Tue Mar 6 18:29:24 2012 UTC ()
bnx_start() is not MP-safe, so do not create the bnx_alloc_pkts()'s
workqueue MPSAFE. This could lead to bnx_start() being running at
the same time on 2 CPUs, with packets being sent twice.
Problem found and reported by Beverly Schwartz and Greg Troxel.


(bouyer)
diff -r1.45 -r1.46 src/sys/dev/pci/if_bnx.c

cvs diff -r1.45 -r1.46 src/sys/dev/pci/if_bnx.c (switch to unified diff)

--- src/sys/dev/pci/if_bnx.c 2011/09/22 08:42:53 1.45
+++ src/sys/dev/pci/if_bnx.c 2012/03/06 18:29:23 1.46
@@ -1,1709 +1,1709 @@ @@ -1,1709 +1,1709 @@
1/* $NetBSD: if_bnx.c,v 1.45 2011/09/22 08:42:53 jym Exp $ */ 1/* $NetBSD: if_bnx.c,v 1.46 2012/03/06 18:29:23 bouyer Exp $ */
2/* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */ 2/* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3 3
4/*- 4/*-
5 * Copyright (c) 2006 Broadcom Corporation 5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch@broadcom.com>. All rights reserved. 6 * David Christensen <davidch@broadcom.com>. All rights reserved.
7 * 7 *
8 * Redistribution and use in source and binary forms, with or without 8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions 9 * modification, are permitted provided that the following conditions
10 * are met: 10 * are met:
11 * 11 *
12 * 1. Redistributions of source code must retain the above copyright 12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer. 13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright 14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the 15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution. 16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software 18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent. 19 * without specific prior written consent.
20 * 20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE. 31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */ 32 */
33 33
34#include <sys/cdefs.h> 34#include <sys/cdefs.h>
35#if 0 35#if 0
36__FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $"); 36__FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37#endif 37#endif
38__KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.45 2011/09/22 08:42:53 jym Exp $"); 38__KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.46 2012/03/06 18:29:23 bouyer Exp $");
39 39
40/* 40/*
41 * The following controllers are supported by this driver: 41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3 42 * BCM5706C A2, A3
43 * BCM5706S A2, A3 43 * BCM5706S A2, A3
44 * BCM5708C B1, B2 44 * BCM5708C B1, B2
45 * BCM5708S B1, B2 45 * BCM5708S B1, B2
46 * BCM5709C A1, C0 46 * BCM5709C A1, C0
47 * BCM5709S A1, C0 47 * BCM5709S A1, C0
48 * BCM5716 C0 48 * BCM5716 C0
49 * 49 *
50 * The following controllers are not supported by this driver: 50 * The following controllers are not supported by this driver:
51 *  51 *
52 * BCM5706C A0, A1 52 * BCM5706C A0, A1
53 * BCM5706S A0, A1 53 * BCM5706S A0, A1
54 * BCM5708C A0, B0 54 * BCM5708C A0, B0
55 * BCM5708S A0, B0 55 * BCM5708S A0, B0
56 * BCM5709C A0 B0, B1, B2 (pre-production) 56 * BCM5709C A0 B0, B1, B2 (pre-production)
57 * BCM5709S A0, B0, B1, B2 (pre-production) 57 * BCM5709S A0, B0, B1, B2 (pre-production)
58 */ 58 */
59 59
60#include <sys/callout.h> 60#include <sys/callout.h>
61#include <sys/mutex.h> 61#include <sys/mutex.h>
62 62
63#include <dev/pci/if_bnxreg.h> 63#include <dev/pci/if_bnxreg.h>
64#include <dev/pci/if_bnxvar.h> 64#include <dev/pci/if_bnxvar.h>
65 65
66#include <dev/microcode/bnx/bnxfw.h> 66#include <dev/microcode/bnx/bnxfw.h>
67 67
68/****************************************************************************/ 68/****************************************************************************/
69/* BNX Driver Version */ 69/* BNX Driver Version */
70/****************************************************************************/ 70/****************************************************************************/
71#define BNX_DRIVER_VERSION "v0.9.6" 71#define BNX_DRIVER_VERSION "v0.9.6"
72 72
73/****************************************************************************/ 73/****************************************************************************/
74/* BNX Debug Options */ 74/* BNX Debug Options */
75/****************************************************************************/ 75/****************************************************************************/
76#ifdef BNX_DEBUG 76#ifdef BNX_DEBUG
77 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND; 77 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
78 78
79 /* 0 = Never */ 79 /* 0 = Never */
80 /* 1 = 1 in 2,147,483,648 */ 80 /* 1 = 1 in 2,147,483,648 */
81 /* 256 = 1 in 8,388,608 */ 81 /* 256 = 1 in 8,388,608 */
82 /* 2048 = 1 in 1,048,576 */ 82 /* 2048 = 1 in 1,048,576 */
83 /* 65536 = 1 in 32,768 */ 83 /* 65536 = 1 in 32,768 */
84 /* 1048576 = 1 in 2,048 */ 84 /* 1048576 = 1 in 2,048 */
85 /* 268435456 = 1 in 8 */ 85 /* 268435456 = 1 in 8 */
86 /* 536870912 = 1 in 4 */ 86 /* 536870912 = 1 in 4 */
87 /* 1073741824 = 1 in 2 */ 87 /* 1073741824 = 1 in 2 */
88 88
89 /* Controls how often the l2_fhdr frame error check will fail. */ 89 /* Controls how often the l2_fhdr frame error check will fail. */
90 int bnx_debug_l2fhdr_status_check = 0; 90 int bnx_debug_l2fhdr_status_check = 0;
91 91
92 /* Controls how often the unexpected attention check will fail. */ 92 /* Controls how often the unexpected attention check will fail. */
93 int bnx_debug_unexpected_attention = 0; 93 int bnx_debug_unexpected_attention = 0;
94 94
95 /* Controls how often to simulate an mbuf allocation failure. */ 95 /* Controls how often to simulate an mbuf allocation failure. */
96 int bnx_debug_mbuf_allocation_failure = 0; 96 int bnx_debug_mbuf_allocation_failure = 0;
97 97
98 /* Controls how often to simulate a DMA mapping failure. */ 98 /* Controls how often to simulate a DMA mapping failure. */
99 int bnx_debug_dma_map_addr_failure = 0; 99 int bnx_debug_dma_map_addr_failure = 0;
100 100
101 /* Controls how often to simulate a bootcode failure. */ 101 /* Controls how often to simulate a bootcode failure. */
102 int bnx_debug_bootcode_running_failure = 0; 102 int bnx_debug_bootcode_running_failure = 0;
103#endif 103#endif
104 104
105/****************************************************************************/ 105/****************************************************************************/
106/* PCI Device ID Table */ 106/* PCI Device ID Table */
107/* */ 107/* */
108/* Used by bnx_probe() to identify the devices supported by this driver. */ 108/* Used by bnx_probe() to identify the devices supported by this driver. */
109/****************************************************************************/ 109/****************************************************************************/
110static const struct bnx_product { 110static const struct bnx_product {
111 pci_vendor_id_t bp_vendor; 111 pci_vendor_id_t bp_vendor;
112 pci_product_id_t bp_product; 112 pci_product_id_t bp_product;
113 pci_vendor_id_t bp_subvendor; 113 pci_vendor_id_t bp_subvendor;
114 pci_product_id_t bp_subproduct; 114 pci_product_id_t bp_subproduct;
115 const char *bp_name; 115 const char *bp_name;
116} bnx_devices[] = { 116} bnx_devices[] = {
117#ifdef PCI_SUBPRODUCT_HP_NC370T 117#ifdef PCI_SUBPRODUCT_HP_NC370T
118 { 118 {
119 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706, 119 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
120 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T, 120 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
121 "HP NC370T Multifunction Gigabit Server Adapter" 121 "HP NC370T Multifunction Gigabit Server Adapter"
122 }, 122 },
123#endif 123#endif
124#ifdef PCI_SUBPRODUCT_HP_NC370i 124#ifdef PCI_SUBPRODUCT_HP_NC370i
125 { 125 {
126 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706, 126 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
127 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i, 127 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
128 "HP NC370i Multifunction Gigabit Server Adapter" 128 "HP NC370i Multifunction Gigabit Server Adapter"
129 }, 129 },
130#endif 130#endif
131 { 131 {
132 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706, 132 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
133 0, 0, 133 0, 0,
134 "Broadcom NetXtreme II BCM5706 1000Base-T" 134 "Broadcom NetXtreme II BCM5706 1000Base-T"
135 }, 135 },
136#ifdef PCI_SUBPRODUCT_HP_NC370F 136#ifdef PCI_SUBPRODUCT_HP_NC370F
137 { 137 {
138 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S, 138 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
139 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F, 139 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
140 "HP NC370F Multifunction Gigabit Server Adapter" 140 "HP NC370F Multifunction Gigabit Server Adapter"
141 }, 141 },
142#endif 142#endif
143 { 143 {
144 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S, 144 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
145 0, 0, 145 0, 0,
146 "Broadcom NetXtreme II BCM5706 1000Base-SX" 146 "Broadcom NetXtreme II BCM5706 1000Base-SX"
147 }, 147 },
148 { 148 {
149 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708, 149 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
150 0, 0, 150 0, 0,
151 "Broadcom NetXtreme II BCM5708 1000Base-T" 151 "Broadcom NetXtreme II BCM5708 1000Base-T"
152 }, 152 },
153 { 153 {
154 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S, 154 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
155 0, 0, 155 0, 0,
156 "Broadcom NetXtreme II BCM5708 1000Base-SX" 156 "Broadcom NetXtreme II BCM5708 1000Base-SX"
157 }, 157 },
158 { 158 {
159 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709, 159 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
160 0, 0, 160 0, 0,
161 "Broadcom NetXtreme II BCM5709 1000Base-T" 161 "Broadcom NetXtreme II BCM5709 1000Base-T"
162 }, 162 },
163 { 163 {
164 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S, 164 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
165 0, 0, 165 0, 0,
166 "Broadcom NetXtreme II BCM5709 1000Base-SX" 166 "Broadcom NetXtreme II BCM5709 1000Base-SX"
167 }, 167 },
168 { 168 {
169 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716, 169 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
170 0, 0, 170 0, 0,
171 "Broadcom NetXtreme II BCM5716 1000Base-T" 171 "Broadcom NetXtreme II BCM5716 1000Base-T"
172 }, 172 },
173 { 173 {
174 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S, 174 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
175 0, 0, 175 0, 0,
176 "Broadcom NetXtreme II BCM5716 1000Base-SX" 176 "Broadcom NetXtreme II BCM5716 1000Base-SX"
177 }, 177 },
178}; 178};
179 179
180/****************************************************************************/ 180/****************************************************************************/
181/* Supported Flash NVRAM device data. */ 181/* Supported Flash NVRAM device data. */
182/****************************************************************************/ 182/****************************************************************************/
183static struct flash_spec flash_table[] = 183static struct flash_spec flash_table[] =
184{ 184{
185#define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE) 185#define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186#define NONBUFFERED_FLAGS (BNX_NV_WREN) 186#define NONBUFFERED_FLAGS (BNX_NV_WREN)
187 /* Slow EEPROM */ 187 /* Slow EEPROM */
188 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 188 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
189 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 189 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
190 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 190 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
191 "EEPROM - slow"}, 191 "EEPROM - slow"},
192 /* Expansion entry 0001 */ 192 /* Expansion entry 0001 */
193 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 193 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 195 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
196 "Entry 0001"}, 196 "Entry 0001"},
