {
423 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 423 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
424 (void)VOP_CLOSE(devvp, xflags, NOCRED); 424 (void)VOP_CLOSE(devvp, xflags, NOCRED);
425 VOP_UNLOCK(devvp); 425 VOP_UNLOCK(devvp);
426 goto fail; 426 goto fail;
427 } 427 }
428 428
429 ump = VFSTOUFS(mp); 429 ump = VFSTOUFS(mp);
430 fs = ump->um_fs; 430 fs = ump->um_fs;
431 } else { 431 } else {
432 /* 432 /*
433 * Update the mount. 433 * Update the mount.
434 */ 434 */
435 435
436 /* 436 /*
437 * The initial mount got a reference on this 437 * The initial mount got a reference on this
438 * device, so drop the one obtained via 438 * device, so drop the one obtained via
439 * namei(), above. 439 * namei(), above.
440 */ 440 */
441 vrele(devvp); 441 vrele(devvp);
442 442
443 ump = VFSTOUFS(mp); 443 ump = VFSTOUFS(mp);
444 fs = ump->um_fs; 444 fs = ump->um_fs;
445 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) { 445 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
446 /* 446 /*
447 * Changing from r/w to r/o 447 * Changing from r/w to r/o
448 */ 448 */
449 flags = WRITECLOSE; 449 flags = WRITECLOSE;
450 if (mp->mnt_flag & MNT_FORCE) 450 if (mp->mnt_flag & MNT_FORCE)
451 flags |= FORCECLOSE; 451 flags |= FORCECLOSE;
452 error = ffs_flushfiles(mp, flags, l); 452 error = ffs_flushfiles(mp, flags, l);
453 if (error == 0) 453 if (error == 0)
454 error = UFS_WAPBL_BEGIN(mp); 454 error = UFS_WAPBL_BEGIN(mp);
455 if (error == 0 && 455 if (error == 0 &&
456 ffs_cgupdate(ump, MNT_WAIT) == 0 && 456 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
457 fs->fs_clean & FS_WASCLEAN) { 457 fs->fs_clean & FS_WASCLEAN) {
458 if (mp->mnt_flag & MNT_SOFTDEP) 458 if (mp->mnt_flag & MNT_SOFTDEP)
459 fs->fs_flags &= ~FS_DOSOFTDEP; 459 fs->fs_flags &= ~FS_DOSOFTDEP;
460 fs->fs_clean = FS_ISCLEAN; 460 fs->fs_clean = FS_ISCLEAN;
461 (void) ffs_sbupdate(ump, MNT_WAIT); 461 (void) ffs_sbupdate(ump, MNT_WAIT);
462 } 462 }
463 if (error == 0) 463 if (error == 0)
464 UFS_WAPBL_END(mp); 464 UFS_WAPBL_END(mp);
465 if (error) 465 if (error)
466 return (error); 466 return (error);
467 } 467 }
468 468
469#ifdef WAPBL 469#ifdef WAPBL
470 if ((mp->mnt_flag & MNT_LOG) == 0) { 470 if ((mp->mnt_flag & MNT_LOG) == 0) {
471 error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE); 471 error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
472 if (error) 472 if (error)
473 return error; 473 return error;
474 } 474 }
475#endif /* WAPBL */ 475#endif /* WAPBL */
476 476
477 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) { 477 if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
478 /* 478 /*
479 * Finish change from r/w to r/o 479 * Finish change from r/w to r/o
480 */ 480 */
481 fs->fs_ronly = 1; 481 fs->fs_ronly = 1;
482 fs->fs_fmod = 0; 482 fs->fs_fmod = 0;
483 } 483 }
484 484
485 if (mp->mnt_flag & MNT_RELOAD) { 485 if (mp->mnt_flag & MNT_RELOAD) {
486 error = ffs_reload(mp, l->l_cred, l); 486 error = ffs_reload(mp, l->l_cred, l);
487 if (error) 487 if (error)
488 return (error); 488 return (error);
489 } 489 }
490 490
491 if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) { 491 if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
492 /* 492 /*
493 * Changing from read-only to read/write 493 * Changing from read-only to read/write
494 */ 494 */
495 fs->fs_ronly = 0; 495 fs->fs_ronly = 0;
496 fs->fs_clean <<= 1; 496 fs->fs_clean <<= 1;
497 fs->fs_fmod = 1; 497 fs->fs_fmod = 1;
498#ifdef WAPBL 498#ifdef WAPBL
499 if (fs->fs_flags & FS_DOWAPBL) { 499 if (fs->fs_flags & FS_DOWAPBL) {
500 printf("%s: replaying log to disk\n", 500 printf("%s: replaying log to disk\n",
501 fs->fs_fsmnt); 501 fs->fs_fsmnt);
502 KDASSERT(mp->mnt_wapbl_replay); 502 KDASSERT(mp->mnt_wapbl_replay);
503 error = wapbl_replay_write(mp->mnt_wapbl_replay, 503 error = wapbl_replay_write(mp->mnt_wapbl_replay,
504 devvp); 504 devvp);
505 if (error) { 505 if (error) {
506 return error; 506 return error;
507 } 507 }
508 wapbl_replay_stop(mp->mnt_wapbl_replay); 508 wapbl_replay_stop(mp->mnt_wapbl_replay);
509 fs->fs_clean = FS_WASCLEAN; 509 fs->fs_clean = FS_WASCLEAN;
510 } 510 }
511#endif /* WAPBL */ 511#endif /* WAPBL */
512 if (fs->fs_snapinum[0] != 0) 512 if (fs->fs_snapinum[0] != 0)
513 ffs_snapshot_mount(mp); 513 ffs_snapshot_mount(mp);
514 } 514 }
515 515
516#ifdef WAPBL 516#ifdef WAPBL
517 error = ffs_wapbl_start(mp); 517 error = ffs_wapbl_start(mp);
518 if (error) 518 if (error)
519 return error; 519 return error;
520#endif /* WAPBL */ 520#endif /* WAPBL */
521 521
522 if (args->fspec == NULL) 522 if (args->fspec == NULL)
523 return 0; 523 return 0;
524 } 524 }
525 525
526 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec, 526 error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
527 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l); 527 UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
528 if (error == 0) 528 if (error == 0)
529 (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, 529 (void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
530 sizeof(fs->fs_fsmnt)); 530 sizeof(fs->fs_fsmnt));
531 fs->fs_flags &= ~FS_DOSOFTDEP; 531 fs->fs_flags &= ~FS_DOSOFTDEP;
532 if (fs->fs_fmod != 0) { /* XXX */ 532 if (fs->fs_fmod != 0) { /* XXX */
533 int err; 533 int err;
534 534
535 fs->fs_fmod = 0; 535 fs->fs_fmod = 0;
536 if (fs->fs_clean & FS_WASCLEAN) 536 if (fs->fs_clean & FS_WASCLEAN)
537 fs->fs_time = time_second; 537 fs->fs_time = time_second;
538 else { 538 else {
539 printf("%s: file system not clean (fs_clean=%#x); " 539 printf("%s: file system not clean (fs_clean=%#x); "
540 "please fsck(8)\n", mp->mnt_stat.f_mntfromname, 540 "please fsck(8)\n", mp->mnt_stat.f_mntfromname,
541 fs->fs_clean); 541 fs->fs_clean);
542 printf("%s: lost blocks %" PRId64 " files %d\n", 542 printf("%s: lost blocks %" PRId64 " files %d\n",
543 mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks, 543 mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
544 fs->fs_pendinginodes); 544 fs->fs_pendinginodes);
545 } 545 }
546 err = UFS_WAPBL_BEGIN(mp); 546 err = UFS_WAPBL_BEGIN(mp);
547 if (err == 0) { 547 if (err == 0) {
548 (void) ffs_cgupdate(ump, MNT_WAIT); 548 (void) ffs_cgupdate(ump, MNT_WAIT);
549 UFS_WAPBL_END(mp); 549 UFS_WAPBL_END(mp);
550 } 550 }
551 } 551 }
552 if ((mp->mnt_flag & MNT_SOFTDEP) != 0) { 552 if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
553 printf("%s: `-o softdep' is no longer supported, " 553 printf("%s: `-o softdep' is no longer supported, "
554 "consider `-o log'\n", mp->mnt_stat.f_mntfromname); 554 "consider `-o log'\n", mp->mnt_stat.f_mntfromname);
555 mp->mnt_flag &= ~MNT_SOFTDEP; 555 mp->mnt_flag &= ~MNT_SOFTDEP;
556 } 556 }
557 557
558 return (error); 558 return (error);
559 559
560fail: 560fail:
561 vrele(devvp); 561 vrele(devvp);
562 return (error); 562 return (error);
563} 563}
564 564
565/* 565/*
566 * Reload all incore data for a filesystem (used after running fsck on 566 * Reload all incore data for a filesystem (used after running fsck on
567 * the root filesystem and finding things to fix). The filesystem must 567 * the root filesystem and finding things to fix). The filesystem must
568 * be mounted read-only. 568 * be mounted read-only.
569 * 569 *
570 * Things to do to update the mount: 570 * Things to do to update the mount:
571 * 1) invalidate all cached meta-data. 571 * 1) invalidate all cached meta-data.
572 * 2) re-read superblock from disk. 572 * 2) re-read superblock from disk.
573 * 3) re-read summary information from disk. 573 * 3) re-read summary information from disk.
574 * 4) invalidate all inactive vnodes. 574 * 4) invalidate all inactive vnodes.
575 * 5) invalidate all cached file data. 575 * 5) invalidate all cached file data.
576 * 6) re-read inode data for all active vnodes. 576 * 6) re-read inode data for all active vnodes.
577 */ 577 */
578int 578int
579ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l) 579ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
580{ 580{
581 struct vnode *vp, *mvp, *devvp; 581 struct vnode *vp, *mvp, *devvp;
582 struct inode *ip; 582 struct inode *ip;
583 void *space; 583 void *space;
584 struct buf *bp; 584 struct buf *bp;
585 struct fs *fs, *newfs; 585 struct fs *fs, *newfs;
586 struct partinfo dpart; 586 struct partinfo dpart;
587 int i, bsize, blks, error; 587 int i, bsize, blks, error;
588 int32_t *lp; 588 int32_t *lp;
589 struct ufsmount *ump; 589 struct ufsmount *ump;
590 daddr_t sblockloc; 590 daddr_t sblockloc;
591 591
592 if ((mp->mnt_flag & MNT_RDONLY) == 0) 592 if ((mp->mnt_flag & MNT_RDONLY) == 0)
593 return (EINVAL); 593 return (EINVAL);
594 594
595 ump = VFSTOUFS(mp); 595 ump = VFSTOUFS(mp);
596 /* 596 /*
597 * Step 1: invalidate all cached meta-data. 597 * Step 1: invalidate all cached meta-data.
598 */ 598 */
599 devvp = ump->um_devvp; 599 devvp = ump->um_devvp;
600 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 600 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
601 error = vinvalbuf(devvp, 0, cred, l, 0, 0); 601 error = vinvalbuf(devvp, 0, cred, l, 0, 0);
602 VOP_UNLOCK(devvp); 602 VOP_UNLOCK(devvp);
603 if (error) 603 if (error)
604 panic("ffs_reload: dirty1"); 604 panic("ffs_reload: dirty1");
605 /* 605 /*
606 * Step 2: re-read superblock from disk. 606 * Step 2: re-read superblock from disk.