197 /* Saifun SA25F010 (non-buffered flash) */ 197 /* Saifun SA25F010 (non-buffered flash) */
198 /* strap, cfg1, & write1 need updates */ 198 /* strap, cfg1, & write1 need updates */
199 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 199 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
200 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 200 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
201 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 201 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
202 "Non-buffered flash (128kB)"}, 202 "Non-buffered flash (128kB)"},
203 /* Saifun SA25F020 (non-buffered flash) */ 203 /* Saifun SA25F020 (non-buffered flash) */
204 /* strap, cfg1, & write1 need updates */ 204 /* strap, cfg1, & write1 need updates */
205 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 205 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 206 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 207 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
208 "Non-buffered flash (256kB)"}, 208 "Non-buffered flash (256kB)"},
209 /* Expansion entry 0100 */ 209 /* Expansion entry 0100 */
210 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 210 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
211 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 211 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 0100"}, 213 "Entry 0100"},
214 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 214 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
215 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 215 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 216 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
217 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 217 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
218 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 218 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
219 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 219 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
220 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 220 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 221 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
222 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 222 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
223 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 223 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
224 /* Saifun SA25F005 (non-buffered flash) */ 224 /* Saifun SA25F005 (non-buffered flash) */
225 /* strap, cfg1, & write1 need updates */ 225 /* strap, cfg1, & write1 need updates */
226 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 226 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
227 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 227 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
228 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 228 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
229 "Non-buffered flash (64kB)"}, 229 "Non-buffered flash (64kB)"},
230 /* Fast EEPROM */ 230 /* Fast EEPROM */
231 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 231 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
232 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 232 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
233 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 233 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
234 "EEPROM - fast"}, 234 "EEPROM - fast"},
235 /* Expansion entry 1001 */ 235 /* Expansion entry 1001 */
236 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 236 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
237 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 237 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 238 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 "Entry 1001"}, 239 "Entry 1001"},
240 /* Expansion entry 1010 */ 240 /* Expansion entry 1010 */
241 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 241 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
242 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 242 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
243 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 243 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
244 "Entry 1010"}, 244 "Entry 1010"},
245 /* ATMEL AT45DB011B (buffered flash) */ 245 /* ATMEL AT45DB011B (buffered flash) */
246 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 246 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
247 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 247 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
248 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 248 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
249 "Buffered flash (128kB)"}, 249 "Buffered flash (128kB)"},
250 /* Expansion entry 1100 */ 250 /* Expansion entry 1100 */
251 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 251 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
252 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 252 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
253 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 253 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
254 "Entry 1100"}, 254 "Entry 1100"},
255 /* Expansion entry 1101 */ 255 /* Expansion entry 1101 */
256 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 256 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
257 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 257 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
258 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 258 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
259 "Entry 1101"}, 259 "Entry 1101"},
260 /* Ateml Expansion entry 1110 */ 260 /* Ateml Expansion entry 1110 */
261 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 261 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
262 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 262 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
263 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 263 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
264 "Entry 1110 (Atmel)"}, 264 "Entry 1110 (Atmel)"},
265 /* ATMEL AT45DB021B (buffered flash) */ 265 /* ATMEL AT45DB021B (buffered flash) */
266 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 266 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
267 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 267 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
268 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 268 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
269 "Buffered flash (256kB)"}, 269 "Buffered flash (256kB)"},
270}; 270};
271 271
272/* 272/*
273 * The BCM5709 controllers transparently handle the 273 * The BCM5709 controllers transparently handle the
274 * differences between Atmel 264 byte pages and all 274 * differences between Atmel 264 byte pages and all
275 * flash devices which use 256 byte pages, so no 275 * flash devices which use 256 byte pages, so no
276 * logical-to-physical mapping is required in the 276 * logical-to-physical mapping is required in the
277 * driver. 277 * driver.
278 */ 278 */
279static struct flash_spec flash_5709 = { 279static struct flash_spec flash_5709 = {
280 .flags = BNX_NV_BUFFERED, 280 .flags = BNX_NV_BUFFERED,
281 .page_bits = BCM5709_FLASH_PAGE_BITS, 281 .page_bits = BCM5709_FLASH_PAGE_BITS,
282 .page_size = BCM5709_FLASH_PAGE_SIZE, 282 .page_size = BCM5709_FLASH_PAGE_SIZE,
283 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 283 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
284 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 284 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
285 .name = "5709 buffered flash (256kB)", 285 .name = "5709 buffered flash (256kB)",
286}; 286};
287 287
288/****************************************************************************/ 288/****************************************************************************/
289/* OpenBSD device entry points. */ 289/* OpenBSD device entry points. */
290/****************************************************************************/ 290/****************************************************************************/
291static int bnx_probe(device_t, cfdata_t, void *); 291static int bnx_probe(device_t, cfdata_t, void *);
292void bnx_attach(device_t, device_t, void *); 292void bnx_attach(device_t, device_t, void *);
293int bnx_detach(device_t, int); 293int bnx_detach(device_t, int);
294 294
295/****************************************************************************/ 295/****************************************************************************/
296/* BNX Debug Data Structure Dump Routines */ 296/* BNX Debug Data Structure Dump Routines */
297/****************************************************************************/ 297/****************************************************************************/
298#ifdef BNX_DEBUG 298#ifdef BNX_DEBUG
299void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *); 299void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
300void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int); 300void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
301void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int); 301void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
302void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *); 302void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
303void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *); 303void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
304void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *); 304void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
305void bnx_dump_tx_chain(struct bnx_softc *, int, int); 305void bnx_dump_tx_chain(struct bnx_softc *, int, int);
306void bnx_dump_rx_chain(struct bnx_softc *, int, int); 306void bnx_dump_rx_chain(struct bnx_softc *, int, int);
307void bnx_dump_status_block(struct bnx_softc *); 307void bnx_dump_status_block(struct bnx_softc *);
308void bnx_dump_stats_block(struct bnx_softc *); 308void bnx_dump_stats_block(struct bnx_softc *);
309void bnx_dump_driver_state(struct bnx_softc *); 309void bnx_dump_driver_state(struct bnx_softc *);
310void bnx_dump_hw_state(struct bnx_softc *); 310void bnx_dump_hw_state(struct bnx_softc *);
311void bnx_breakpoint(struct bnx_softc *); 311void bnx_breakpoint(struct bnx_softc *);
312#endif 312#endif
313 313
314/****************************************************************************/ 314/****************************************************************************/
315/* BNX Register/Memory Access Routines */ 315/* BNX Register/Memory Access Routines */
316/****************************************************************************/ 316/****************************************************************************/
317u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t); 317u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
318void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t); 318void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
319void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t); 319void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
320int bnx_miibus_read_reg(device_t, int, int); 320int bnx_miibus_read_reg(device_t, int, int);
321void bnx_miibus_write_reg(device_t, int, int, int); 321void bnx_miibus_write_reg(device_t, int, int, int);
322void bnx_miibus_statchg(device_t); 322void bnx_miibus_statchg(device_t);
323 323
324/****************************************************************************/ 324/****************************************************************************/
325/* BNX NVRAM Access Routines */ 325/* BNX NVRAM Access Routines */
326/****************************************************************************/ 326/****************************************************************************/
327int bnx_acquire_nvram_lock(struct bnx_softc *); 327int bnx_acquire_nvram_lock(struct bnx_softc *);
328int bnx_release_nvram_lock(struct bnx_softc *); 328int bnx_release_nvram_lock(struct bnx_softc *);