607 */ 607 */
608 fs = ump->um_fs; 608 fs = ump->um_fs;
609 609
610 /* XXX we don't handle possibility that superblock moved. */ 610 /* XXX we don't handle possibility that superblock moved. */
611 error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs->fs_sbsize, 611 error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs->fs_sbsize,
612 NOCRED, 0, &bp); 612 NOCRED, 0, &bp);
613 if (error) { 613 if (error) {
614 brelse(bp, 0); 614 brelse(bp, 0);
615 return (error); 615 return (error);
616 } 616 }
617 newfs = malloc(fs->fs_sbsize, M_UFSMNT, M_WAITOK); 617 newfs = malloc(fs->fs_sbsize, M_UFSMNT, M_WAITOK);
618 memcpy(newfs, bp->b_data, fs->fs_sbsize); 618 memcpy(newfs, bp->b_data, fs->fs_sbsize);
619#ifdef FFS_EI 619#ifdef FFS_EI
620 if (ump->um_flags & UFS_NEEDSWAP) { 620 if (ump->um_flags & UFS_NEEDSWAP) {
621 ffs_sb_swap((struct fs*)bp->b_data, newfs); 621 ffs_sb_swap((struct fs*)bp->b_data, newfs);
622 fs->fs_flags |= FS_SWAPPED; 622 fs->fs_flags |= FS_SWAPPED;
623 } else 623 } else
624#endif 624#endif
625 fs->fs_flags &= ~FS_SWAPPED; 625 fs->fs_flags &= ~FS_SWAPPED;
626 if ((newfs->fs_magic != FS_UFS1_MAGIC && 626 if ((newfs->fs_magic != FS_UFS1_MAGIC &&
627 newfs->fs_magic != FS_UFS2_MAGIC)|| 627 newfs->fs_magic != FS_UFS2_MAGIC)||
628 newfs->fs_bsize > MAXBSIZE || 628 newfs->fs_bsize > MAXBSIZE ||
629 newfs->fs_bsize < sizeof(struct fs)) { 629 newfs->fs_bsize < sizeof(struct fs)) {
630 brelse(bp, 0); 630 brelse(bp, 0);
631 free(newfs, M_UFSMNT); 631 free(newfs, M_UFSMNT);
632 return (EIO); /* XXX needs translation */ 632 return (EIO); /* XXX needs translation */
633 } 633 }
634 /* Store off old fs_sblockloc for fs_oldfscompat_read. */ 634 /* Store off old fs_sblockloc for fs_oldfscompat_read. */
635 sblockloc = fs->fs_sblockloc; 635 sblockloc = fs->fs_sblockloc;
636 /* 636 /*
637 * Copy pointer fields back into superblock before copying in XXX 637 * Copy pointer fields back into superblock before copying in XXX
638 * new superblock. These should really be in the ufsmount. XXX 638 * new superblock. These should really be in the ufsmount. XXX
639 * Note that important parameters (eg fs_ncg) are unchanged. 639 * Note that important parameters (eg fs_ncg) are unchanged.
640 */ 640 */
641 newfs->fs_csp = fs->fs_csp; 641 newfs->fs_csp = fs->fs_csp;
642 newfs->fs_maxcluster = fs->fs_maxcluster; 642 newfs->fs_maxcluster = fs->fs_maxcluster;
643 newfs->fs_contigdirs = fs->fs_contigdirs; 643 newfs->fs_contigdirs = fs->fs_contigdirs;
644 newfs->fs_ronly = fs->fs_ronly; 644 newfs->fs_ronly = fs->fs_ronly;
645 newfs->fs_active = fs->fs_active; 645 newfs->fs_active = fs->fs_active;
646 memcpy(fs, newfs, (u_int)fs->fs_sbsize); 646 memcpy(fs, newfs, (u_int)fs->fs_sbsize);
647 brelse(bp, 0); 647 brelse(bp, 0);
648 free(newfs, M_UFSMNT); 648 free(newfs, M_UFSMNT);
649 649
650 /* Recheck for apple UFS filesystem */ 650 /* Recheck for apple UFS filesystem */
651 ump->um_flags &= ~UFS_ISAPPLEUFS; 651 ump->um_flags &= ~UFS_ISAPPLEUFS;
652 /* First check to see if this is tagged as an Apple UFS filesystem 652 /* First check to see if this is tagged as an Apple UFS filesystem
653 * in the disklabel 653 * in the disklabel
654 */ 654 */
655 if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) && 655 if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
656 (dpart.part->p_fstype == FS_APPLEUFS)) { 656 (dpart.part->p_fstype == FS_APPLEUFS)) {
657 ump->um_flags |= UFS_ISAPPLEUFS; 657 ump->um_flags |= UFS_ISAPPLEUFS;
658 } 658 }
659#ifdef APPLE_UFS 659#ifdef APPLE_UFS
660 else { 660 else {
661 /* Manually look for an apple ufs label, and if a valid one 661 /* Manually look for an apple ufs label, and if a valid one
662 * is found, then treat it like an Apple UFS filesystem anyway 662 * is found, then treat it like an Apple UFS filesystem anyway
663 */ 663 */
664 error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE), 664 error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
665 APPLEUFS_LABEL_SIZE, cred, 0, &bp); 665 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
666 if (error) { 666 if (error) {
667 brelse(bp, 0); 667 brelse(bp, 0);
668 return (error); 668 return (error);
669 } 669 }
670 error = ffs_appleufs_validate(fs->fs_fsmnt, 670 error = ffs_appleufs_validate(fs->fs_fsmnt,
671 (struct appleufslabel *)bp->b_data, NULL); 671 (struct appleufslabel *)bp->b_data, NULL);
672 if (error == 0) 672 if (error == 0)
673 ump->um_flags |= UFS_ISAPPLEUFS; 673 ump->um_flags |= UFS_ISAPPLEUFS;
674 brelse(bp, 0); 674 brelse(bp, 0);
675 bp = NULL; 675 bp = NULL;
676 } 676 }
677#else 677#else
678 if (ump->um_flags & UFS_ISAPPLEUFS) 678 if (ump->um_flags & UFS_ISAPPLEUFS)
679 return (EIO); 679 return (EIO);
680#endif 680#endif
681 681
682 if (UFS_MPISAPPLEUFS(ump)) { 682 if (UFS_MPISAPPLEUFS(ump)) {
683 /* see comment about NeXT below */ 683 /* see comment about NeXT below */
684 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN; 684 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
685 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ; 685 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
686 mp->mnt_iflag |= IMNT_DTYPE; 686 mp->mnt_iflag |= IMNT_DTYPE;
687 } else { 687 } else {
688 ump->um_maxsymlinklen = fs->fs_maxsymlinklen; 688 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
689 ump->um_dirblksiz = DIRBLKSIZ; 689 ump->um_dirblksiz = DIRBLKSIZ;
690 if (ump->um_maxsymlinklen > 0) 690 if (ump->um_maxsymlinklen > 0)
691 mp->mnt_iflag |= IMNT_DTYPE; 691 mp->mnt_iflag |= IMNT_DTYPE;
692 else 692 else
693 mp->mnt_iflag &= ~IMNT_DTYPE; 693 mp->mnt_iflag &= ~IMNT_DTYPE;
694 } 694 }
695 ffs_oldfscompat_read(fs, ump, sblockloc); 695 ffs_oldfscompat_read(fs, ump, sblockloc);
696 696
697 mutex_enter(&ump->um_lock); 697 mutex_enter(&ump->um_lock);
698 ump->um_maxfilesize = fs->fs_maxfilesize; 698 ump->um_maxfilesize = fs->fs_maxfilesize;
699 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) { 699 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
700 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n", 700 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
701 mp->mnt_stat.f_mntonname, fs->fs_flags, 701 mp->mnt_stat.f_mntonname, fs->fs_flags,
702 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting"); 702 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
703 if ((mp->mnt_flag & MNT_FORCE) == 0) { 703 if ((mp->mnt_flag & MNT_FORCE) == 0) {
704 mutex_exit(&ump->um_lock); 704 mutex_exit(&ump->um_lock);
705 return (EINVAL); 705 return (EINVAL);
706 } 706 }
707 } 707 }
708 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 708 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
709 fs->fs_pendingblocks = 0; 709 fs->fs_pendingblocks = 0;
710 fs->fs_pendinginodes = 0; 710 fs->fs_pendinginodes = 0;
711 } 711 }
712 mutex_exit(&ump->um_lock); 712 mutex_exit(&ump->um_lock);
713 713
714 ffs_statvfs(mp, &mp->mnt_stat); 714 ffs_statvfs(mp, &mp->mnt_stat);
715 /* 715 /*
716 * Step 3: re-read summary information from disk. 716 * Step 3: re-read summary information from disk.
717 */ 717 */
718 blks = howmany(fs->fs_cssize, fs->fs_fsize); 718 blks = howmany(fs->fs_cssize, fs->fs_fsize);
719 space = fs->fs_csp; 719 space = fs->fs_csp;
720 for (i = 0; i < blks; i += fs->fs_frag) { 720 for (i = 0; i < blks; i += fs->fs_frag) {
721 bsize = fs->fs_bsize; 721 bsize = fs->fs_bsize;
722 if (i + fs->fs_frag > blks) 722 if (i + fs->fs_frag > blks)
723 bsize = (blks - i) * fs->fs_fsize; 723 bsize = (blks - i) * fs->fs_fsize;
724 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize, 724 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
725 NOCRED, 0, &bp); 725 NOCRED, 0, &bp);
726 if (error) { 726 if (error) {
727 brelse(bp, 0); 727 brelse(bp, 0);
728 return (error); 728 return (error);
729 } 729 }
730#ifdef FFS_EI 730#ifdef FFS_EI
731 if (UFS_FSNEEDSWAP(fs)) 731 if (UFS_FSNEEDSWAP(fs))
732 ffs_csum_swap((struct csum *)bp->b_data, 732 ffs_csum_swap((struct csum *)bp->b_data,
733 (struct csum *)space, bsize); 733 (struct csum *)space, bsize);
734 else 734 else
735#endif 735#endif
736 memcpy(space, bp->b_data, (size_t)bsize); 736 memcpy(space, bp->b_data, (size_t)bsize);
737 space = (char *)space + bsize; 737 space = (char *)space + bsize;
738 brelse(bp, 0); 738 brelse(bp, 0);
739 } 739 }
740 if (fs->fs_snapinum[0] != 0) 740 if (fs->fs_snapinum[0] != 0)
741 ffs_snapshot_mount(mp); 741 ffs_snapshot_mount(mp);
742 /* 742 /*
743 * We no longer know anything about clusters per cylinder group. 743 * We no longer know anything about clusters per cylinder group.
744 */ 744 */
745 if (fs->fs_contigsumsize > 0) { 745 if (fs->fs_contigsumsize > 0) {
746 lp = fs->fs_maxcluster; 746 lp = fs->fs_maxcluster;
747 for (i = 0; i < fs->fs_ncg; i++) 747 for (i = 0; i < fs->fs_ncg; i++)
748 *lp++ = fs->fs_contigsumsize; 748 *lp++ = fs->fs_contigsumsize;
749 } 749 }
750 750
751 /* Allocate a marker vnode. */ 751 /* Allocate a marker vnode. */
752 if ((mvp = vnalloc(mp)) == NULL) 752 if ((mvp = vnalloc(mp)) == NULL)
753 return ENOMEM; 753 return ENOMEM;
754 /* 754 /*
755 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone() 755 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
756 * and vclean() can be called indirectly 756 * and vclean() can be called indirectly
757 */ 757 */
758 mutex_enter(&mntvnode_lock); 758 mutex_enter(&mntvnode_lock);
759 loop: 759 loop:
760 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) { 760 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) {
761 vmark(mvp, vp); 761 vmark(mvp, vp);
762 if (vp->v_mount != mp || vismarker(vp)) 762 if (vp->v_mount != mp || vismarker(vp))
763 continue; 763 continue;
764 /* 764 /*
765 * Step 4: invalidate all inactive vnodes. 765 * Step 4: invalidate all inactive vnodes.
766 */ 766 */
767 if (vrecycle(vp, &mntvnode_lock, l)) { 767 if (vrecycle(vp, &mntvnode_lock, l)) {
768 mutex_enter(&mntvnode_lock); 768 mutex_enter(&mntvnode_lock);
769 (void)vunmark(mvp); 769 (void)vunmark(mvp);
770 goto loop; 770 goto loop;
771 } 771 }
772 /* 772 /*
773 * Step 5: invalidate all cached file data. 773 * Step 5: invalidate all cached file data.
774 */ 774 */
775 mutex_enter(&vp->v_interlock); 775 mutex_enter(&vp->v_interlock);
776 mutex_exit(&mntvnode_lock); 776 mutex_exit(&mntvnode_lock);
777 if (vget(vp, LK_EXCLUSIVE)) { 777 if (vget(vp, LK_EXCLUSIVE)) {
778 (void)vunmark(mvp); 778 (void)vunmark(mvp);
779 goto loop; 779 goto loop;
780 } 780 }
781 if (vinvalbuf(vp, 0, cred, l, 0, 0)) 781 if (vinvalbuf(vp, 0, cred, l, 0, 0))
782 panic("ffs_reload: dirty2"); 782 panic("ffs_reload: dirty2");
783 /* 783 /*
784 * Step 6: re-read inode data for all active vnodes. 784 * Step 6: re-read inode data for all active vnodes.
785 */ 785 */
786 ip = VTOI(vp); 786 ip = VTOI(vp);
787 error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 787 error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
788 (int)fs->fs_bsize, NOCRED, 0, &bp); 788 (int)fs->fs_bsize, NOCRED, 0, &bp);
789 if (error) { 789 if (error) {
790 brelse(bp, 0); 790 brelse(bp, 0);
791 vput(vp); 791 vput(vp);
792 (void)vunmark(mvp); 792 (void)vunmark(mvp);
793 break; 793 break;
794 } 794 }
795 ffs_load_inode(bp, ip, fs, ip->i_number); 795 ffs_load_inode(bp, ip, fs, ip->i_number);
796 brelse(bp, 0); 796 brelse(bp, 0);
797 vput(vp); 797 vput(vp);
798 mutex_enter(&mntvnode_lock); 798 mutex_enter(&mntvnode_lock);
799 } 799 }
800 mutex_exit(&mntvnode_lock); 800 mutex_exit(&mntvnode_lock);
801 vnfree(mvp); 801 vnfree(mvp);
802 return (error); 802 return (error);
803} 803}
804 804
805/* 805/*
806 * Possible superblock locations ordered from most to least likely. 806 * Possible superblock locations ordered from most to least likely.