329void bnx_enable_nvram_access(struct bnx_softc *); 329void bnx_enable_nvram_access(struct bnx_softc *);
330void bnx_disable_nvram_access(struct bnx_softc *); 330void bnx_disable_nvram_access(struct bnx_softc *);
331int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *, 331int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
332 u_int32_t); 332 u_int32_t);
333int bnx_init_nvram(struct bnx_softc *); 333int bnx_init_nvram(struct bnx_softc *);
334int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int); 334int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
335int bnx_nvram_test(struct bnx_softc *); 335int bnx_nvram_test(struct bnx_softc *);
336#ifdef BNX_NVRAM_WRITE_SUPPORT 336#ifdef BNX_NVRAM_WRITE_SUPPORT
337int bnx_enable_nvram_write(struct bnx_softc *); 337int bnx_enable_nvram_write(struct bnx_softc *);
338void bnx_disable_nvram_write(struct bnx_softc *); 338void bnx_disable_nvram_write(struct bnx_softc *);
339int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t); 339int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
340int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *, 340int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
341 u_int32_t); 341 u_int32_t);
342int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int); 342int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
343#endif 343#endif
344 344
345/****************************************************************************/ 345/****************************************************************************/
346/* */ 346/* */
347/****************************************************************************/ 347/****************************************************************************/
348void bnx_get_media(struct bnx_softc *); 348void bnx_get_media(struct bnx_softc *);
349void bnx_init_media(struct bnx_softc *); 349void bnx_init_media(struct bnx_softc *);
350int bnx_dma_alloc(struct bnx_softc *); 350int bnx_dma_alloc(struct bnx_softc *);
351void bnx_dma_free(struct bnx_softc *); 351void bnx_dma_free(struct bnx_softc *);
352void bnx_release_resources(struct bnx_softc *); 352void bnx_release_resources(struct bnx_softc *);
353 353
354/****************************************************************************/ 354/****************************************************************************/
355/* BNX Firmware Synchronization and Load */ 355/* BNX Firmware Synchronization and Load */
356/****************************************************************************/ 356/****************************************************************************/
357int bnx_fw_sync(struct bnx_softc *, u_int32_t); 357int bnx_fw_sync(struct bnx_softc *, u_int32_t);
358void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t, 358void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
359 u_int32_t); 359 u_int32_t);
360void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *, 360void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *); 361 struct fw_info *);
362void bnx_init_cpus(struct bnx_softc *); 362void bnx_init_cpus(struct bnx_softc *);
363 363
364void bnx_stop(struct ifnet *, int); 364void bnx_stop(struct ifnet *, int);
365int bnx_reset(struct bnx_softc *, u_int32_t); 365int bnx_reset(struct bnx_softc *, u_int32_t);
366int bnx_chipinit(struct bnx_softc *); 366int bnx_chipinit(struct bnx_softc *);
367int bnx_blockinit(struct bnx_softc *); 367int bnx_blockinit(struct bnx_softc *);
368static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *, 368static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
369 u_int16_t *, u_int32_t *); 369 u_int16_t *, u_int32_t *);
370int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *); 370int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
371 371
372int bnx_init_tx_chain(struct bnx_softc *); 372int bnx_init_tx_chain(struct bnx_softc *);
373void bnx_init_tx_context(struct bnx_softc *); 373void bnx_init_tx_context(struct bnx_softc *);
374int bnx_init_rx_chain(struct bnx_softc *); 374int bnx_init_rx_chain(struct bnx_softc *);
375void bnx_init_rx_context(struct bnx_softc *); 375void bnx_init_rx_context(struct bnx_softc *);
376void bnx_free_rx_chain(struct bnx_softc *); 376void bnx_free_rx_chain(struct bnx_softc *);
377void bnx_free_tx_chain(struct bnx_softc *); 377void bnx_free_tx_chain(struct bnx_softc *);
378 378
379int bnx_tx_encap(struct bnx_softc *, struct mbuf *); 379int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
380void bnx_start(struct ifnet *); 380void bnx_start(struct ifnet *);
381int bnx_ioctl(struct ifnet *, u_long, void *); 381int bnx_ioctl(struct ifnet *, u_long, void *);
382void bnx_watchdog(struct ifnet *); 382void bnx_watchdog(struct ifnet *);
383int bnx_init(struct ifnet *); 383int bnx_init(struct ifnet *);
384 384
385void bnx_init_context(struct bnx_softc *); 385void bnx_init_context(struct bnx_softc *);
386void bnx_get_mac_addr(struct bnx_softc *); 386void bnx_get_mac_addr(struct bnx_softc *);
387void bnx_set_mac_addr(struct bnx_softc *); 387void bnx_set_mac_addr(struct bnx_softc *);
388void bnx_phy_intr(struct bnx_softc *); 388void bnx_phy_intr(struct bnx_softc *);
389void bnx_rx_intr(struct bnx_softc *); 389void bnx_rx_intr(struct bnx_softc *);
390void bnx_tx_intr(struct bnx_softc *); 390void bnx_tx_intr(struct bnx_softc *);
391void bnx_disable_intr(struct bnx_softc *); 391void bnx_disable_intr(struct bnx_softc *);
392void bnx_enable_intr(struct bnx_softc *); 392void bnx_enable_intr(struct bnx_softc *);
393 393
394int bnx_intr(void *); 394int bnx_intr(void *);
395void bnx_iff(struct bnx_softc *); 395void bnx_iff(struct bnx_softc *);
396void bnx_stats_update(struct bnx_softc *); 396void bnx_stats_update(struct bnx_softc *);
397void bnx_tick(void *); 397void bnx_tick(void *);
398 398
399struct pool *bnx_tx_pool = NULL; 399struct pool *bnx_tx_pool = NULL;
400void bnx_alloc_pkts(struct work *, void *); 400void bnx_alloc_pkts(struct work *, void *);
401 401
402/****************************************************************************/ 402/****************************************************************************/
403/* OpenBSD device dispatch table. */ 403/* OpenBSD device dispatch table. */
404/****************************************************************************/ 404/****************************************************************************/
405CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc), 405CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
406 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 406 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
407 407
408/****************************************************************************/ 408/****************************************************************************/
409/* Device probe function. */ 409/* Device probe function. */
410/* */ 410/* */
411/* Compares the device to the driver's list of supported devices and */ 411/* Compares the device to the driver's list of supported devices and */
412/* reports back to the OS whether this is the right driver for the device. */ 412/* reports back to the OS whether this is the right driver for the device. */
413/* */ 413/* */
414/* Returns: */ 414/* Returns: */
415/* BUS_PROBE_DEFAULT on success, positive value on failure. */ 415/* BUS_PROBE_DEFAULT on success, positive value on failure. */
416/****************************************************************************/ 416/****************************************************************************/
417static const struct bnx_product * 417static const struct bnx_product *
418bnx_lookup(const struct pci_attach_args *pa) 418bnx_lookup(const struct pci_attach_args *pa)
419{ 419{
420 int i; 420 int i;
421 pcireg_t subid; 421 pcireg_t subid;
422 422
423 for (i = 0; i < __arraycount(bnx_devices); i++) { 423 for (i = 0; i < __arraycount(bnx_devices); i++) {
424 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor || 424 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
425 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product) 425 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
426 continue; 426 continue;
427 if (!bnx_devices[i].bp_subvendor) 427 if (!bnx_devices[i].bp_subvendor)
428 return &bnx_devices[i]; 428 return &bnx_devices[i];
429 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); 429 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
430 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor && 430 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
431 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct) 431 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
432 return &bnx_devices[i]; 432 return &bnx_devices[i];
433 } 433 }
434 434
435 return NULL; 435 return NULL;
436} 436}
437static int 437static int
438bnx_probe(device_t parent, cfdata_t match, void *aux) 438bnx_probe(device_t parent, cfdata_t match, void *aux)
439{ 439{
440 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 440 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
441 441
442 if (bnx_lookup(pa) != NULL) 442 if (bnx_lookup(pa) != NULL)
443 return (1); 443 return (1);
444 444
445 return (0); 445 return (0);
446} 446}
447 447
448/****************************************************************************/ 448/****************************************************************************/
449/* Device attach function. */ 449/* Device attach function. */
450/* */ 450/* */
451/* Allocates device resources, performs secondary chip identification, */ 451/* Allocates device resources, performs secondary chip identification, */
452/* resets and initializes the hardware, and initializes driver instance */ 452/* resets and initializes the hardware, and initializes driver instance */
453/* variables. */ 453/* variables. */
454/* */ 454/* */
455/* Returns: */ 455/* Returns: */
456/* 0 on success, positive value on failure. */ 456/* 0 on success, positive value on failure. */
457/****************************************************************************/ 457/****************************************************************************/
458void 458void
459bnx_attach(device_t parent, device_t self, void *aux) 459bnx_attach(device_t parent, device_t self, void *aux)
460{ 460{
461 const struct bnx_product *bp; 461 const struct bnx_product *bp;
462 struct bnx_softc *sc = device_private(self); 462 struct bnx_softc *sc = device_private(self);
463 prop_dictionary_t dict; 463 prop_dictionary_t dict;
464 struct pci_attach_args *pa = aux; 464 struct pci_attach_args *pa = aux;
465 pci_chipset_tag_t pc = pa->pa_pc; 465 pci_chipset_tag_t pc = pa->pa_pc;
466 pci_intr_handle_t ih; 466 pci_intr_handle_t ih;
467 const char *intrstr = NULL; 467 const char *intrstr = NULL;
468 u_int32_t command; 468 u_int32_t command;
469 struct ifnet *ifp; 469 struct ifnet *ifp;
470 u_int32_t val; 470 u_int32_t val;
471 int mii_flags = MIIF_FORCEANEG; 471 int mii_flags = MIIF_FORCEANEG;
472 pcireg_t memtype; 472 pcireg_t memtype;
473 473
474 if (bnx_tx_pool == NULL) { 474 if (bnx_tx_pool == NULL) {
475 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT); 475 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
476 if (bnx_tx_pool != NULL) { 476 if (bnx_tx_pool != NULL) {
477 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt), 477 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
478 0, 0, 0, "bnxpkts", NULL, IPL_NET); 478 0, 0, 0, "bnxpkts", NULL, IPL_NET);
479 } else { 479 } else {
480 aprint_error(": can't alloc bnx_tx_pool\n"); 480 aprint_error(": can't alloc bnx_tx_pool\n");
481 return; 481 return;
482 } 482 }
483 } 483 }
484 484
485 bp = bnx_lookup(pa); 485 bp = bnx_lookup(pa);
486 if (bp == NULL) 486 if (bp == NULL)
487 panic("unknown device"); 487 panic("unknown device");
488 488
489 sc->bnx_dev = self; 489 sc->bnx_dev = self;
490 490
491 aprint_naive("\n"); 491 aprint_naive("\n");
492 aprint_normal(": %s\n", bp->bp_name); 492 aprint_normal(": %s\n", bp->bp_name);
493 493
494 sc->bnx_pa = *pa; 494 sc->bnx_pa = *pa;
495 495
496 /* 496 /*
497 * Map control/status registers. 497 * Map control/status registers.