807 */ 807 */
808static const int sblock_try[] = SBLOCKSEARCH; 808static const int sblock_try[] = SBLOCKSEARCH;
809 809
810/* 810/*
811 * Common code for mount and mountroot 811 * Common code for mount and mountroot
812 */ 812 */
813int 813int
814ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l) 814ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
815{ 815{
816 struct ufsmount *ump; 816 struct ufsmount *ump;
817 struct buf *bp; 817 struct buf *bp;
818 struct fs *fs; 818 struct fs *fs;
819 dev_t dev; 819 dev_t dev;
820 struct partinfo dpart; 820 struct partinfo dpart;
821 void *space; 821 void *space;
822 daddr_t sblockloc, fsblockloc; 822 daddr_t sblockloc, fsblockloc;
823 int blks, fstype; 823 int blks, fstype;
824 int error, i, bsize, ronly, bset = 0; 824 int error, i, bsize, ronly, bset = 0;
825#ifdef FFS_EI 825#ifdef FFS_EI
826 int needswap = 0; /* keep gcc happy */ 826 int needswap = 0; /* keep gcc happy */
827#endif 827#endif
828 int32_t *lp; 828 int32_t *lp;
829 kauth_cred_t cred; 829 kauth_cred_t cred;
830 u_int32_t sbsize = 8192; /* keep gcc happy*/ 830 u_int32_t sbsize = 8192; /* keep gcc happy*/
 831 int32_t fsbsize;
831 832
832 dev = devvp->v_rdev; 833 dev = devvp->v_rdev;
833 cred = l ? l->l_cred : NOCRED; 834 cred = l ? l->l_cred : NOCRED;
834 835
835 /* Flush out any old buffers remaining from a previous use. */ 836 /* Flush out any old buffers remaining from a previous use. */
836 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 837 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
837 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0); 838 error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
838 VOP_UNLOCK(devvp); 839 VOP_UNLOCK(devvp);
839 if (error) 840 if (error)
840 return (error); 841 return (error);
841 842
842 ronly = (mp->mnt_flag & MNT_RDONLY) != 0; 843 ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
843 844
844 bp = NULL; 845 bp = NULL;
845 ump = NULL; 846 ump = NULL;
846 fs = NULL; 847 fs = NULL;
847 sblockloc = 0; 848 sblockloc = 0;
848 fstype = 0; 849 fstype = 0;
849 850
850 error = fstrans_mount(mp); 851 error = fstrans_mount(mp);
851 if (error) 852 if (error)
852 return error; 853 return error;
853 854
854 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK); 855 ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK);
855 memset(ump, 0, sizeof *ump); 856 memset(ump, 0, sizeof *ump);
856 mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE); 857 mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
857 error = ffs_snapshot_init(ump); 858 error = ffs_snapshot_init(ump);
858 if (error) 859 if (error)
859 goto out; 860 goto out;
860 ump->um_ops = &ffs_ufsops; 861 ump->um_ops = &ffs_ufsops;
861 862
862#ifdef WAPBL 863#ifdef WAPBL
863 sbagain: 864 sbagain:
864#endif 865#endif
865 /* 866 /*
866 * Try reading the superblock in each of its possible locations. 867 * Try reading the superblock in each of its possible locations.
867 */ 868 */
868 for (i = 0; ; i++) { 869 for (i = 0; ; i++) {
869 if (bp != NULL) { 870 if (bp != NULL) {
870 brelse(bp, BC_NOCACHE); 871 brelse(bp, BC_NOCACHE);
871 bp = NULL; 872 bp = NULL;
872 } 873 }
873 if (sblock_try[i] == -1) { 874 if (sblock_try[i] == -1) {
874 error = EINVAL; 875 error = EINVAL;
875 fs = NULL; 876 fs = NULL;
876 goto out; 877 goto out;
877 } 878 }
878 error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE, cred, 879 error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE, cred,
879 0, &bp); 880 0, &bp);
880 if (error) { 881 if (error) {
881 fs = NULL; 882 fs = NULL;
882 goto out; 883 goto out;
883 } 884 }
884 fs = (struct fs*)bp->b_data; 885 fs = (struct fs*)bp->b_data;
885 fsblockloc = sblockloc = sblock_try[i]; 886 fsblockloc = sblockloc = sblock_try[i];
886 if (fs->fs_magic == FS_UFS1_MAGIC) { 887 if (fs->fs_magic == FS_UFS1_MAGIC) {
887 sbsize = fs->fs_sbsize; 888 sbsize = fs->fs_sbsize;
888 fstype = UFS1; 889 fstype = UFS1;
 890 fsbsize = fs->fs_bsize;
889#ifdef FFS_EI 891#ifdef FFS_EI
890 needswap = 0; 892 needswap = 0;
891 } else if (fs->fs_magic == bswap32(FS_UFS1_MAGIC)) { 893 } else if (fs->fs_magic == bswap32(FS_UFS1_MAGIC)) {
892 sbsize = bswap32(fs->fs_sbsize); 894 sbsize = bswap32(fs->fs_sbsize);
893 fstype = UFS1; 895 fstype = UFS1;
 896 fsbsize = bswap32(fs->fs_bsize);
894 needswap = 1; 897 needswap = 1;
895#endif 898#endif
896 } else if (fs->fs_magic == FS_UFS2_MAGIC) { 899 } else if (fs->fs_magic == FS_UFS2_MAGIC) {
897 sbsize = fs->fs_sbsize; 900 sbsize = fs->fs_sbsize;
898 fstype = UFS2; 901 fstype = UFS2;
 902 fsbsize = fs->fs_bsize;
899#ifdef FFS_EI 903#ifdef FFS_EI
900 needswap = 0; 904 needswap = 0;
901 } else if (fs->fs_magic == bswap32(FS_UFS2_MAGIC)) { 905 } else if (fs->fs_magic == bswap32(FS_UFS2_MAGIC)) {
902 sbsize = bswap32(fs->fs_sbsize); 906 sbsize = bswap32(fs->fs_sbsize);
903 fstype = UFS2; 907 fstype = UFS2;
 908 fsbsize = bswap32(fs->fs_bsize);
904 needswap = 1; 909 needswap = 1;
905#endif 910#endif
906 } else 911 } else
907 continue; 912 continue;
908 913
909 914
910 /* fs->fs_sblockloc isn't defined for old filesystems */ 915 /* fs->fs_sblockloc isn't defined for old filesystems */
911 if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) { 916 if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
912 if (sblockloc == SBLOCK_UFS2) 917 if (sblockloc == SBLOCK_UFS2)
913 /* 918 /*
914 * This is likely to be the first alternate 919 * This is likely to be the first alternate
915 * in a filesystem with 64k blocks. 920 * in a filesystem with 64k blocks.
916 * Don't use it. 921 * Don't use it.
917 */ 922 */
918 continue; 923 continue;
919 fsblockloc = sblockloc; 924 fsblockloc = sblockloc;
920 } else { 925 } else {
921 fsblockloc = fs->fs_sblockloc; 926 fsblockloc = fs->fs_sblockloc;
922#ifdef FFS_EI 927#ifdef FFS_EI
923 if (needswap) 928 if (needswap)
924 fsblockloc = bswap64(fsblockloc); 929 fsblockloc = bswap64(fsblockloc);
925#endif 930#endif
926 } 931 }
927 932
928 /* Check we haven't found an alternate superblock */ 933 /* Check we haven't found an alternate superblock */
929 if (fsblockloc != sblockloc) 934 if (fsblockloc != sblockloc)
930 continue; 935 continue;
931 936
932 /* Validate size of superblock */ 937 /* Validate size of superblock */
933 if (sbsize > MAXBSIZE || sbsize < sizeof(struct fs)) 938 if (sbsize > MAXBSIZE || sbsize < sizeof(struct fs))
934 continue; 939 continue;
935 940
 941 /* Check that we can handle the file system blocksize */
 942 if (fsbsize > MAXBSIZE) {
 943 printf("ffs_mountfs: block size (%d) > MAXBSIZE (%d)",
 944 fsbsize, MAXBSIZE);
 945 continue;
 946 }
 947
936 /* Ok seems to be a good superblock */ 948 /* Ok seems to be a good superblock */
937 break; 949 break;
938 } 950 }
939 951
940 fs = malloc((u_long)sbsize, M_UFSMNT, M_WAITOK); 952 fs = malloc((u_long)sbsize, M_UFSMNT, M_WAITOK);
941 memcpy(fs, bp->b_data, sbsize); 953 memcpy(fs, bp->b_data, sbsize);
942 ump->um_fs = fs; 954 ump->um_fs = fs;
943 955
944#ifdef FFS_EI 956#ifdef FFS_EI
945 if (needswap) { 957 if (needswap) {
946 ffs_sb_swap((struct fs*)bp->b_data, fs); 958 ffs_sb_swap((struct fs*)bp->b_data, fs);
947 fs->fs_flags |= FS_SWAPPED; 959 fs->fs_flags |= FS_SWAPPED;
948 } else 960 } else
949#endif 961#endif
950 fs->fs_flags &= ~FS_SWAPPED; 962 fs->fs_flags &= ~FS_SWAPPED;
951 963
952#ifdef WAPBL 964#ifdef WAPBL
953 if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) { 965 if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
954 error = ffs_wapbl_replay_start(mp, fs, devvp); 966 error = ffs_wapbl_replay_start(mp, fs, devvp);
955 if (error && (mp->mnt_flag & MNT_FORCE) == 0) 967 if (error && (mp->mnt_flag & MNT_FORCE) == 0)
956 goto out; 968 goto out;
957 if (!error) { 969 if (!error) {
958 if (!ronly) { 970 if (!ronly) {
959 /* XXX fsmnt may be stale. */ 971 /* XXX fsmnt may be stale. */
960 printf("%s: replaying log to disk\n", 972 printf("%s: replaying log to disk\n",
961 fs->fs_fsmnt); 973 fs->fs_fsmnt);
962 error = wapbl_replay_write(mp->mnt_wapbl_replay, 974 error = wapbl_replay_write(mp->mnt_wapbl_replay,
963 devvp); 975 devvp);
964 if (error) 976 if (error)
965 goto out; 977 goto out;
966 wapbl_replay_stop(mp->mnt_wapbl_replay); 978 wapbl_replay_stop(mp->mnt_wapbl_replay);
967 fs->fs_clean = FS_WASCLEAN; 979 fs->fs_clean = FS_WASCLEAN;
968 } else { 980 } else {
969 /* XXX fsmnt may be stale */ 981 /* XXX fsmnt may be stale */
970 printf("%s: replaying log to memory\n", 982 printf("%s: replaying log to memory\n",
971 fs->fs_fsmnt); 983 fs->fs_fsmnt);
972 } 984 }
973 985
974 /* Force a re-read of the superblock */ 986 /* Force a re-read of the superblock */
975 brelse(bp, BC_INVAL); 987 brelse(bp, BC_INVAL);
976 bp = NULL; 988 bp = NULL;
977 free(fs, M_UFSMNT); 989 free(fs, M_UFSMNT);
978 fs = NULL; 990 fs = NULL;
979 goto sbagain; 991 goto sbagain;
980 } 992 }
981 } 993 }
982#else /* !WAPBL */ 994#else /* !WAPBL */
983 if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) { 995 if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
984 error = EPERM; 996 error = EPERM;
985 goto out; 997 goto out;
986 } 998 }
987#endif /* !WAPBL */ 999#endif /* !WAPBL */
988 1000
989 ffs_oldfscompat_read(fs, ump, sblockloc); 1001 ffs_oldfscompat_read(fs, ump, sblockloc);
990 ump->um_maxfilesize = fs->fs_maxfilesize; 1002 ump->um_maxfilesize = fs->fs_maxfilesize;
991 1003
992 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) { 1004 if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
993 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n", 1005 uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
994 mp->mnt_stat.f_mntonname, fs->fs_flags, 1006 mp->mnt_stat.f_mntonname, fs->fs_flags,
995 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting"); 1007 (mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
996 if ((mp->mnt_flag & MNT_FORCE) == 0) { 1008 if ((mp->mnt_flag & MNT_FORCE) == 0) {
997 error = EINVAL; 1009 error = EINVAL;
998 goto out; 1010 goto out;
999 } 1011 }
1000 } 1012 }
1001 1013
1002 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { 1014 if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
1003 fs->fs_pendingblocks = 0; 1015 fs->fs_pendingblocks = 0;
1004 fs->fs_pendinginodes = 0; 1016 fs->fs_pendinginodes = 0;
1005 } 1017 }
1006 1018
1007 ump->um_fstype = fstype; 1019 ump->um_fstype = fstype;
1008 if (fs->fs_sbsize < SBLOCKSIZE) 1020 if (fs->fs_sbsize < SBLOCKSIZE)
1009 brelse(bp, BC_INVAL); 1021 brelse(bp, BC_INVAL);
1010 else 1022 else
1011 brelse(bp, 0); 1023 brelse(bp, 0);
1012 bp = NULL; 1024 bp = NULL;
1013 1025
1014 /* First check to see if this is tagged as an Apple UFS filesystem 1026 /* First check to see if this is tagged as an Apple UFS filesystem
1015 * in the disklabel 1027 * in the disklabel
1016 */ 1028 */
1017 if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) && 1029 if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
1018 (dpart.part->p_fstype == FS_APPLEUFS)) { 1030 (dpart.part->p_fstype == FS_APPLEUFS)) {
1019 ump->um_flags |= UFS_ISAPPLEUFS; 1031 ump->um_flags |= UFS_ISAPPLEUFS;
1020 } 1032 }
1021#ifdef APPLE_UFS 1033#ifdef APPLE_UFS
1022 else { 1034 else {
1023 /* Manually look for an apple ufs label, and if a valid one 1035 /* Manually look for an apple ufs label, and if a valid one
1024 * is found, then treat it like an Apple UFS filesystem anyway 1036 * is found, then treat it like an Apple UFS filesystem anyway
1025 */ 1037 */
1026 error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE), 1038 error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
1027 APPLEUFS_LABEL_SIZE, cred, 0, &bp); 1039 APPLEUFS_LABEL_SIZE, cred, 0, &bp);
1028 if (error) 1040 if (error)
1029 goto out; 1041 goto out;
1030 error = ffs_appleufs_validate(fs->fs_fsmnt, 1042 error = ffs_appleufs_validate(fs->fs_fsmnt,
1031 (struct appleufslabel *)bp->b_data, NULL); 1043 (struct appleufslabel *)bp->b_data, NULL);
1032 if (error == 0) { 1044 if (error == 0) {
1033 ump->um_flags |= UFS_ISAPPLEUFS; 1045 ump->um_flags |= UFS_ISAPPLEUFS;
1034 } 1046 }
1035 brelse(bp, 0); 1047 brelse(bp, 0);
1036 bp = NULL; 1048 bp = NULL;
1037 } 1049 }
1038#else 1050#else
1039 if (ump->um_flags & UFS_ISAPPLEUFS) { 1051 if (ump->um_flags & UFS_ISAPPLEUFS) {
1040 error = EINVAL; 1052 error = EINVAL;
1041 goto out; 1053 goto out;
1042 } 1054 }
1043#endif 1055#endif
1044 1056
1045#if 0 1057#if 0
1046/* 1058/*
1047 * XXX This code changes the behaviour of mounting dirty filesystems, to 1059 * XXX This code changes the behaviour of mounting dirty filesystems, to
1048 * XXX require "mount -f ..." to mount them. This doesn't match what 1060 * XXX require "mount -f ..." to mount them. This doesn't match what
1049 * XXX mount(8) describes and is disabled for now. 1061 * XXX mount(8) describes and is disabled for now.