498 */ 498 */
499 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 499 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
500 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; 500 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
501 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 501 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
502 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 502 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
503 503
504 if (!(command & PCI_COMMAND_MEM_ENABLE)) { 504 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
505 aprint_error_dev(sc->bnx_dev, 505 aprint_error_dev(sc->bnx_dev,
506 "failed to enable memory mapping!\n"); 506 "failed to enable memory mapping!\n");
507 return; 507 return;
508 } 508 }
509 509
510 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);  510 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
511 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag, 511 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
512 &sc->bnx_bhandle, NULL, &sc->bnx_size)) { 512 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
513 aprint_error_dev(sc->bnx_dev, "can't find mem space\n"); 513 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
514 return; 514 return;
515 } 515 }
516 516
517 if (pci_intr_map(pa, &ih)) { 517 if (pci_intr_map(pa, &ih)) {
518 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n"); 518 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
519 goto bnx_attach_fail; 519 goto bnx_attach_fail;
520 } 520 }
521 521
522 intrstr = pci_intr_string(pc, ih); 522 intrstr = pci_intr_string(pc, ih);
523 523
524 /* 524 /*
525 * Configure byte swap and enable indirect register access. 525 * Configure byte swap and enable indirect register access.
526 * Rely on CPU to do target byte swapping on big endian systems. 526 * Rely on CPU to do target byte swapping on big endian systems.
527 * Access to registers outside of PCI configurtion space are not 527 * Access to registers outside of PCI configurtion space are not
528 * valid until this is done. 528 * valid until this is done.
529 */ 529 */
530 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG, 530 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
531 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 531 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
532 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP); 532 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
533 533
534 /* Save ASIC revsion info. */ 534 /* Save ASIC revsion info. */
535 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID); 535 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
536 536
537 /* 537 /*
538 * Find the base address for shared memory access. 538 * Find the base address for shared memory access.
539 * Newer versions of bootcode use a signature and offset 539 * Newer versions of bootcode use a signature and offset
540 * while older versions use a fixed address. 540 * while older versions use a fixed address.
541 */ 541 */
542 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE); 542 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
543 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG) 543 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
544 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 + 544 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
545 (sc->bnx_pa.pa_function << 2)); 545 (sc->bnx_pa.pa_function << 2));
546 else 546 else
547 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE; 547 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
548 548
549 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base); 549 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
550 550
551 /* Set initial device and PHY flags */ 551 /* Set initial device and PHY flags */
552 sc->bnx_flags = 0; 552 sc->bnx_flags = 0;
553 sc->bnx_phy_flags = 0; 553 sc->bnx_phy_flags = 0;
554 554
555 /* Get PCI bus information (speed and type). */ 555 /* Get PCI bus information (speed and type). */
556 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS); 556 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
557 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) { 557 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
558 u_int32_t clkreg; 558 u_int32_t clkreg;
559 559
560 sc->bnx_flags |= BNX_PCIX_FLAG; 560 sc->bnx_flags |= BNX_PCIX_FLAG;
561 561
562 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS); 562 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
563 563
564 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 564 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
565 switch (clkreg) { 565 switch (clkreg) {
566 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 566 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
567 sc->bus_speed_mhz = 133; 567 sc->bus_speed_mhz = 133;
568 break; 568 break;
569 569
570 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 570 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
571 sc->bus_speed_mhz = 100; 571 sc->bus_speed_mhz = 100;
572 break; 572 break;
573 573
574 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 574 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
575 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 575 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
576 sc->bus_speed_mhz = 66; 576 sc->bus_speed_mhz = 66;
577 break; 577 break;
578 578
579 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 579 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
580 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 580 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
581 sc->bus_speed_mhz = 50; 581 sc->bus_speed_mhz = 50;
582 break; 582 break;
583 583
584 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 584 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
585 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 585 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
586 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 586 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
587 sc->bus_speed_mhz = 33; 587 sc->bus_speed_mhz = 33;
588 break; 588 break;
589 } 589 }
590 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN) 590 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
591 sc->bus_speed_mhz = 66; 591 sc->bus_speed_mhz = 66;
592 else 592 else
593 sc->bus_speed_mhz = 33; 593 sc->bus_speed_mhz = 33;
594 594
595 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET) 595 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
596 sc->bnx_flags |= BNX_PCI_32BIT_FLAG; 596 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
597 597
598 /* Reset the controller. */ 598 /* Reset the controller. */
599 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) 599 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
600 goto bnx_attach_fail; 600 goto bnx_attach_fail;
601 601
602 /* Initialize the controller. */ 602 /* Initialize the controller. */
603 if (bnx_chipinit(sc)) { 603 if (bnx_chipinit(sc)) {
604 aprint_error_dev(sc->bnx_dev, 604 aprint_error_dev(sc->bnx_dev,
605 "Controller initialization failed!\n"); 605 "Controller initialization failed!\n");
606 goto bnx_attach_fail; 606 goto bnx_attach_fail;
607 } 607 }
608 608
609 /* Perform NVRAM test. */ 609 /* Perform NVRAM test. */
610 if (bnx_nvram_test(sc)) { 610 if (bnx_nvram_test(sc)) {
611 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n"); 611 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
612 goto bnx_attach_fail; 612 goto bnx_attach_fail;
613 } 613 }
614 614
615 /* Fetch the permanent Ethernet MAC address. */ 615 /* Fetch the permanent Ethernet MAC address. */
616 bnx_get_mac_addr(sc); 616 bnx_get_mac_addr(sc);
617 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n", 617 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
618 ether_sprintf(sc->eaddr)); 618 ether_sprintf(sc->eaddr));
619 619
620 /* 620 /*
621 * Trip points control how many BDs 621 * Trip points control how many BDs
622 * should be ready before generating an 622 * should be ready before generating an
623 * interrupt while ticks control how long 623 * interrupt while ticks control how long
624 * a BD can sit in the chain before 624 * a BD can sit in the chain before
625 * generating an interrupt. Set the default  625 * generating an interrupt. Set the default
626 * values for the RX and TX rings. 626 * values for the RX and TX rings.
627 */ 627 */
628 628
629#ifdef BNX_DEBUG 629#ifdef BNX_DEBUG
630 /* Force more frequent interrupts. */ 630 /* Force more frequent interrupts. */
631 sc->bnx_tx_quick_cons_trip_int = 1; 631 sc->bnx_tx_quick_cons_trip_int = 1;
632 sc->bnx_tx_quick_cons_trip = 1; 632 sc->bnx_tx_quick_cons_trip = 1;
633 sc->bnx_tx_ticks_int = 0; 633 sc->bnx_tx_ticks_int = 0;
634 sc->bnx_tx_ticks = 0; 634 sc->bnx_tx_ticks = 0;
635 635
636 sc->bnx_rx_quick_cons_trip_int = 1; 636 sc->bnx_rx_quick_cons_trip_int = 1;
637 sc->bnx_rx_quick_cons_trip = 1; 637 sc->bnx_rx_quick_cons_trip = 1;
638 sc->bnx_rx_ticks_int = 0; 638 sc->bnx_rx_ticks_int = 0;
639 sc->bnx_rx_ticks = 0; 639 sc->bnx_rx_ticks = 0;
640#else 640#else
641 sc->bnx_tx_quick_cons_trip_int = 20; 641 sc->bnx_tx_quick_cons_trip_int = 20;
642 sc->bnx_tx_quick_cons_trip = 20; 642 sc->bnx_tx_quick_cons_trip = 20;
643 sc->bnx_tx_ticks_int = 80; 643 sc->bnx_tx_ticks_int = 80;
644 sc->bnx_tx_ticks = 80; 644 sc->bnx_tx_ticks = 80;
645 645
646 sc->bnx_rx_quick_cons_trip_int = 6; 646 sc->bnx_rx_quick_cons_trip_int = 6;
647 sc->bnx_rx_quick_cons_trip = 6; 647 sc->bnx_rx_quick_cons_trip = 6;
648 sc->bnx_rx_ticks_int = 18; 648 sc->bnx_rx_ticks_int = 18;
649 sc->bnx_rx_ticks = 18; 649 sc->bnx_rx_ticks = 18;
650#endif 650#endif
651 651
652 /* Update statistics once every second. */ 652 /* Update statistics once every second. */
653 sc->bnx_stats_ticks = 1000000 & 0xffff00; 653 sc->bnx_stats_ticks = 1000000 & 0xffff00;
654 654
655 /* Find the media type for the adapter. */ 655 /* Find the media type for the adapter. */
656 bnx_get_media(sc); 656 bnx_get_media(sc);
657 657
658 /* 658 /*
659 * Store config data needed by the PHY driver for 659 * Store config data needed by the PHY driver for
660 * backplane applications 660 * backplane applications
661 */ 661 */
662 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base + 662 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
663 BNX_SHARED_HW_CFG_CONFIG); 663 BNX_SHARED_HW_CFG_CONFIG);
664 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base + 664 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
665 BNX_PORT_HW_CFG_CONFIG); 665 BNX_PORT_HW_CFG_CONFIG);
666 666
667 /* Allocate DMA memory resources. */ 667 /* Allocate DMA memory resources. */
668 sc->bnx_dmatag = pa->pa_dmat; 668 sc->bnx_dmatag = pa->pa_dmat;
669 if (bnx_dma_alloc(sc)) { 669 if (bnx_dma_alloc(sc)) {
670 aprint_error_dev(sc->bnx_dev, 670 aprint_error_dev(sc->bnx_dev,
671 "DMA resource allocation failed!\n"); 671 "DMA resource allocation failed!\n");
672 goto bnx_attach_fail; 672 goto bnx_attach_fail;
673 } 673 }
674 674
675 /* Initialize the ifnet interface. */ 675 /* Initialize the ifnet interface. */
676 ifp = &sc->bnx_ec.ec_if; 676 ifp = &sc->bnx_ec.ec_if;
677 ifp->if_softc = sc; 677 ifp->if_softc = sc;
678 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 678 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
679 ifp->if_ioctl = bnx_ioctl; 679 ifp->if_ioctl = bnx_ioctl;
680 ifp->if_stop = bnx_stop; 680 ifp->if_stop = bnx_stop;
681 ifp->if_start = bnx_start; 681 ifp->if_start = bnx_start;
682 ifp->if_init = bnx_init; 682 ifp->if_init = bnx_init;
683 ifp->if_timer = 0; 683 ifp->if_timer = 0;
684 ifp->if_watchdog = bnx_watchdog; 684 ifp->if_watchdog = bnx_watchdog;
685 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1); 685 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
686 IFQ_SET_READY(&ifp->if_snd); 686 IFQ_SET_READY(&ifp->if_snd);
687 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 687 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
688 688
689 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU | 689 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
690 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; 690 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
691 691
692 ifp->if_capabilities |= 692 ifp->if_capabilities |=
693 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 693 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
694 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 694 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
695 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 695 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
696 696
697 /* Hookup IRQ last. */ 697 /* Hookup IRQ last. */
698 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc); 698 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
699 if (sc->bnx_intrhand == NULL) { 699 if (sc->bnx_intrhand == NULL) {
700 aprint_error_dev(self, "couldn't establish interrupt"); 700 aprint_error_dev(self, "couldn't establish interrupt");
701 if (intrstr != NULL) 701 if (intrstr != NULL)
702 aprint_error(" at %s", intrstr); 702 aprint_error(" at %s", intrstr);
703 aprint_error("\n"); 703 aprint_error("\n");
704 goto bnx_attach_fail; 704 goto bnx_attach_fail;
705 } 705 }
706 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr); 706 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
707 707
708 /* create workqueue to handle packet allocations */ 708 /* create workqueue to handle packet allocations */
709 if (workqueue_create(&sc->bnx_wq, device_xname(self), 709 if (workqueue_create(&sc->bnx_wq, device_xname(self),
710 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, WQ_MPSAFE) != 0) { 710 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
711 aprint_error_dev(self, "failed to create workqueue\n"); 711 aprint_error_dev(self, "failed to create workqueue\n");
712 goto bnx_attach_fail; 712 goto bnx_attach_fail;
713 } 713 }
714 714
715 sc->bnx_mii.mii_ifp = ifp; 715 sc->bnx_mii.mii_ifp = ifp;
716 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg; 716 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
717 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg; 717 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
718 sc->bnx_mii.mii_statchg = bnx_miibus_statchg; 718 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
719 719
720 /* Handle any special PHY initialization for SerDes PHYs. */ 720 /* Handle any special PHY initialization for SerDes PHYs. */
721 bnx_init_media(sc); 721 bnx_init_media(sc);
722 722
723 sc->bnx_ec.ec_mii = &sc->bnx_mii; 723 sc->bnx_ec.ec_mii = &sc->bnx_mii;
724 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange, 724 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
725 ether_mediastatus); 725 ether_mediastatus);
726 726
727 /* set phyflags and chipid before mii_attach() */ 727 /* set phyflags and chipid before mii_attach() */
728 dict = device_properties(self); 728 dict = device_properties(self);
729 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags); 729 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
730 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid); 730 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
731 731
732 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) 732 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
733 mii_flags |= MIIF_HAVEFIBER; 733 mii_flags |= MIIF_HAVEFIBER;
734 mii_attach(self, &sc->bnx_mii, 0xffffffff, 734 mii_attach(self, &sc->bnx_mii, 0xffffffff,
735 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags); 735 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
736 736
737 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) { 737 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
738 aprint_error_dev(self, "no PHY found!\n"); 738 aprint_error_dev(self, "no PHY found!\n");
739 ifmedia_add(&sc->bnx_mii.mii_media, 739 ifmedia_add(&sc->bnx_mii.mii_media,
740 IFM_ETHER|IFM_MANUAL, 0, NULL); 740 IFM_ETHER|IFM_MANUAL, 0, NULL);
741 ifmedia_set(&sc->bnx_mii.mii_media, 741 ifmedia_set(&sc->bnx_mii.mii_media,
742 IFM_ETHER|IFM_MANUAL); 742 IFM_ETHER|IFM_MANUAL);
743 } else { 743 } else {
744 ifmedia_set(&sc->bnx_mii.mii_media, 744 ifmedia_set(&sc->bnx_mii.mii_media,
745 IFM_ETHER|IFM_AUTO); 745 IFM_ETHER|IFM_AUTO);
746 } 746 }
747 747
748 /* Attach to the Ethernet interface list. */ 748 /* Attach to the Ethernet interface list. */
749 if_attach(ifp); 749 if_attach(ifp);
750 ether_ifattach(ifp,sc->eaddr); 750 ether_ifattach(ifp,sc->eaddr);
751 751
752 callout_init(&sc->bnx_timeout, 0); 752 callout_init(&sc->bnx_timeout, 0);
753 753
754 if (pmf_device_register(self, NULL, NULL)) 754 if (pmf_device_register(self, NULL, NULL))
755 pmf_class_network_register(self, ifp); 755 pmf_class_network_register(self, ifp);
756 else 756 else
757 aprint_error_dev(self, "couldn't establish power handler\n"); 757 aprint_error_dev(self, "couldn't establish power handler\n");
758 758
759 /* Print some important debugging info. */ 759 /* Print some important debugging info. */
760 DBRUN(BNX_INFO, bnx_dump_driver_state(sc)); 760 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
761 761
762 goto bnx_attach_exit; 762 goto bnx_attach_exit;
763 763
764bnx_attach_fail: 764bnx_attach_fail:
765 bnx_release_resources(sc); 765 bnx_release_resources(sc);
766 766
767bnx_attach_exit: 767bnx_attach_exit:
768 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 768 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
769} 769}
770 770
771/****************************************************************************/ 771/****************************************************************************/
772/* Device detach function. */ 772/* Device detach function. */
773/* */ 773/* */
774/* Stops the controller, resets the controller, and releases resources. */ 774/* Stops the controller, resets the controller, and releases resources. */
775/* */ 775/* */
776/* Returns: */ 776/* Returns: */
777/* 0 on success, positive value on failure. */ 777/* 0 on success, positive value on failure. */
778/****************************************************************************/ 778/****************************************************************************/
779int 779int
780bnx_detach(device_t dev, int flags) 780bnx_detach(device_t dev, int flags)
781{ 781{
782 int s; 782 int s;
783 struct bnx_softc *sc; 783 struct bnx_softc *sc;
784 struct ifnet *ifp; 784 struct ifnet *ifp;
785 785
786 sc = device_private(dev); 786 sc = device_private(dev);
787 ifp = &sc->bnx_ec.ec_if; 787 ifp = &sc->bnx_ec.ec_if;
788 788
789 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 789 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
790 790
791 /* Stop and reset the controller. */ 791 /* Stop and reset the controller. */
792 s = splnet(); 792 s = splnet();
793 if (ifp->if_flags & IFF_RUNNING) 793 if (ifp->if_flags & IFF_RUNNING)
794 bnx_stop(ifp, 1); 794 bnx_stop(ifp, 1);
795 else { 795 else {
796 /* Disable the transmit/receive blocks. */ 796 /* Disable the transmit/receive blocks. */
797 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff); 797 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
798 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS); 798 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
799 DELAY(20); 799 DELAY(20);
800 bnx_disable_intr(sc); 800 bnx_disable_intr(sc);
801 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET); 801 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
802 } 802 }
803 803
804 splx(s); 804 splx(s);
805 805
806 pmf_device_deregister(dev); 806 pmf_device_deregister(dev);
807 callout_destroy(&sc->bnx_timeout); 807 callout_destroy(&sc->bnx_timeout);
808 ether_ifdetach(ifp); 808 ether_ifdetach(ifp);
809 workqueue_destroy(sc->bnx_wq); 809 workqueue_destroy(sc->bnx_wq);
810 810
811 /* Delete all remaining media. */ 811 /* Delete all remaining media. */
812 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY); 812 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
813 813
814 if_detach(ifp); 814 if_detach(ifp);
815 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY); 815 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
816 816
817 /* Release all remaining resources. */ 817 /* Release all remaining resources. */
818 bnx_release_resources(sc); 818 bnx_release_resources(sc);
819 819
820 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 820 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
821 821
822 return(0); 822 return(0);
823} 823}
824 824
825/****************************************************************************/ 825/****************************************************************************/
826/* Indirect register read. */ 826/* Indirect register read. */
827/* */ 827/* */
828/* Reads NetXtreme II registers using an index/data register pair in PCI */ 828/* Reads NetXtreme II registers using an index/data register pair in PCI */
829/* configuration space. Using this mechanism avoids issues with posted */ 829/* configuration space. Using this mechanism avoids issues with posted */
830/* reads but is much slower than memory-mapped I/O. */ 830/* reads but is much slower than memory-mapped I/O. */
831/* */ 831/* */
832/* Returns: */ 832/* Returns: */
833/* The value of the register. */ 833/* The value of the register. */
834/****************************************************************************/ 834/****************************************************************************/
835u_int32_t 835u_int32_t
836bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset) 836bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
837{ 837{
838 struct pci_attach_args *pa = &(sc->bnx_pa); 838 struct pci_attach_args *pa = &(sc->bnx_pa);
839 839
840 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS, 840 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
841 offset); 841 offset);
842#ifdef BNX_DEBUG 842#ifdef BNX_DEBUG
843 { 843 {
844 u_int32_t val; 844 u_int32_t val;
845 val = pci_conf_read(pa->pa_pc, pa->pa_tag, 845 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
846 BNX_PCICFG_REG_WINDOW); 846 BNX_PCICFG_REG_WINDOW);
847 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, " 847 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
848 "val = 0x%08X\n", __func__, offset, val); 848 "val = 0x%08X\n", __func__, offset, val);
849 return (val); 849 return (val);
850 } 850 }
851#else 851#else
852 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW); 852 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