1050 */ 1062 */
1051 /* 1063 /*
1052 * If the file system is not clean, don't allow it to be mounted 1064 * If the file system is not clean, don't allow it to be mounted
1053 * unless MNT_FORCE is specified. (Note: MNT_FORCE is always set 1065 * unless MNT_FORCE is specified. (Note: MNT_FORCE is always set
1054 * for the root file system.) 1066 * for the root file system.)
1055 */ 1067 */
1056 if (fs->fs_flags & FS_DOWAPBL) { 1068 if (fs->fs_flags & FS_DOWAPBL) {
1057 /* 1069 /*
1058 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL 1070 * wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
1059 * bit is set, although there's a window in unmount where it 1071 * bit is set, although there's a window in unmount where it
1060 * could be FS_ISCLEAN 1072 * could be FS_ISCLEAN
1061 */ 1073 */
1062 if ((mp->mnt_flag & MNT_FORCE) == 0 && 1074 if ((mp->mnt_flag & MNT_FORCE) == 0 &&
1063 (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) { 1075 (fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
1064 error = EPERM; 1076 error = EPERM;
1065 goto out; 1077 goto out;
1066 } 1078 }
1067 } else 1079 } else
1068 if ((fs->fs_clean & FS_ISCLEAN) == 0 && 1080 if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
1069 (mp->mnt_flag & MNT_FORCE) == 0) { 1081 (mp->mnt_flag & MNT_FORCE) == 0) {
1070 error = EPERM; 1082 error = EPERM;
1071 goto out; 1083 goto out;
1072 } 1084 }
1073#endif 1085#endif
1074 1086
1075 /* 1087 /*
1076 * verify that we can access the last block in the fs 1088 * verify that we can access the last block in the fs
1077 * if we're mounting read/write. 1089 * if we're mounting read/write.
1078 */ 1090 */
1079 1091
1080 if (!ronly) { 1092 if (!ronly) {
1081 error = bread(devvp, fsbtodb(fs, fs->fs_size - 1), fs->fs_fsize, 1093 error = bread(devvp, fsbtodb(fs, fs->fs_size - 1), fs->fs_fsize,
1082 cred, 0, &bp); 1094 cred, 0, &bp);
1083 if (bp->b_bcount != fs->fs_fsize) 1095 if (bp->b_bcount != fs->fs_fsize)
1084 error = EINVAL; 1096 error = EINVAL;
1085 if (error) { 1097 if (error) {
1086 bset = BC_INVAL; 1098 bset = BC_INVAL;
1087 goto out; 1099 goto out;
1088 } 1100 }
1089 brelse(bp, BC_INVAL); 1101 brelse(bp, BC_INVAL);
1090 bp = NULL; 1102 bp = NULL;
1091 } 1103 }
1092 1104
1093 fs->fs_ronly = ronly; 1105 fs->fs_ronly = ronly;
1094 /* Don't bump fs_clean if we're replaying journal */ 1106 /* Don't bump fs_clean if we're replaying journal */
1095 if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN))) 1107 if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN)))
1096 if (ronly == 0) { 1108 if (ronly == 0) {
1097 fs->fs_clean <<= 1; 1109 fs->fs_clean <<= 1;
1098 fs->fs_fmod = 1; 1110 fs->fs_fmod = 1;
1099 } 1111 }
1100 bsize = fs->fs_cssize; 1112 bsize = fs->fs_cssize;
1101 blks = howmany(bsize, fs->fs_fsize); 1113 blks = howmany(bsize, fs->fs_fsize);
1102 if (fs->fs_contigsumsize > 0) 1114 if (fs->fs_contigsumsize > 0)
1103 bsize += fs->fs_ncg * sizeof(int32_t); 1115 bsize += fs->fs_ncg * sizeof(int32_t);
1104 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs); 1116 bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1105 space = malloc((u_long)bsize, M_UFSMNT, M_WAITOK); 1117 space = malloc((u_long)bsize, M_UFSMNT, M_WAITOK);
1106 fs->fs_csp = space; 1118 fs->fs_csp = space;
1107 for (i = 0; i < blks; i += fs->fs_frag) { 1119 for (i = 0; i < blks; i += fs->fs_frag) {
1108 bsize = fs->fs_bsize; 1120 bsize = fs->fs_bsize;
1109 if (i + fs->fs_frag > blks) 1121 if (i + fs->fs_frag > blks)
1110 bsize = (blks - i) * fs->fs_fsize; 1122 bsize = (blks - i) * fs->fs_fsize;
1111 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize, 1123 error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
1112 cred, 0, &bp); 1124 cred, 0, &bp);
1113 if (error) { 1125 if (error) {
1114 free(fs->fs_csp, M_UFSMNT); 1126 free(fs->fs_csp, M_UFSMNT);
1115 goto out; 1127 goto out;
1116 } 1128 }
1117#ifdef FFS_EI 1129#ifdef FFS_EI
1118 if (needswap) 1130 if (needswap)
1119 ffs_csum_swap((struct csum *)bp->b_data, 1131 ffs_csum_swap((struct csum *)bp->b_data,
1120 (struct csum *)space, bsize); 1132 (struct csum *)space, bsize);
1121 else 1133 else
1122#endif 1134#endif
1123 memcpy(space, bp->b_data, (u_int)bsize); 1135 memcpy(space, bp->b_data, (u_int)bsize);
1124 1136
1125 space = (char *)space + bsize; 1137 space = (char *)space + bsize;
1126 brelse(bp, 0); 1138 brelse(bp, 0);
1127 bp = NULL; 1139 bp = NULL;
1128 } 1140 }
1129 if (fs->fs_contigsumsize > 0) { 1141 if (fs->fs_contigsumsize > 0) {
1130 fs->fs_maxcluster = lp = space; 1142 fs->fs_maxcluster = lp = space;
1131 for (i = 0; i < fs->fs_ncg; i++) 1143 for (i = 0; i < fs->fs_ncg; i++)
1132 *lp++ = fs->fs_contigsumsize; 1144 *lp++ = fs->fs_contigsumsize;
1133 space = lp; 1145 space = lp;
1134 } 1146 }
1135 bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs); 1147 bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
1136 fs->fs_contigdirs = space; 1148 fs->fs_contigdirs = space;
1137 space = (char *)space + bsize; 1149 space = (char *)space + bsize;
1138 memset(fs->fs_contigdirs, 0, bsize); 1150 memset(fs->fs_contigdirs, 0, bsize);
1139 /* Compatibility for old filesystems - XXX */ 1151 /* Compatibility for old filesystems - XXX */
1140 if (fs->fs_avgfilesize <= 0) 1152 if (fs->fs_avgfilesize <= 0)
1141 fs->fs_avgfilesize = AVFILESIZ; 1153 fs->fs_avgfilesize = AVFILESIZ;
1142 if (fs->fs_avgfpdir <= 0) 1154 if (fs->fs_avgfpdir <= 0)
1143 fs->fs_avgfpdir = AFPDIR; 1155 fs->fs_avgfpdir = AFPDIR;
1144 fs->fs_active = NULL; 1156 fs->fs_active = NULL;
1145 mp->mnt_data = ump; 1157 mp->mnt_data = ump;
1146 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev; 1158 mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
1147 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS); 1159 mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
1148 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0]; 1160 mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
1149 mp->mnt_stat.f_namemax = FFS_MAXNAMLEN; 1161 mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
1150 if (UFS_MPISAPPLEUFS(ump)) { 1162 if (UFS_MPISAPPLEUFS(ump)) {
1151 /* NeXT used to keep short symlinks in the inode even 1163 /* NeXT used to keep short symlinks in the inode even
1152 * when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen 1164 * when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen
1153 * is probably -1, but we still need to be able to identify 1165 * is probably -1, but we still need to be able to identify
1154 * short symlinks. 1166 * short symlinks.