853#endif 853#endif
854} 854}
855 855
856/****************************************************************************/ 856/****************************************************************************/
857/* Indirect register write. */ 857/* Indirect register write. */
858/* */ 858/* */
859/* Writes NetXtreme II registers using an index/data register pair in PCI */ 859/* Writes NetXtreme II registers using an index/data register pair in PCI */
860/* configuration space. Using this mechanism avoids issues with posted */ 860/* configuration space. Using this mechanism avoids issues with posted */
861/* writes but is muchh slower than memory-mapped I/O. */ 861/* writes but is muchh slower than memory-mapped I/O. */
862/* */ 862/* */
863/* Returns: */ 863/* Returns: */
864/* Nothing. */ 864/* Nothing. */
865/****************************************************************************/ 865/****************************************************************************/
866void 866void
867bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val) 867bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
868{ 868{
869 struct pci_attach_args *pa = &(sc->bnx_pa); 869 struct pci_attach_args *pa = &(sc->bnx_pa);
870 870
871 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n", 871 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
872 __func__, offset, val); 872 __func__, offset, val);
873 873
874 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS, 874 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
875 offset); 875 offset);
876 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val); 876 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
877} 877}
878 878
879/****************************************************************************/ 879/****************************************************************************/
880/* Context memory write. */ 880/* Context memory write. */
881/* */ 881/* */
882/* The NetXtreme II controller uses context memory to track connection */ 882/* The NetXtreme II controller uses context memory to track connection */
883/* information for L2 and higher network protocols. */ 883/* information for L2 and higher network protocols. */
884/* */ 884/* */
885/* Returns: */ 885/* Returns: */
886/* Nothing. */ 886/* Nothing. */
887/****************************************************************************/ 887/****************************************************************************/
888void 888void
889bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset, 889bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
890 u_int32_t ctx_val) 890 u_int32_t ctx_val)
891{ 891{
892 u_int32_t idx, offset = ctx_offset + cid_addr; 892 u_int32_t idx, offset = ctx_offset + cid_addr;
893 u_int32_t val, retry_cnt = 5; 893 u_int32_t val, retry_cnt = 5;
894 894
895 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 895 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
896 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val); 896 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
897 REG_WR(sc, BNX_CTX_CTX_CTRL, 897 REG_WR(sc, BNX_CTX_CTX_CTRL,
898 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ)); 898 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
899 899
900 for (idx = 0; idx < retry_cnt; idx++) { 900 for (idx = 0; idx < retry_cnt; idx++) {
901 val = REG_RD(sc, BNX_CTX_CTX_CTRL); 901 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
902 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0) 902 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
903 break; 903 break;
904 DELAY(5); 904 DELAY(5);
905 } 905 }
906 906
907#if 0 907#if 0
908 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ) 908 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
909 BNX_PRINTF("%s(%d); Unable to write CTX memory: " 909 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
910 "cid_addr = 0x%08X, offset = 0x%08X!\n", 910 "cid_addr = 0x%08X, offset = 0x%08X!\n",
911 __FILE__, __LINE__, cid_addr, ctx_offset); 911 __FILE__, __LINE__, cid_addr, ctx_offset);
912#endif 912#endif
913 913
914 } else { 914 } else {
915 REG_WR(sc, BNX_CTX_DATA_ADR, offset); 915 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
916 REG_WR(sc, BNX_CTX_DATA, ctx_val); 916 REG_WR(sc, BNX_CTX_DATA, ctx_val);
917 } 917 }
918} 918}
919 919
920/****************************************************************************/ 920/****************************************************************************/
921/* PHY register read. */ 921/* PHY register read. */
922/* */ 922/* */
923/* Implements register reads on the MII bus. */ 923/* Implements register reads on the MII bus. */
924/* */ 924/* */
925/* Returns: */ 925/* Returns: */
926/* The value of the register. */ 926/* The value of the register. */
927/****************************************************************************/ 927/****************************************************************************/
928int 928int
929bnx_miibus_read_reg(device_t dev, int phy, int reg) 929bnx_miibus_read_reg(device_t dev, int phy, int reg)
930{ 930{
931 struct bnx_softc *sc = device_private(dev); 931 struct bnx_softc *sc = device_private(dev);
932 u_int32_t val; 932 u_int32_t val;
933 int i; 933 int i;
934 934
935 /* Make sure we are accessing the correct PHY address. */ 935 /* Make sure we are accessing the correct PHY address. */
936 if (phy != sc->bnx_phy_addr) { 936 if (phy != sc->bnx_phy_addr) {
937 DBPRINT(sc, BNX_VERBOSE, 937 DBPRINT(sc, BNX_VERBOSE,
938 "Invalid PHY address %d for PHY read!\n", phy); 938 "Invalid PHY address %d for PHY read!\n", phy);
939 return(0); 939 return(0);
940 } 940 }
941 941
942 /* 942 /*
943 * The BCM5709S PHY is an IEEE Clause 45 PHY 943 * The BCM5709S PHY is an IEEE Clause 45 PHY
944 * with special mappings to work with IEEE 944 * with special mappings to work with IEEE
945 * Clause 22 register accesses. 945 * Clause 22 register accesses.
946 */ 946 */
947 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 947 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
948 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 948 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
949 reg += 0x10; 949 reg += 0x10;
950 } 950 }
951 951
952 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 952 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
953 val = REG_RD(sc, BNX_EMAC_MDIO_MODE); 953 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
954 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL; 954 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
955 955
956 REG_WR(sc, BNX_EMAC_MDIO_MODE, val); 956 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
957 REG_RD(sc, BNX_EMAC_MDIO_MODE); 957 REG_RD(sc, BNX_EMAC_MDIO_MODE);
958 958
959 DELAY(40); 959 DELAY(40);
960 } 960 }
961 961
962 val = BNX_MIPHY(phy) | BNX_MIREG(reg) | 962 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
963 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT | 963 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
964 BNX_EMAC_MDIO_COMM_START_BUSY; 964 BNX_EMAC_MDIO_COMM_START_BUSY;
965 REG_WR(sc, BNX_EMAC_MDIO_COMM, val); 965 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
966 966
967 for (i = 0; i < BNX_PHY_TIMEOUT; i++) { 967 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
968 DELAY(10); 968 DELAY(10);
969 969
970 val = REG_RD(sc, BNX_EMAC_MDIO_COMM); 970 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
971 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) { 971 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
972 DELAY(5); 972 DELAY(5);
973 973
974 val = REG_RD(sc, BNX_EMAC_MDIO_COMM); 974 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
975 val &= BNX_EMAC_MDIO_COMM_DATA; 975 val &= BNX_EMAC_MDIO_COMM_DATA;
976 976
977 break; 977 break;
978 } 978 }
979 } 979 }
980 980
981 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) { 981 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
982 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, " 982 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
983 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg); 983 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
984 val = 0x0; 984 val = 0x0;
985 } else 985 } else
986 val = REG_RD(sc, BNX_EMAC_MDIO_COMM); 986 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
987 987
988 DBPRINT(sc, BNX_EXCESSIVE, 988 DBPRINT(sc, BNX_EXCESSIVE,
989 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy, 989 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
990 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff); 990 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
991 991
992 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 992 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
993 val = REG_RD(sc, BNX_EMAC_MDIO_MODE); 993 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
994 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL; 994 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
995 995
996 REG_WR(sc, BNX_EMAC_MDIO_MODE, val); 996 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
997 REG_RD(sc, BNX_EMAC_MDIO_MODE); 997 REG_RD(sc, BNX_EMAC_MDIO_MODE);
998 998
999 DELAY(40); 999 DELAY(40);
1000 } 1000 }
1001 1001
1002 return (val & 0xffff); 1002 return (val & 0xffff);
1003} 1003}
1004 1004
1005/****************************************************************************/ 1005/****************************************************************************/
1006/* PHY register write. */ 1006/* PHY register write. */
1007/* */ 1007/* */
1008/* Implements register writes on the MII bus. */ 1008/* Implements register writes on the MII bus. */
1009/* */ 1009/* */
1010/* Returns: */ 1010/* Returns: */
1011/* The value of the register. */ 1011/* The value of the register. */
1012/****************************************************************************/ 1012/****************************************************************************/
1013void 1013void
1014bnx_miibus_write_reg(device_t dev, int phy, int reg, int val) 1014bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1015{ 1015{
1016 struct bnx_softc *sc = device_private(dev); 1016 struct bnx_softc *sc = device_private(dev);
1017 u_int32_t val1; 1017 u_int32_t val1;
1018 int i; 1018 int i;
1019 1019
1020 /* Make sure we are accessing the correct PHY address. */ 1020 /* Make sure we are accessing the correct PHY address. */
1021 if (phy != sc->bnx_phy_addr) { 1021 if (phy != sc->bnx_phy_addr) {
1022 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n", 1022 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1023 phy); 1023 phy);
1024 return; 1024 return;
1025 } 1025 }
1026 1026
1027 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, " 1027 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1028 "val = 0x%04X\n", __func__, 1028 "val = 0x%04X\n", __func__,
1029 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff); 1029 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1030 1030
1031 /* 1031 /*
1032 * The BCM5709S PHY is an IEEE Clause 45 PHY 1032 * The BCM5709S PHY is an IEEE Clause 45 PHY
1033 * with special mappings to work with IEEE 1033 * with special mappings to work with IEEE
1034 * Clause 22 register accesses. 1034 * Clause 22 register accesses.