1155 */ 1167 */
1156 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN; 1168 ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
1157 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ; 1169 ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
1158 mp->mnt_iflag |= IMNT_DTYPE; 1170 mp->mnt_iflag |= IMNT_DTYPE;
1159 } else { 1171 } else {
1160 ump->um_maxsymlinklen = fs->fs_maxsymlinklen; 1172 ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
1161 ump->um_dirblksiz = DIRBLKSIZ; 1173 ump->um_dirblksiz = DIRBLKSIZ;
1162 if (ump->um_maxsymlinklen > 0) 1174 if (ump->um_maxsymlinklen > 0)
1163 mp->mnt_iflag |= IMNT_DTYPE; 1175 mp->mnt_iflag |= IMNT_DTYPE;
1164 else 1176 else
1165 mp->mnt_iflag &= ~IMNT_DTYPE; 1177 mp->mnt_iflag &= ~IMNT_DTYPE;
1166 } 1178 }
1167 mp->mnt_fs_bshift = fs->fs_bshift; 1179 mp->mnt_fs_bshift = fs->fs_bshift;
1168 mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */ 1180 mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */
1169 mp->mnt_flag |= MNT_LOCAL; 1181 mp->mnt_flag |= MNT_LOCAL;
1170 mp->mnt_iflag |= IMNT_MPSAFE; 1182 mp->mnt_iflag |= IMNT_MPSAFE;
1171#ifdef FFS_EI 1183#ifdef FFS_EI
1172 if (needswap) 1184 if (needswap)
1173 ump->um_flags |= UFS_NEEDSWAP; 1185 ump->um_flags |= UFS_NEEDSWAP;
1174#endif 1186#endif
1175 ump->um_mountp = mp; 1187 ump->um_mountp = mp;
1176 ump->um_dev = dev; 1188 ump->um_dev = dev;
1177 ump->um_devvp = devvp; 1189 ump->um_devvp = devvp;
1178 ump->um_nindir = fs->fs_nindir; 1190 ump->um_nindir = fs->fs_nindir;
1179 ump->um_lognindir = ffs(fs->fs_nindir) - 1; 1191 ump->um_lognindir = ffs(fs->fs_nindir) - 1;
1180 ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT; 1192 ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
1181 ump->um_seqinc = fs->fs_frag; 1193 ump->um_seqinc = fs->fs_frag;
1182 for (i = 0; i < MAXQUOTAS; i++) 1194 for (i = 0; i < MAXQUOTAS; i++)
1183 ump->um_quotas[i] = NULLVP; 1195 ump->um_quotas[i] = NULLVP;
1184 devvp->v_specmountpoint = mp; 1196 devvp->v_specmountpoint = mp;
1185 if (ronly == 0 && fs->fs_snapinum[0] != 0) 1197 if (ronly == 0 && fs->fs_snapinum[0] != 0)
1186 ffs_snapshot_mount(mp); 1198 ffs_snapshot_mount(mp);
1187 1199
1188#ifdef WAPBL 1200#ifdef WAPBL
1189 if (!ronly) { 1201 if (!ronly) {
1190 KDASSERT(fs->fs_ronly == 0); 1202 KDASSERT(fs->fs_ronly == 0);
1191 /* 1203 /*
1192 * ffs_wapbl_start() needs mp->mnt_stat initialised if it 1204 * ffs_wapbl_start() needs mp->mnt_stat initialised if it
1193 * needs to create a new log file in-filesystem. 1205 * needs to create a new log file in-filesystem.
1194 */ 1206 */
1195 ffs_statvfs(mp, &mp->mnt_stat); 1207 ffs_statvfs(mp, &mp->mnt_stat);
1196 1208
1197 error = ffs_wapbl_start(mp); 1209 error = ffs_wapbl_start(mp);
1198 if (error) { 1210 if (error) {
1199 free(fs->fs_csp, M_UFSMNT); 1211 free(fs->fs_csp, M_UFSMNT);
1200 goto out; 1212 goto out;
1201 } 1213 }
1202 } 1214 }
1203#endif /* WAPBL */ 1215#endif /* WAPBL */
1204#ifdef UFS_EXTATTR 1216#ifdef UFS_EXTATTR
1205 /* 1217 /*
1206 * Initialize file-backed extended attributes on UFS1 file 1218 * Initialize file-backed extended attributes on UFS1 file
1207 * systems. 1219 * systems.
1208 */ 1220 */
1209 if (ump->um_fstype == UFS1) { 1221 if (ump->um_fstype == UFS1) {
1210 ufs_extattr_uepm_init(&ump->um_extattr); 1222 ufs_extattr_uepm_init(&ump->um_extattr);
1211#ifdef UFS_EXTATTR_AUTOSTART 1223#ifdef UFS_EXTATTR_AUTOSTART
1212 /* 1224 /*
1213 * XXX Just ignore errors. Not clear that we should 1225 * XXX Just ignore errors. Not clear that we should
1214 * XXX fail the mount in this case. 1226 * XXX fail the mount in this case.
1215 */ 1227 */
1216 (void) ufs_extattr_autostart(mp, l); 1228 (void) ufs_extattr_autostart(mp, l);
1217#endif 1229#endif
1218 } 1230 }
1219#endif /* UFS_EXTATTR */ 1231#endif /* UFS_EXTATTR */
1220 return (0); 1232 return (0);
1221out: 1233out:
1222#ifdef WAPBL 1234#ifdef WAPBL
1223 if (mp->mnt_wapbl_replay) { 1235 if (mp->mnt_wapbl_replay) {
1224 wapbl_replay_stop(mp->mnt_wapbl_replay); 1236 wapbl_replay_stop(mp->mnt_wapbl_replay);
1225 wapbl_replay_free(mp->mnt_wapbl_replay); 1237 wapbl_replay_free(mp->mnt_wapbl_replay);
1226 mp->mnt_wapbl_replay = 0; 1238 mp->mnt_wapbl_replay = 0;
1227 } 1239 }
1228#endif 1240#endif
1229 1241
1230 fstrans_unmount(mp); 1242 fstrans_unmount(mp);
1231 if (fs) 1243 if (fs)
1232 free(fs, M_UFSMNT); 1244 free(fs, M_UFSMNT);
1233 devvp->v_specmountpoint = NULL; 1245 devvp->v_specmountpoint = NULL;
1234 if (bp) 1246 if (bp)
1235 brelse(bp, bset); 1247 brelse(bp, bset);
1236 if (ump) { 1248 if (ump) {
1237 if (ump->um_oldfscompat) 1249 if (ump->um_oldfscompat)
1238 free(ump->um_oldfscompat, M_UFSMNT); 1250 free(ump->um_oldfscompat, M_UFSMNT);
1239 mutex_destroy(&ump->um_lock); 1251 mutex_destroy(&ump->um_lock);
1240 free(ump, M_UFSMNT); 1252 free(ump, M_UFSMNT);
1241 mp->mnt_data = NULL; 1253 mp->mnt_data = NULL;
1242 } 1254 }
1243 return (error); 1255 return (error);
1244} 1256}
1245 1257
1246/* 1258/*
1247 * Sanity checks for loading old filesystem superblocks. 1259 * Sanity checks for loading old filesystem superblocks.
1248 * See ffs_oldfscompat_write below for unwound actions. 1260 * See ffs_oldfscompat_write below for unwound actions.
1249 * 1261 *
1250 * XXX - Parts get retired eventually. 1262 * XXX - Parts get retired eventually.
1251 * Unfortunately new bits get added. 1263 * Unfortunately new bits get added.
1252 */ 1264 */
1253static void 1265static void
1254ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc) 1266ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
1255{ 1267{
1256 off_t maxfilesize; 1268 off_t maxfilesize;
1257 int32_t *extrasave; 1269 int32_t *extrasave;
1258 1270
1259 if ((fs->fs_magic != FS_UFS1_MAGIC) || 1271 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1260 (fs->fs_old_flags & FS_FLAGS_UPDATED)) 1272 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1261 return; 1273 return;
1262 1274
1263 if (!ump->um_oldfscompat) 1275 if (!ump->um_oldfscompat)
1264 ump->um_oldfscompat = malloc(512 + 3*sizeof(int32_t), 1276 ump->um_oldfscompat = malloc(512 + 3*sizeof(int32_t),
1265 M_UFSMNT, M_WAITOK); 1277 M_UFSMNT, M_WAITOK);
1266 1278
1267 memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512); 1279 memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
1268 extrasave = ump->um_oldfscompat; 1280 extrasave = ump->um_oldfscompat;
1269 extrasave += 512/sizeof(int32_t); 1281 extrasave += 512/sizeof(int32_t);
1270 extrasave[0] = fs->fs_old_npsect; 1282 extrasave[0] = fs->fs_old_npsect;
1271 extrasave[1] = fs->fs_old_interleave; 1283 extrasave[1] = fs->fs_old_interleave;
1272 extrasave[2] = fs->fs_old_trackskew; 1284 extrasave[2] = fs->fs_old_trackskew;
1273 1285
1274 /* These fields will be overwritten by their 1286 /* These fields will be overwritten by their
1275 * original values in fs_oldfscompat_write, so it is harmless 1287 * original values in fs_oldfscompat_write, so it is harmless
1276 * to modify them here. 1288 * to modify them here.
1277 */ 1289 */
1278 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir; 1290 fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
1279 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree; 1291 fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
1280 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree; 1292 fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
1281 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree; 1293 fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
1282 1294
1283 fs->fs_maxbsize = fs->fs_bsize; 1295 fs->fs_maxbsize = fs->fs_bsize;
1284 fs->fs_time = fs->fs_old_time; 1296 fs->fs_time = fs->fs_old_time;
1285 fs->fs_size = fs->fs_old_size; 1297 fs->fs_size = fs->fs_old_size;
1286 fs->fs_dsize = fs->fs_old_dsize; 1298 fs->fs_dsize = fs->fs_old_dsize;
1287 fs->fs_csaddr = fs->fs_old_csaddr; 1299 fs->fs_csaddr = fs->fs_old_csaddr;
1288 fs->fs_sblockloc = sblockloc; 1300 fs->fs_sblockloc = sblockloc;
1289 1301
1290 fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL); 1302 fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
1291 1303
1292 if (fs->fs_old_postblformat == FS_42POSTBLFMT) { 1304 if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
1293 fs->fs_old_nrpos = 8; 1305 fs->fs_old_nrpos = 8;
1294 fs->fs_old_npsect = fs->fs_old_nsect; 1306 fs->fs_old_npsect = fs->fs_old_nsect;
1295 fs->fs_old_interleave = 1; 1307 fs->fs_old_interleave = 1;
1296 fs->fs_old_trackskew = 0; 1308 fs->fs_old_trackskew = 0;
1297 } 1309 }
1298 1310
1299 if (fs->fs_old_inodefmt < FS_44INODEFMT) { 1311 if (fs->fs_old_inodefmt < FS_44INODEFMT) {
1300 fs->fs_maxfilesize = (u_quad_t) 1LL << 39; 1312 fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
1301 fs->fs_qbmask = ~fs->fs_bmask; 1313 fs->fs_qbmask = ~fs->fs_bmask;
1302 fs->fs_qfmask = ~fs->fs_fmask; 1314 fs->fs_qfmask = ~fs->fs_fmask;
1303 } 1315 }
1304 1316
1305 maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1; 1317 maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
1306 if (fs->fs_maxfilesize > maxfilesize) 1318 if (fs->fs_maxfilesize > maxfilesize)
1307 fs->fs_maxfilesize = maxfilesize; 1319 fs->fs_maxfilesize = maxfilesize;
1308 1320
1309 /* Compatibility for old filesystems */ 1321 /* Compatibility for old filesystems */
1310 if (fs->fs_avgfilesize <= 0) 1322 if (fs->fs_avgfilesize <= 0)
1311 fs->fs_avgfilesize = AVFILESIZ; 1323 fs->fs_avgfilesize = AVFILESIZ;
1312 if (fs->fs_avgfpdir <= 0) 1324 if (fs->fs_avgfpdir <= 0)
1313 fs->fs_avgfpdir = AFPDIR; 1325 fs->fs_avgfpdir = AFPDIR;
1314 1326
1315#if 0 1327#if 0
1316 if (bigcgs) { 1328 if (bigcgs) {
1317 fs->fs_save_cgsize = fs->fs_cgsize; 1329 fs->fs_save_cgsize = fs->fs_cgsize;
1318 fs->fs_cgsize = fs->fs_bsize; 1330 fs->fs_cgsize = fs->fs_bsize;
1319 } 1331 }
1320#endif 1332#endif
1321} 1333}
1322 1334
1323/* 1335/*
1324 * Unwinding superblock updates for old filesystems. 1336 * Unwinding superblock updates for old filesystems.
1325 * See ffs_oldfscompat_read above for details. 1337 * See ffs_oldfscompat_read above for details.
1326 * 1338 *
1327 * XXX - Parts get retired eventually. 1339 * XXX - Parts get retired eventually.
1328 * Unfortunately new bits get added. 1340 * Unfortunately new bits get added.
1329 */ 1341 */
1330static void 1342static void
1331ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump) 1343ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
1332{ 1344{
1333 int32_t *extrasave; 1345 int32_t *extrasave;
1334 1346
1335 if ((fs->fs_magic != FS_UFS1_MAGIC) || 1347 if ((fs->fs_magic != FS_UFS1_MAGIC) ||
1336 (fs->fs_old_flags & FS_FLAGS_UPDATED)) 1348 (fs->fs_old_flags & FS_FLAGS_UPDATED))
1337 return; 1349 return;
1338 1350
1339 fs->fs_old_time = fs->fs_time; 1351 fs->fs_old_time = fs->fs_time;
1340 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir; 1352 fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
1341 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree; 1353 fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
1342 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree; 1354 fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
1343 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree; 1355 fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
1344 fs->fs_old_flags = fs->fs_flags; 1356 fs->fs_old_flags = fs->fs_flags;
1345 1357
1346#if 0 1358#if 0
1347 if (bigcgs) { 1359 if (bigcgs) {
1348 fs->fs_cgsize = fs->fs_save_cgsize; 1360 fs->fs_cgsize = fs->fs_save_cgsize;
1349 } 1361 }
1350#endif 1362#endif
1351 1363
1352 memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512); 1364 memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
1353 extrasave = ump->um_oldfscompat; 1365 extrasave = ump->um_oldfscompat;
1354 extrasave += 512/sizeof(int32_t); 1366 extrasave += 512/sizeof(int32_t);
1355 fs->fs_old_npsect = extrasave[0]; 1367 fs->fs_old_npsect = extrasave[0];
1356 fs->fs_old_interleave = extrasave[1]; 1368 fs->fs_old_interleave = extrasave[1];
1357 fs->fs_old_trackskew = extrasave[2]; 1369 fs->fs_old_trackskew = extrasave[2];
1358 1370
1359} 1371}
1360 1372
1361/* 1373/*
1362 * unmount vfs operation 1374 * unmount vfs operation
1363 */ 1375 */
1364int 1376int
1365ffs_unmount(struct mount *mp, int mntflags) 1377ffs_unmount(struct mount *mp, int mntflags)
1366{ 1378{
1367 struct lwp *l = curlwp; 1379 struct lwp *l = curlwp;
1368 struct ufsmount *ump = VFSTOUFS(mp); 1380 struct ufsmount *ump = VFSTOUFS(mp);
1369 struct fs *fs = ump->um_fs; 1381 struct fs *fs = ump->um_fs;
1370 int error, flags; 1382 int error, flags;
1371#ifdef WAPBL 1383#ifdef WAPBL
1372 extern int doforce; 1384 extern int doforce;
1373#endif 1385#endif
1374 1386
1375 flags = 0; 1387 flags = 0;
1376 if (mntflags & MNT_FORCE) 1388 if (mntflags & MNT_FORCE)
1377 flags |= FORCECLOSE; 1389 flags |= FORCECLOSE;
1378 if ((error = ffs_flushfiles(mp, flags, l)) != 0) 1390 if ((error = ffs_flushfiles(mp, flags, l)) != 0)
1379 return (error); 1391 return (error);
1380 error = UFS_WAPBL_BEGIN(mp); 1392 error = UFS_WAPBL_BEGIN(mp);
1381 if (error == 0) 1393 if (error == 0)
1382 if (fs->fs_ronly == 0 && 1394 if (fs->fs_ronly == 0 &&
1383 ffs_cgupdate(ump, MNT_WAIT) == 0 && 1395 ffs_cgupdate(ump, MNT_WAIT) == 0 &&
1384 fs->fs_clean & FS_WASCLEAN) { 1396 fs->fs_clean & FS_WASCLEAN) {
1385 fs->fs_clean = FS_ISCLEAN; 1397 fs->fs_clean = FS_ISCLEAN;
1386 fs->fs_fmod = 0; 1398 fs->fs_fmod = 0;
1387 (void) ffs_sbupdate(ump, MNT_WAIT); 1399 (void) ffs_sbupdate(ump, MNT_WAIT);
1388 } 1400 }
1389 if (error == 0) 1401 if (error == 0)
1390 UFS_WAPBL_END(mp); 1402 UFS_WAPBL_END(mp);
1391#ifdef WAPBL 1403#ifdef WAPBL
1392 KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl)); 1404 KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
1393 if (mp->mnt_wapbl_replay) { 1405 if (mp->mnt_wapbl_replay) {
1394 KDASSERT(fs->fs_ronly); 1406 KDASSERT(fs->fs_ronly);
1395 wapbl_replay_stop(mp->mnt_wapbl_replay); 1407 wapbl_replay_stop(mp->mnt_wapbl_replay);
1396 wapbl_replay_free(mp->mnt_wapbl_replay); 1408 wapbl_replay_free(mp->mnt_wapbl_replay);
1397 mp->mnt_wapbl_replay = 0; 1409 mp->mnt_wapbl_replay = 0;
1398 } 1410 }
1399 error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE)); 1411 error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
1400 if (error) { 1412 if (error) {
1401 return error; 1413 return error;
1402 } 1414 }
1403#endif /* WAPBL */ 1415#endif /* WAPBL */
1404#ifdef UFS_EXTATTR 1416#ifdef UFS_EXTATTR
1405 if (ump->um_fstype == UFS1) { 1417 if (ump->um_fstype == UFS1) {
1406 ufs_extattr_stop(mp, l); 1418 ufs_extattr_stop(mp, l);
1407 ufs_extattr_uepm_destroy(&ump->um_extattr); 1419 ufs_extattr_uepm_destroy(&ump->um_extattr);
1408 } 1420 }
1409#endif /* UFS_EXTATTR */ 1421#endif /* UFS_EXTATTR */
1410 1422
1411 if (ump->um_devvp->v_type != VBAD) 1423 if (ump->um_devvp->v_type != VBAD)
1412 ump->um_devvp->v_specmountpoint = NULL; 1424 ump->um_devvp->v_specmountpoint = NULL;
1413 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 1425 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1414 (void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE, 1426 (void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
1415 NOCRED); 1427 NOCRED);
1416 vput(ump->um_devvp); 1428 vput(ump->um_devvp);
1417 free(fs->fs_csp, M_UFSMNT); 1429 free(fs->fs_csp, M_UFSMNT);
1418 free(fs, M_UFSMNT); 1430 free(fs, M_UFSMNT);
1419 if (ump->um_oldfscompat != NULL) 1431 if (ump->um_oldfscompat != NULL)
1420 free(ump->um_oldfscompat, M_UFSMNT); 1432 free(ump->um_oldfscompat, M_UFSMNT);
1421 mutex_destroy(&ump->um_lock); 1433 mutex_destroy(&ump->um_lock);
1422 ffs_snapshot_fini(ump); 1434 ffs_snapshot_fini(ump);
1423 free(ump, M_UFSMNT); 1435 free(ump, M_UFSMNT);
1424 mp->mnt_data = NULL; 1436 mp->mnt_data = NULL;
1425 mp->mnt_flag &= ~MNT_LOCAL; 1437 mp->mnt_flag &= ~MNT_LOCAL;
1426 fstrans_unmount(mp); 1438 fstrans_unmount(mp);
1427 return (0); 1439 return (0);
1428} 1440}
1429 1441
1430/* 1442/*
1431 * Flush out all the files in a filesystem. 1443 * Flush out all the files in a filesystem.
1432 */ 1444 */
1433int 1445int
1434ffs_flushfiles(struct mount *mp, int flags, struct lwp *l) 1446ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
1435{ 1447{
1436 extern int doforce; 1448 extern int doforce;
1437 struct ufsmount *ump; 1449 struct ufsmount *ump;
1438 int error; 1450 int error;
1439 1451
1440 if (!doforce) 1452 if (!doforce)
1441 flags &= ~FORCECLOSE; 1453 flags &= ~FORCECLOSE;
1442 ump = VFSTOUFS(mp); 1454 ump = VFSTOUFS(mp);
1443#ifdef QUOTA 1455#ifdef QUOTA
1444 if (mp->mnt_flag & MNT_QUOTA) { 1456 if (mp->mnt_flag & MNT_QUOTA) {
1445 int i; 1457 int i;
1446 if ((error = vflush(mp, NULLVP, SKIPSYSTEM | flags)) != 0) 1458 if ((error = vflush(mp, NULLVP, SKIPSYSTEM | flags)) != 0)
1447 return (error); 1459 return (error);
1448 for (i = 0; i < MAXQUOTAS; i++) { 1460 for (i = 0; i < MAXQUOTAS; i++) {
1449 if (ump->um_quotas[i] == NULLVP) 1461 if (ump->um_quotas[i] == NULLVP)
1450 continue; 1462 continue;
1451 quotaoff(l, mp, i); 1463 quotaoff(l, mp, i);
1452 } 1464 }
1453 /* 1465 /*
1454 * Here we fall through to vflush again to ensure 1466 * Here we fall through to vflush again to ensure
1455 * that we have gotten rid of all the system vnodes. 1467 * that we have gotten rid of all the system vnodes.
1456 */ 1468 */
1457 } 1469 }
1458#endif 1470#endif
1459 if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0) 1471 if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
1460 return (error); 1472 return (error);
1461 ffs_snapshot_unmount(mp); 1473 ffs_snapshot_unmount(mp);
1462 /* 1474 /*
1463 * Flush all the files. 1475 * Flush all the files.
1464 */ 1476 */
1465 error = vflush(mp, NULLVP, flags); 1477 error = vflush(mp, NULLVP, flags);
1466 if (error) 1478 if (error)
1467 return (error); 1479 return (error);
1468 /* 1480 /*
1469 * Flush filesystem metadata. 1481 * Flush filesystem metadata.
1470 */ 1482 */
1471 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 1483 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1472 error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0); 1484 error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
1473 VOP_UNLOCK(ump->um_devvp); 1485 VOP_UNLOCK(ump->um_devvp);
1474 if (flags & FORCECLOSE) /* XXXDBJ */ 1486 if (flags & FORCECLOSE) /* XXXDBJ */
1475 error = 0; 1487 error = 0;
1476 1488
1477#ifdef WAPBL 1489#ifdef WAPBL
1478 if (error) 1490 if (error)
1479 return error; 1491 return error;
1480 if (mp->mnt_wapbl) { 1492 if (mp->mnt_wapbl) {
1481 error = wapbl_flush(mp->mnt_wapbl, 1); 1493 error = wapbl_flush(mp->mnt_wapbl, 1);
1482 if (flags & FORCECLOSE) 1494 if (flags & FORCECLOSE)
1483 error = 0; 1495 error = 0;
1484 } 1496 }
1485#endif 1497#endif
1486 1498
1487 return (error); 1499 return (error);
1488} 1500}
1489 1501
1490/* 1502/*
1491 * Get file system statistics. 1503 * Get file system statistics.
1492 */ 1504 */
1493int 1505int
1494ffs_statvfs(struct mount *mp, struct statvfs *sbp) 1506ffs_statvfs(struct mount *mp, struct statvfs *sbp)
1495{ 1507{
1496 struct ufsmount *ump; 1508 struct ufsmount *ump;
1497 struct fs *fs; 1509 struct fs *fs;
1498 1510
1499 ump = VFSTOUFS(mp); 1511 ump = VFSTOUFS(mp);
1500 fs = ump->um_fs; 1512 fs = ump->um_fs;
1501 mutex_enter(&ump->um_lock); 1513 mutex_enter(&ump->um_lock);
1502 sbp->f_bsize = fs->fs_bsize; 1514 sbp->f_bsize = fs->fs_bsize;
1503 sbp->f_frsize = fs->fs_fsize; 1515 sbp->f_frsize = fs->fs_fsize;
1504 sbp->f_iosize = fs->fs_bsize; 1516 sbp->f_iosize = fs->fs_bsize;
1505 sbp->f_blocks = fs->fs_dsize; 1517 sbp->f_blocks = fs->fs_dsize;
1506 sbp->f_bfree = blkstofrags(fs, fs->fs_cstotal.cs_nbfree) + 1518 sbp->f_bfree = blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
1507 fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks); 1519 fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
1508 sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t) 1520 sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
1509 fs->fs_minfree) / (u_int64_t) 100; 1521 fs->fs_minfree) / (u_int64_t) 100;
1510 if (sbp->f_bfree > sbp->f_bresvd) 1522 if (sbp->f_bfree > sbp->f_bresvd)
1511 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd; 1523 sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
1512 else 1524 else
1513 sbp->f_bavail = 0; 1525 sbp->f_bavail = 0;
1514 sbp->f_files = fs->fs_ncg * fs->fs_ipg - ROOTINO; 1526 sbp->f_files = fs->fs_ncg * fs->fs_ipg - ROOTINO;
1515 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes; 1527 sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
1516 sbp->f_favail = sbp->f_ffree; 1528 sbp->f_favail = sbp->f_ffree;
1517 sbp->f_fresvd = 0; 1529 sbp->f_fresvd = 0;
1518 mutex_exit(&ump->um_lock); 1530 mutex_exit(&ump->um_lock);
1519 copy_statvfs_info(sbp, mp); 1531 copy_statvfs_info(sbp, mp);
1520 1532
1521 return (0); 1533 return (0);
1522} 1534}
1523 1535
1524/* 1536/*
1525 * Go through the disk queues to initiate sandbagged IO; 1537 * Go through the disk queues to initiate sandbagged IO;
1526 * go through the inodes to write those that have been modified; 1538 * go through the inodes to write those that have been modified;
1527 * initiate the writing of the super block if it has been modified. 1539 * initiate the writing of the super block if it has been modified.
1528 * 1540 *
1529 * Note: we are always called with the filesystem marked `MPBUSY'. 1541 * Note: we are always called with the filesystem marked `MPBUSY'.