1035 */ 1035 */
1036 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) { 1036 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1037 if (reg >= MII_BMCR && reg <= MII_ANLPRNP) 1037 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1038 reg += 0x10; 1038 reg += 0x10;
1039 } 1039 }
1040 1040
1041 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1041 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1042 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE); 1042 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1043 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL; 1043 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1044 1044
1045 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1); 1045 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1046 REG_RD(sc, BNX_EMAC_MDIO_MODE); 1046 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1047 1047
1048 DELAY(40); 1048 DELAY(40);
1049 } 1049 }
1050 1050
1051 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val | 1051 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1052 BNX_EMAC_MDIO_COMM_COMMAND_WRITE | 1052 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1053 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT; 1053 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1054 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1); 1054 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1055 1055
1056 for (i = 0; i < BNX_PHY_TIMEOUT; i++) { 1056 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1057 DELAY(10); 1057 DELAY(10);
1058 1058
1059 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM); 1059 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1060 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) { 1060 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1061 DELAY(5); 1061 DELAY(5);
1062 break; 1062 break;
1063 } 1063 }
1064 } 1064 }
1065 1065
1066 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) { 1066 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1067 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__, 1067 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1068 __LINE__); 1068 __LINE__);
1069 } 1069 }
1070 1070
1071 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1071 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1072 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE); 1072 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1073 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL; 1073 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1074 1074
1075 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1); 1075 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1076 REG_RD(sc, BNX_EMAC_MDIO_MODE); 1076 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1077 1077
1078 DELAY(40); 1078 DELAY(40);
1079 } 1079 }
1080} 1080}
1081 1081
1082/****************************************************************************/ 1082/****************************************************************************/
1083/* MII bus status change. */ 1083/* MII bus status change. */
1084/* */ 1084/* */
1085/* Called by the MII bus driver when the PHY establishes link to set the */ 1085/* Called by the MII bus driver when the PHY establishes link to set the */
1086/* MAC interface registers. */ 1086/* MAC interface registers. */
1087/* */ 1087/* */
1088/* Returns: */ 1088/* Returns: */
1089/* Nothing. */ 1089/* Nothing. */
1090/****************************************************************************/ 1090/****************************************************************************/
1091void 1091void
1092bnx_miibus_statchg(device_t dev) 1092bnx_miibus_statchg(device_t dev)
1093{ 1093{
1094 struct bnx_softc *sc = device_private(dev); 1094 struct bnx_softc *sc = device_private(dev);
1095 struct mii_data *mii = &sc->bnx_mii; 1095 struct mii_data *mii = &sc->bnx_mii;
1096 int val; 1096 int val;
1097 1097
1098 val = REG_RD(sc, BNX_EMAC_MODE); 1098 val = REG_RD(sc, BNX_EMAC_MODE);
1099 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX | 1099 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1100 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK | 1100 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1101 BNX_EMAC_MODE_25G); 1101 BNX_EMAC_MODE_25G);
1102 1102
1103 /* Set MII or GMII interface based on the speed 1103 /* Set MII or GMII interface based on the speed
1104 * negotiated by the PHY. 1104 * negotiated by the PHY.
1105 */ 1105 */
1106 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1106 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1107 case IFM_10_T: 1107 case IFM_10_T:
1108 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) { 1108 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1109 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n"); 1109 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1110 val |= BNX_EMAC_MODE_PORT_MII_10; 1110 val |= BNX_EMAC_MODE_PORT_MII_10;
1111 break; 1111 break;
1112 } 1112 }
1113 /* FALLTHROUGH */ 1113 /* FALLTHROUGH */
1114 case IFM_100_TX: 1114 case IFM_100_TX:
1115 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n"); 1115 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1116 val |= BNX_EMAC_MODE_PORT_MII; 1116 val |= BNX_EMAC_MODE_PORT_MII;
1117 break; 1117 break;
1118 case IFM_2500_SX: 1118 case IFM_2500_SX:
1119 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n"); 1119 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1120 val |= BNX_EMAC_MODE_25G; 1120 val |= BNX_EMAC_MODE_25G;
1121 /* FALLTHROUGH */ 1121 /* FALLTHROUGH */
1122 case IFM_1000_T: 1122 case IFM_1000_T:
1123 case IFM_1000_SX: 1123 case IFM_1000_SX:
1124 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n"); 1124 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1125 val |= BNX_EMAC_MODE_PORT_GMII; 1125 val |= BNX_EMAC_MODE_PORT_GMII;
1126 break; 1126 break;
1127 default: 1127 default:
1128 val |= BNX_EMAC_MODE_PORT_GMII; 1128 val |= BNX_EMAC_MODE_PORT_GMII;
1129 break; 1129 break;
1130 } 1130 }
1131 1131
1132 /* Set half or full duplex based on the duplicity 1132 /* Set half or full duplex based on the duplicity
1133 * negotiated by the PHY. 1133 * negotiated by the PHY.
1134 */ 1134 */
1135 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 1135 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1136 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n"); 1136 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1137 val |= BNX_EMAC_MODE_HALF_DUPLEX; 1137 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1138 } else { 1138 } else {
1139 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n"); 1139 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1140 } 1140 }
1141 1141
1142 REG_WR(sc, BNX_EMAC_MODE, val); 1142 REG_WR(sc, BNX_EMAC_MODE, val);
1143} 1143}
1144 1144
1145/****************************************************************************/ 1145/****************************************************************************/
1146/* Acquire NVRAM lock. */ 1146/* Acquire NVRAM lock. */
1147/* */ 1147/* */
1148/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 1148/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1149/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1149/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1150/* for use by the driver. */ 1150/* for use by the driver. */
1151/* */ 1151/* */
1152/* Returns: */ 1152/* Returns: */
1153/* 0 on success, positive value on failure. */ 1153/* 0 on success, positive value on failure. */
1154/****************************************************************************/ 1154/****************************************************************************/
1155int 1155int
1156bnx_acquire_nvram_lock(struct bnx_softc *sc) 1156bnx_acquire_nvram_lock(struct bnx_softc *sc)
1157{ 1157{
1158 u_int32_t val; 1158 u_int32_t val;
1159 int j; 1159 int j;
1160 1160
1161 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n"); 1161 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1162 1162
1163 /* Request access to the flash interface. */ 1163 /* Request access to the flash interface. */
1164 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2); 1164 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1165 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1165 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1166 val = REG_RD(sc, BNX_NVM_SW_ARB); 1166 val = REG_RD(sc, BNX_NVM_SW_ARB);
1167 if (val & BNX_NVM_SW_ARB_ARB_ARB2) 1167 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1168 break; 1168 break;
1169 1169
1170 DELAY(5); 1170 DELAY(5);
1171 } 1171 }
1172 1172
1173 if (j >= NVRAM_TIMEOUT_COUNT) { 1173 if (j >= NVRAM_TIMEOUT_COUNT) {
1174 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n"); 1174 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1175 return (EBUSY); 1175 return (EBUSY);
1176 } 1176 }
1177 1177
1178 return (0); 1178 return (0);
1179} 1179}
1180 1180
1181/****************************************************************************/ 1181/****************************************************************************/
1182/* Release NVRAM lock. */ 1182/* Release NVRAM lock. */
1183/* */ 1183/* */
1184/* When the caller is finished accessing NVRAM the lock must be released. */ 1184/* When the caller is finished accessing NVRAM the lock must be released. */
1185/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1185/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1186/* for use by the driver. */ 1186/* for use by the driver. */
1187/* */ 1187/* */
1188/* Returns: */ 1188/* Returns: */
1189/* 0 on success, positive value on failure. */ 1189/* 0 on success, positive value on failure. */
1190/****************************************************************************/ 1190/****************************************************************************/
1191int 1191int
1192bnx_release_nvram_lock(struct bnx_softc *sc) 1192bnx_release_nvram_lock(struct bnx_softc *sc)
1193{ 1193{
1194 int j; 1194 int j;
1195 u_int32_t val; 1195 u_int32_t val;
1196 1196
1197 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n"); 1197 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1198 1198
1199 /* Relinquish nvram interface. */ 1199 /* Relinquish nvram interface. */
1200 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2); 1200 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1201 1201
1202 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1202 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1203 val = REG_RD(sc, BNX_NVM_SW_ARB); 1203 val = REG_RD(sc, BNX_NVM_SW_ARB);
1204 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2)) 1204 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1205 break; 1205 break;
1206 1206
1207 DELAY(5); 1207 DELAY(5);
1208 } 1208 }
1209 1209
1210 if (j >= NVRAM_TIMEOUT_COUNT) { 1210 if (j >= NVRAM_TIMEOUT_COUNT) {
1211 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n"); 1211 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1212 return (EBUSY); 1212 return (EBUSY);
1213 } 1213 }
1214 1214
1215 return (0); 1215 return (0);
1216} 1216}
1217 1217
1218#ifdef BNX_NVRAM_WRITE_SUPPORT 1218#ifdef BNX_NVRAM_WRITE_SUPPORT
1219/****************************************************************************/ 1219/****************************************************************************/
1220/* Enable NVRAM write access. */ 1220/* Enable NVRAM write access. */
1221/* */ 1221/* */
1222/* Before writing to NVRAM the caller must enable NVRAM writes. */ 1222/* Before writing to NVRAM the caller must enable NVRAM writes. */
1223/* */ 1223/* */
1224/* Returns: */ 1224/* Returns: */
1225/* 0 on success, positive value on failure. */ 1225/* 0 on success, positive value on failure. */
1226/****************************************************************************/ 1226/****************************************************************************/
1227int 1227int
1228bnx_enable_nvram_write(struct bnx_softc *sc) 1228bnx_enable_nvram_write(struct bnx_softc *sc)