1530 */ 1542 */
1531int 1543int
1532ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred) 1544ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
1533{ 1545{
1534 struct vnode *vp, *mvp, *nvp; 1546 struct vnode *vp, *mvp, *nvp;
1535 struct inode *ip; 1547 struct inode *ip;
1536 struct ufsmount *ump = VFSTOUFS(mp); 1548 struct ufsmount *ump = VFSTOUFS(mp);
1537 struct fs *fs; 1549 struct fs *fs;
1538 int lk_flags, error, allerror = 0; 1550 int lk_flags, error, allerror = 0;
1539 bool is_suspending; 1551 bool is_suspending;
1540 1552
1541 fs = ump->um_fs; 1553 fs = ump->um_fs;
1542 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */ 1554 if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */
1543 printf("fs = %s\n", fs->fs_fsmnt); 1555 printf("fs = %s\n", fs->fs_fsmnt);
1544 panic("update: rofs mod"); 1556 panic("update: rofs mod");
1545 } 1557 }
1546 1558
1547 /* Allocate a marker vnode. */ 1559 /* Allocate a marker vnode. */
1548 if ((mvp = vnalloc(mp)) == NULL) 1560 if ((mvp = vnalloc(mp)) == NULL)
1549 return (ENOMEM); 1561 return (ENOMEM);
1550 1562
1551 fstrans_start(mp, FSTRANS_SHARED); 1563 fstrans_start(mp, FSTRANS_SHARED);
1552 is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING); 1564 is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
1553 /* 1565 /*
1554 * We can't lock vnodes while the file system is suspending because 1566 * We can't lock vnodes while the file system is suspending because
1555 * threads waiting on fstrans may have locked vnodes. 1567 * threads waiting on fstrans may have locked vnodes.
1556 */ 1568 */
1557 if (is_suspending) 1569 if (is_suspending)
1558 lk_flags = 0; 1570 lk_flags = 0;
1559 else 1571 else
1560 lk_flags = LK_EXCLUSIVE | LK_NOWAIT; 1572 lk_flags = LK_EXCLUSIVE | LK_NOWAIT;
1561 /* 1573 /*
1562 * Write back each (modified) inode. 1574 * Write back each (modified) inode.
1563 */ 1575 */
1564 mutex_enter(&mntvnode_lock); 1576 mutex_enter(&mntvnode_lock);
1565loop: 1577loop:
1566 /* 1578 /*
1567 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone() 1579 * NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
1568 * and vclean() can be called indirectly 1580 * and vclean() can be called indirectly
1569 */ 1581 */
1570 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) { 1582 for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1571 nvp = TAILQ_NEXT(vp, v_mntvnodes); 1583 nvp = TAILQ_NEXT(vp, v_mntvnodes);
1572 /* 1584 /*
1573 * If the vnode that we are about to sync is no longer 1585 * If the vnode that we are about to sync is no longer
1574 * associated with this mount point, start over. 1586 * associated with this mount point, start over.
1575 */ 1587 */
1576 if (vp->v_mount != mp) 1588 if (vp->v_mount != mp)
1577 goto loop; 1589 goto loop;
1578 /* 1590 /*
1579 * Don't interfere with concurrent scans of this FS. 1591 * Don't interfere with concurrent scans of this FS.
1580 */ 1592 */
1581 if (vismarker(vp)) 1593 if (vismarker(vp))
1582 continue; 1594 continue;
1583 mutex_enter(&vp->v_interlock); 1595 mutex_enter(&vp->v_interlock);
1584 ip = VTOI(vp); 1596 ip = VTOI(vp);
1585 1597
1586 /* 1598 /*
1587 * Skip the vnode/inode if inaccessible. 1599 * Skip the vnode/inode if inaccessible.
1588 */ 1600 */
1589 if (ip == NULL || (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0 || 1601 if (ip == NULL || (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0 ||
1590 vp->v_type == VNON) { 1602 vp->v_type == VNON) {
1591 mutex_exit(&vp->v_interlock); 1603 mutex_exit(&vp->v_interlock);
1592 continue; 1604 continue;
1593 } 1605 }
1594 1606
1595 /* 1607 /*
1596 * We deliberately update inode times here. This will 1608 * We deliberately update inode times here. This will
1597 * prevent a massive queue of updates accumulating, only 1609 * prevent a massive queue of updates accumulating, only
1598 * to be handled by a call to unmount. 1610 * to be handled by a call to unmount.
1599 * 1611 *
1600 * XXX It would be better to have the syncer trickle these 1612 * XXX It would be better to have the syncer trickle these
1601 * out. Adjustment needed to allow registering vnodes for 1613 * out. Adjustment needed to allow registering vnodes for
1602 * sync when the vnode is clean, but the inode dirty. Or 1614 * sync when the vnode is clean, but the inode dirty. Or
1603 * have ufs itself trickle out inode updates. 1615 * have ufs itself trickle out inode updates.
1604 * 1616 *
1605 * If doing a lazy sync, we don't care about metadata or 1617 * If doing a lazy sync, we don't care about metadata or
1606 * data updates, because they are handled by each vnode's 1618 * data updates, because they are handled by each vnode's
1607 * synclist entry. In this case we are only interested in 1619 * synclist entry. In this case we are only interested in
1608 * writing back modified inodes. 1620 * writing back modified inodes.
1609 */ 1621 */
1610 if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE | 1622 if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
1611 IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 && 1623 IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
1612 (waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) && 1624 (waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
1613 UVM_OBJ_IS_CLEAN(&vp->v_uobj)))) { 1625 UVM_OBJ_IS_CLEAN(&vp->v_uobj)))) {
1614 mutex_exit(&vp->v_interlock); 1626 mutex_exit(&vp->v_interlock);
1615 continue; 1627 continue;
1616 } 1628 }
1617 if (vp->v_type == VBLK && is_suspending) { 1629 if (vp->v_type == VBLK && is_suspending) {
1618 mutex_exit(&vp->v_interlock); 1630 mutex_exit(&vp->v_interlock);
1619 continue; 1631 continue;
1620 } 1632 }
1621 vmark(mvp, vp); 1633 vmark(mvp, vp);
1622 mutex_exit(&mntvnode_lock); 1634 mutex_exit(&mntvnode_lock);
1623 error = vget(vp, lk_flags); 1635 error = vget(vp, lk_flags);
1624 if (error) { 1636 if (error) {
1625 mutex_enter(&mntvnode_lock); 1637 mutex_enter(&mntvnode_lock);
1626 nvp = vunmark(mvp); 1638 nvp = vunmark(mvp);
1627 if (error == ENOENT) { 1639 if (error == ENOENT) {
1628 goto loop; 1640 goto loop;
1629 } 1641 }
1630 continue; 1642 continue;
1631 } 1643 }
1632 if (waitfor == MNT_LAZY) { 1644 if (waitfor == MNT_LAZY) {
1633 error = UFS_WAPBL_BEGIN(vp->v_mount); 1645 error = UFS_WAPBL_BEGIN(vp->v_mount);
1634 if (!error) { 1646 if (!error) {
1635 error = ffs_update(vp, NULL, NULL, 1647 error = ffs_update(vp, NULL, NULL,
1636 UPDATE_CLOSE); 1648 UPDATE_CLOSE);
1637 UFS_WAPBL_END(vp->v_mount); 1649 UFS_WAPBL_END(vp->v_mount);
1638 } 1650 }
1639 } else { 1651 } else {
1640 error = VOP_FSYNC(vp, cred, FSYNC_NOLOG | 1652 error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
1641 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0); 1653 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
1642 } 1654 }
1643 if (error) 1655 if (error)
1644 allerror = error; 1656 allerror = error;
1645 if (is_suspending) 1657 if (is_suspending)
1646 vrele(vp); 1658 vrele(vp);
1647 else 1659 else
1648 vput(vp); 1660 vput(vp);
1649 mutex_enter(&mntvnode_lock); 1661 mutex_enter(&mntvnode_lock);
1650 nvp = vunmark(mvp); 1662 nvp = vunmark(mvp);
1651 } 1663 }
1652 mutex_exit(&mntvnode_lock); 1664 mutex_exit(&mntvnode_lock);
1653 /* 1665 /*
1654 * Force stale file system control information to be flushed. 1666 * Force stale file system control information to be flushed.
1655 */ 1667 */
1656 if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 || 1668 if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
1657 !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) { 1669 !LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
1658 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); 1670 vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
1659 if ((error = VOP_FSYNC(ump->um_devvp, cred, 1671 if ((error = VOP_FSYNC(ump->um_devvp, cred,
1660 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG, 1672 (waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
1661 0, 0)) != 0) 1673 0, 0)) != 0)
1662 allerror = error; 1674 allerror = error;
1663 VOP_UNLOCK(ump->um_devvp); 1675 VOP_UNLOCK(ump->um_devvp);
1664 if (allerror == 0 && waitfor == MNT_WAIT && !mp->mnt_wapbl) { 1676 if (allerror == 0 && waitfor == MNT_WAIT && !mp->mnt_wapbl) {
1665 mutex_enter(&mntvnode_lock); 1677 mutex_enter(&mntvnode_lock);
1666 goto loop; 1678 goto loop;
1667 } 1679 }
1668 } 1680 }
1669#ifdef QUOTA 1681#ifdef QUOTA
1670 qsync(mp); 1682 qsync(mp);
1671#endif 1683#endif
1672 /* 1684 /*
1673 * Write back modified superblock. 1685 * Write back modified superblock.
1674 */ 1686 */
1675 if (fs->fs_fmod != 0) { 1687 if (fs->fs_fmod != 0) {
1676 fs->fs_fmod = 0; 1688 fs->fs_fmod = 0;
1677 fs->fs_time = time_second; 1689 fs->fs_time = time_second;
1678 error = UFS_WAPBL_BEGIN(mp); 1690 error = UFS_WAPBL_BEGIN(mp);
1679 if (error) 1691 if (error)
1680 allerror = error; 1692 allerror = error;
1681 else { 1693 else {
1682 if ((error = ffs_cgupdate(ump, waitfor))) 1694 if ((error = ffs_cgupdate(ump, waitfor)))
1683 allerror = error; 1695 allerror = error;
1684 UFS_WAPBL_END(mp); 1696 UFS_WAPBL_END(mp);
1685 } 1697 }
1686 } 1698 }
1687 1699
1688#ifdef WAPBL 1700#ifdef WAPBL
1689 if (mp->mnt_wapbl) { 1701 if (mp->mnt_wapbl) {
1690 error = wapbl_flush(mp->mnt_wapbl, 0); 1702 error = wapbl_flush(mp->mnt_wapbl, 0);
1691 if (error) 1703 if (error)
1692 allerror = error; 1704 allerror = error;
1693 } 1705 }
1694#endif 1706#endif
1695 1707
1696 fstrans_done(mp); 1708 fstrans_done(mp);
1697 vnfree(mvp); 1709 vnfree(mvp);
1698 return (allerror); 1710 return (allerror);
1699} 1711}
1700 1712
1701/* 1713/*
1702 * Look up a FFS dinode number to find its incore vnode, otherwise read it 1714 * Look up a FFS dinode number to find its incore vnode, otherwise read it
1703 * in from disk. If it is in core, wait for the lock bit to clear, then 1715 * in from disk. If it is in core, wait for the lock bit to clear, then
1704 * return the inode locked. Detection and handling of mount points must be 1716 * return the inode locked. Detection and handling of mount points must be
1705 * done by the calling routine. 1717 * done by the calling routine.
1706 */ 1718 */
1707int 1719int
1708ffs_vget(struct mount *mp, ino_t ino, struct vnode **vpp) 1720ffs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
1709{ 1721{
1710 struct fs *fs; 1722 struct fs *fs;
1711 struct inode *ip; 1723 struct inode *ip;
1712 struct ufsmount *ump; 1724 struct ufsmount *ump;
1713 struct buf *bp; 1725 struct buf *bp;
1714 struct vnode *vp; 1726 struct vnode *vp;
1715 dev_t dev; 1727 dev_t dev;
1716 int error; 1728 int error;
1717 1729
1718 ump = VFSTOUFS(mp); 1730 ump = VFSTOUFS(mp);
1719 dev = ump->um_dev; 1731 dev = ump->um_dev;
1720 1732
1721 retry: 1733 retry:
1722 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL) 1734 if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
1723 return (0); 1735 return (0);
1724 1736
1725 /* Allocate a new vnode/inode. */ 1737 /* Allocate a new vnode/inode. */
1726 if ((error = getnewvnode(VT_UFS, mp, ffs_vnodeop_p, &vp)) != 0) { 1738 if ((error = getnewvnode(VT_UFS, mp, ffs_vnodeop_p, &vp)) != 0) {
1727 *vpp = NULL; 1739 *vpp = NULL;
1728 return (error); 1740 return (error);
1729 } 1741 }
1730 ip = pool_cache_get(ffs_inode_cache, PR_WAITOK); 1742 ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
1731 1743
1732 /* 1744 /*
1733 * If someone beat us to it, put back the freshly allocated 1745 * If someone beat us to it, put back the freshly allocated
1734 * vnode/inode pair and retry. 1746 * vnode/inode pair and retry.
1735 */ 1747 */
1736 mutex_enter(&ufs_hashlock); 1748 mutex_enter(&ufs_hashlock);
1737 if (ufs_ihashget(dev, ino, 0) != NULL) { 1749 if (ufs_ihashget(dev, ino, 0) != NULL) {
1738 mutex_exit(&ufs_hashlock); 1750 mutex_exit(&ufs_hashlock);
1739 ungetnewvnode(vp); 1751 ungetnewvnode(vp);
1740 pool_cache_put(ffs_inode_cache, ip); 1752 pool_cache_put(ffs_inode_cache, ip);
1741 goto retry; 1753 goto retry;
1742 } 1754 }
1743 1755
1744 vp->v_vflag |= VV_LOCKSWORK; 1756 vp->v_vflag |= VV_LOCKSWORK;
1745 1757
1746 /* 1758 /*
1747 * XXX MFS ends up here, too, to allocate an inode. Should we 1759 * XXX MFS ends up here, too, to allocate an inode. Should we
1748 * XXX create another pool for MFS inodes? 1760 * XXX create another pool for MFS inodes?
1749 */ 1761 */
1750 1762
1751 memset(ip, 0, sizeof(struct inode)); 1763 memset(ip, 0, sizeof(struct inode));
1752 vp->v_data = ip; 1764 vp->v_data = ip;
1753 ip->i_vnode = vp; 1765 ip->i_vnode = vp;
1754 ip->i_ump = ump; 1766 ip->i_ump = ump;
1755 ip->i_fs = fs = ump->um_fs; 1767 ip->i_fs = fs = ump->um_fs;
1756 ip->i_dev = dev; 1768 ip->i_dev = dev;
1757 ip->i_number = ino; 1769 ip->i_number = ino;
1758#ifdef QUOTA 1770#ifdef QUOTA
1759 ufsquota_init(ip); 1771 ufsquota_init(ip);
1760#endif 1772#endif
1761 1773
1762 /* 1774 /*
1763 * Initialize genfs node, we might proceed to destroy it in 1775 * Initialize genfs node, we might proceed to destroy it in
1764 * error branches. 1776 * error branches.
1765 */ 1777 */
1766 genfs_node_init(vp, &ffs_genfsops); 1778 genfs_node_init(vp, &ffs_genfsops);
1767 1779
1768 /* 1780 /*
1769 * Put it onto its hash chain and lock it so that other requests for 1781 * Put it onto its hash chain and lock it so that other requests for
1770 * this inode will block if they arrive while we are sleeping waiting 1782 * this inode will block if they arrive while we are sleeping waiting
1771 * for old data structures to be purged or for the contents of the 1783 * for old data structures to be purged or for the contents of the
1772 * disk portion of this inode to be read. 1784 * disk portion of this inode to be read.
1773 */ 1785 */
1774 1786
1775 ufs_ihashins(ip); 1787 ufs_ihashins(ip);
1776 mutex_exit(&ufs_hashlock); 1788 mutex_exit(&ufs_hashlock);
1777 1789
1778 /* Read in the disk contents for the inode, copy into the inode. */ 1790 /* Read in the disk contents for the inode, copy into the inode. */
1779 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)), 1791 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
1780 (int)fs->fs_bsize, NOCRED, 0, &bp); 1792 (int)fs->fs_bsize, NOCRED, 0, &bp);
1781 if (error) { 1793 if (error) {
1782 1794
1783 /* 1795 /*
1784 * The inode does not contain anything useful, so it would 1796 * The inode does not contain anything useful, so it would
1785 * be misleading to leave it on its hash chain. With mode 1797 * be misleading to leave it on its hash chain. With mode
1786 * still zero, it will be unlinked and returned to the free 1798 * still zero, it will be unlinked and returned to the free
1787 * list by vput(). 1799 * list by vput().
1788 */ 1800 */
1789 1801
1790 vput(vp); 1802 vput(vp);
1791 brelse(bp, 0); 1803 brelse(bp, 0);
1792 *vpp = NULL; 1804 *vpp = NULL;
1793 return (error); 1805 return (error);
1794 } 1806 }
1795 if (ip->i_ump->um_fstype == UFS1) 1807 if (ip->i_ump->um_fstype == UFS1)
1796 ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache, 1808 ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
1797 PR_WAITOK); 1809 PR_WAITOK);
1798 else 1810 else
1799 ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache, 1811 ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
1800 PR_WAITOK); 1812 PR_WAITOK);
1801 ffs_load_inode(bp, ip, fs, ino); 1813 ffs_load_inode(bp, ip, fs, ino);
1802 brelse(bp, 0); 1814 brelse(bp, 0);
1803 1815
1804 /* 1816 /*
1805 * Initialize the vnode from the inode, check for aliases. 1817 * Initialize the vnode from the inode, check for aliases.
1806 * Note that the underlying vnode may have changed. 1818 * Note that the underlying vnode may have changed.
1807 */ 1819 */
1808 1820
1809 ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp); 1821 ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
1810 1822
1811 /* 1823 /*
1812 * Finish inode initialization now that aliasing has been resolved. 1824 * Finish inode initialization now that aliasing has been resolved.
1813 */ 1825 */
1814 1826
1815 ip->i_devvp = ump->um_devvp; 1827 ip->i_devvp = ump->um_devvp;
1816 vref(ip->i_devvp); 1828 vref(ip->i_devvp);
1817 1829
1818 /* 1830 /*
1819 * Ensure that uid and gid are correct. This is a temporary 1831 * Ensure that uid and gid are correct. This is a temporary
1820 * fix until fsck has been changed to do the update. 1832 * fix until fsck has been changed to do the update.
1821 */ 1833 */
1822 1834
1823 if (fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */ 1835 if (fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
1824 ip->i_uid = ip->i_ffs1_ouid; /* XXX */ 1836 ip->i_uid = ip->i_ffs1_ouid; /* XXX */
1825 ip->i_gid = ip->i_ffs1_ogid; /* XXX */ 1837 ip->i_gid = ip->i_ffs1_ogid; /* XXX */
1826 } /* XXX */ 1838 } /* XXX */
1827 uvm_vnp_setsize(vp, ip->i_size); 1839 uvm_vnp_setsize(vp, ip->i_size);
1828 *vpp = vp; 1840 *vpp = vp;
1829 return (0); 1841 return (0);
1830} 1842}
1831 1843
1832/* 1844/*
1833 * File handle to vnode 1845 * File handle to vnode
1834 * 1846 *
1835 * Have to be really careful about stale file handles: 1847 * Have to be really careful about stale file handles:
1836 * - check that the inode number is valid 1848 * - check that the inode number is valid
1837 * - call ffs_vget() to get the locked inode 1849 * - call ffs_vget() to get the locked inode
1838 * - check for an unallocated inode (i_mode == 0) 1850 * - check for an unallocated inode (i_mode == 0)
1839 * - check that the given client host has export rights and return 1851 * - check that the given client host has export rights and return
1840 * those rights via. exflagsp and credanonp 1852 * those rights via. exflagsp and credanonp
1841 */ 1853 */
1842int 1854int
1843ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp) 1855ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
1844{ 1856{
1845 struct ufid ufh; 1857 struct ufid ufh;
1846 struct fs *fs; 1858 struct fs *fs;
1847 1859
1848 if (fhp->fid_len != sizeof(struct ufid)) 1860 if (fhp->fid_len != sizeof(struct ufid))
1849 return EINVAL; 1861 return EINVAL;
1850 1862
1851 memcpy(&ufh, fhp, sizeof(ufh)); 1863 memcpy(&ufh, fhp, sizeof(ufh));
1852 fs = VFSTOUFS(mp)->um_fs; 1864 fs = VFSTOUFS(mp)->um_fs;
1853 if (ufh.ufid_ino < ROOTINO || 1865 if (ufh.ufid_ino < ROOTINO ||
1854 ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg) 1866 ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
1855 return (ESTALE); 1867 return (ESTALE);
1856 return (ufs_fhtovp(mp, &ufh, vpp)); 1868 return (ufs_fhtovp(mp, &ufh, vpp));
1857} 1869}
1858 1870
1859/* 1871/*
1860 * Vnode pointer to File handle 1872 * Vnode pointer to File handle
1861 */ 1873 */
1862/* ARGSUSED */ 1874/* ARGSUSED */
1863int 1875int
1864ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size) 1876ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
1865{ 1877{
1866 struct inode *ip; 1878 struct inode *ip;
1867 struct ufid ufh; 1879 struct ufid ufh;
1868 1880
1869 if (*fh_size < sizeof(struct ufid)) { 1881 if (*fh_size < sizeof(struct ufid)) {
1870 *fh_size = sizeof(struct ufid); 1882 *fh_size = sizeof(struct ufid);
1871 return E2BIG; 1883 return E2BIG;
1872 } 1884 }
1873 ip = VTOI(vp); 1885 ip = VTOI(vp);
1874 *fh_size = sizeof(struct ufid); 1886 *fh_size = sizeof(struct ufid);
1875 memset(&ufh, 0, sizeof(ufh)); 1887 memset(&ufh, 0, sizeof(ufh));
1876 ufh.ufid_len = sizeof(struct ufid); 1888 ufh.ufid_len = sizeof(struct ufid);
1877 ufh.ufid_ino = ip->i_number; 1889 ufh.ufid_ino = ip->i_number;
1878 ufh.ufid_gen = ip->i_gen; 1890 ufh.ufid_gen = ip->i_gen;
1879 memcpy(fhp, &ufh, sizeof(ufh)); 1891 memcpy(fhp, &ufh, sizeof(ufh));
1880 return (0); 1892 return (0);
1881} 1893}
1882 1894
1883void 1895void
1884ffs_init(void) 1896ffs_init(void)
1885{ 1897{
1886 if (ffs_initcount++ > 0) 1898 if (ffs_initcount++ > 0)
1887 return; 1899 return;
1888 1900
1889 ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0, 1901 ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
1890 "ffsino", NULL, IPL_NONE, NULL, NULL, NULL); 1902 "ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
1891 ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0, 1903 ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
1892 "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL); 1904 "ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
1893 ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0, 1905 ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
1894 "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL); 1906 "ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
1895 ufs_init(); 1907 ufs_init();
1896} 1908}
1897 1909
1898void 1910void
1899ffs_reinit(void) 1911ffs_reinit(void)
1900{ 1912{
1901 1913
1902 ufs_reinit(); 1914 ufs_reinit();
1903} 1915}
1904 1916
1905void 1917void
1906ffs_done(void) 1918ffs_done(void)
1907{ 1919{
1908 if (--ffs_initcount > 0) 1920 if (--ffs_initcount > 0)
1909 return; 1921 return;
1910 1922
1911 ufs_done(); 1923 ufs_done();
1912 pool_cache_destroy(ffs_dinode2_cache); 1924 pool_cache_destroy(ffs_dinode2_cache);
1913 pool_cache_destroy(ffs_dinode1_cache); 1925 pool_cache_destroy(ffs_dinode1_cache);
1914 pool_cache_destroy(ffs_inode_cache); 1926 pool_cache_destroy(ffs_inode_cache);
1915} 1927}
1916 1928
1917/* 1929/*
1918 * Write a superblock and associated information back to disk. 1930 * Write a superblock and associated information back to disk.
1919 */ 1931 */
1920int 1932int
1921ffs_sbupdate(struct ufsmount *mp, int waitfor) 1933ffs_sbupdate(struct ufsmount *mp, int waitfor)
1922{ 1934{
1923 struct fs *fs = mp->um_fs; 1935 struct fs *fs = mp->um_fs;
1924 struct buf *bp; 1936 struct buf *bp;
1925 int error = 0; 1937 int error = 0;
1926 u_int32_t saveflag; 1938 u_int32_t saveflag;
1927 1939
1928 error = ffs_getblk(mp->um_devvp, 1940 error = ffs_getblk(mp->um_devvp,
1929 fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK, 1941 fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
1930 fs->fs_sbsize, false, &bp); 1942 fs->fs_sbsize, false, &bp);
1931 if (error) 1943 if (error)
1932 return error; 1944 return error;
1933 saveflag = fs->fs_flags & FS_INTERNAL; 1945 saveflag = fs->fs_flags & FS_INTERNAL;
1934 fs->fs_flags &= ~FS_INTERNAL; 1946 fs->fs_flags &= ~FS_INTERNAL;