1229{ 1229{
1230 u_int32_t val; 1230 u_int32_t val;
1231 1231
1232 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n"); 1232 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1233 1233
1234 val = REG_RD(sc, BNX_MISC_CFG); 1234 val = REG_RD(sc, BNX_MISC_CFG);
1235 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI); 1235 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1236 1236
1237 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 1237 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1238 int j; 1238 int j;
1239 1239
1240 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1240 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1241 REG_WR(sc, BNX_NVM_COMMAND, 1241 REG_WR(sc, BNX_NVM_COMMAND,
1242 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT); 1242 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1243 1243
1244 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1244 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1245 DELAY(5); 1245 DELAY(5);
1246 1246
1247 val = REG_RD(sc, BNX_NVM_COMMAND); 1247 val = REG_RD(sc, BNX_NVM_COMMAND);
1248 if (val & BNX_NVM_COMMAND_DONE) 1248 if (val & BNX_NVM_COMMAND_DONE)
1249 break; 1249 break;
1250 } 1250 }
1251 1251
1252 if (j >= NVRAM_TIMEOUT_COUNT) { 1252 if (j >= NVRAM_TIMEOUT_COUNT) {
1253 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n"); 1253 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1254 return (EBUSY); 1254 return (EBUSY);
1255 } 1255 }
1256 } 1256 }
1257 1257
1258 return (0); 1258 return (0);
1259} 1259}
1260 1260
1261/****************************************************************************/ 1261/****************************************************************************/
1262/* Disable NVRAM write access. */ 1262/* Disable NVRAM write access. */
1263/* */ 1263/* */
1264/* When the caller is finished writing to NVRAM write access must be */ 1264/* When the caller is finished writing to NVRAM write access must be */
1265/* disabled. */ 1265/* disabled. */
1266/* */ 1266/* */
1267/* Returns: */ 1267/* Returns: */
1268/* Nothing. */ 1268/* Nothing. */
1269/****************************************************************************/ 1269/****************************************************************************/
1270void 1270void
1271bnx_disable_nvram_write(struct bnx_softc *sc) 1271bnx_disable_nvram_write(struct bnx_softc *sc)
1272{ 1272{
1273 u_int32_t val; 1273 u_int32_t val;
1274 1274
1275 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n"); 1275 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1276 1276
1277 val = REG_RD(sc, BNX_MISC_CFG); 1277 val = REG_RD(sc, BNX_MISC_CFG);
1278 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN); 1278 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1279} 1279}
1280#endif 1280#endif
1281 1281
1282/****************************************************************************/ 1282/****************************************************************************/
1283/* Enable NVRAM access. */ 1283/* Enable NVRAM access. */
1284/* */ 1284/* */
1285/* Before accessing NVRAM for read or write operations the caller must */ 1285/* Before accessing NVRAM for read or write operations the caller must */
1286/* enabled NVRAM access. */ 1286/* enabled NVRAM access. */
1287/* */ 1287/* */
1288/* Returns: */ 1288/* Returns: */
1289/* Nothing. */ 1289/* Nothing. */
1290/****************************************************************************/ 1290/****************************************************************************/
1291void 1291void
1292bnx_enable_nvram_access(struct bnx_softc *sc) 1292bnx_enable_nvram_access(struct bnx_softc *sc)
1293{ 1293{
1294 u_int32_t val; 1294 u_int32_t val;
1295 1295
1296 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n"); 1296 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1297 1297
1298 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE); 1298 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1299 /* Enable both bits, even on read. */ 1299 /* Enable both bits, even on read. */
1300 REG_WR(sc, BNX_NVM_ACCESS_ENABLE, 1300 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1301 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN); 1301 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1302} 1302}
1303 1303
1304/****************************************************************************/ 1304/****************************************************************************/
1305/* Disable NVRAM access. */ 1305/* Disable NVRAM access. */
1306/* */ 1306/* */
1307/* When the caller is finished accessing NVRAM access must be disabled. */ 1307/* When the caller is finished accessing NVRAM access must be disabled. */
1308/* */ 1308/* */
1309/* Returns: */ 1309/* Returns: */
1310/* Nothing. */ 1310/* Nothing. */
1311/****************************************************************************/ 1311/****************************************************************************/
1312void 1312void
1313bnx_disable_nvram_access(struct bnx_softc *sc) 1313bnx_disable_nvram_access(struct bnx_softc *sc)
1314{ 1314{
1315 u_int32_t val; 1315 u_int32_t val;
1316 1316
1317 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n"); 1317 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1318 1318
1319 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE); 1319 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1320 1320
1321 /* Disable both bits, even after read. */ 1321 /* Disable both bits, even after read. */
1322 REG_WR(sc, BNX_NVM_ACCESS_ENABLE, 1322 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1323 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN)); 1323 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1324} 1324}
1325 1325
1326#ifdef BNX_NVRAM_WRITE_SUPPORT 1326#ifdef BNX_NVRAM_WRITE_SUPPORT
1327/****************************************************************************/ 1327/****************************************************************************/
1328/* Erase NVRAM page before writing. */ 1328/* Erase NVRAM page before writing. */
1329/* */ 1329/* */
1330/* Non-buffered flash parts require that a page be erased before it is */ 1330/* Non-buffered flash parts require that a page be erased before it is */
1331/* written. */ 1331/* written. */
1332/* */ 1332/* */
1333/* Returns: */ 1333/* Returns: */
1334/* 0 on success, positive value on failure. */ 1334/* 0 on success, positive value on failure. */
1335/****************************************************************************/ 1335/****************************************************************************/
1336int 1336int
1337bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset) 1337bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1338{ 1338{
1339 u_int32_t cmd; 1339 u_int32_t cmd;
1340 int j; 1340 int j;
1341 1341
1342 /* Buffered flash doesn't require an erase. */ 1342 /* Buffered flash doesn't require an erase. */
1343 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) 1343 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1344 return (0); 1344 return (0);
1345 1345
1346 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n"); 1346 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1347 1347
1348 /* Build an erase command. */ 1348 /* Build an erase command. */
1349 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR | 1349 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1350 BNX_NVM_COMMAND_DOIT; 1350 BNX_NVM_COMMAND_DOIT;
1351 1351
1352 /* 1352 /*
1353 * Clear the DONE bit separately, set the NVRAM adress to erase, 1353 * Clear the DONE bit separately, set the NVRAM adress to erase,
1354 * and issue the erase command. 1354 * and issue the erase command.
1355 */ 1355 */
1356 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1356 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1357 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); 1357 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1358 REG_WR(sc, BNX_NVM_COMMAND, cmd); 1358 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1359 1359
1360 /* Wait for completion. */ 1360 /* Wait for completion. */
1361 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1361 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1362 u_int32_t val; 1362 u_int32_t val;
1363 1363
1364 DELAY(5); 1364 DELAY(5);
1365 1365
1366 val = REG_RD(sc, BNX_NVM_COMMAND); 1366 val = REG_RD(sc, BNX_NVM_COMMAND);
1367 if (val & BNX_NVM_COMMAND_DONE) 1367 if (val & BNX_NVM_COMMAND_DONE)
1368 break; 1368 break;
1369 } 1369 }
1370 1370
1371 if (j >= NVRAM_TIMEOUT_COUNT) { 1371 if (j >= NVRAM_TIMEOUT_COUNT) {
1372 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n"); 1372 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1373 return (EBUSY); 1373 return (EBUSY);
1374 } 1374 }
1375 1375
1376 return (0); 1376 return (0);
1377} 1377}
1378#endif /* BNX_NVRAM_WRITE_SUPPORT */ 1378#endif /* BNX_NVRAM_WRITE_SUPPORT */
1379 1379
1380/****************************************************************************/ 1380/****************************************************************************/
1381/* Read a dword (32 bits) from NVRAM. */ 1381/* Read a dword (32 bits) from NVRAM. */
1382/* */ 1382/* */
1383/* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 1383/* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1384/* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 1384/* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1385/* */ 1385/* */
1386/* Returns: */ 1386/* Returns: */
1387/* 0 on success and the 32 bit value read, positive value on failure. */ 1387/* 0 on success and the 32 bit value read, positive value on failure. */
1388/****************************************************************************/ 1388/****************************************************************************/
1389int 1389int
1390bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset, 1390bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1391 u_int8_t *ret_val, u_int32_t cmd_flags) 1391 u_int8_t *ret_val, u_int32_t cmd_flags)
1392{ 1392{
1393 u_int32_t cmd; 1393 u_int32_t cmd;
1394 int i, rc = 0; 1394 int i, rc = 0;
1395 1395
1396 /* Build the command word. */ 1396 /* Build the command word. */
1397 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags; 1397 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1398 1398
1399 /* Calculate the offset for buffered flash if translation is used. */ 1399 /* Calculate the offset for buffered flash if translation is used. */
1400 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) { 1400 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1401 offset = ((offset / sc->bnx_flash_info->page_size) << 1401 offset = ((offset / sc->bnx_flash_info->page_size) <<
1402 sc->bnx_flash_info->page_bits) + 1402 sc->bnx_flash_info->page_bits) +
1403 (offset % sc->bnx_flash_info->page_size); 1403 (offset % sc->bnx_flash_info->page_size);
1404 } 1404 }
1405 1405
1406 /* 1406 /*
1407 * Clear the DONE bit separately, set the address to read, 1407 * Clear the DONE bit separately, set the address to read,
1408 * and issue the read. 1408 * and issue the read.
1409 */ 1409 */
1410 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1410 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1411 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); 1411 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1412 REG_WR(sc, BNX_NVM_COMMAND, cmd); 1412 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1413 1413
1414 /* Wait for completion. */ 1414 /* Wait for completion. */
1415 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 1415 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1416 u_int32_t val; 1416 u_int32_t val;
1417 1417
1418 DELAY(5); 1418 DELAY(5);
1419 1419
1420 val = REG_RD(sc, BNX_NVM_COMMAND); 1420 val = REG_RD(sc, BNX_NVM_COMMAND);
1421 if (val & BNX_NVM_COMMAND_DONE) { 1421 if (val & BNX_NVM_COMMAND_DONE) {
1422 val = REG_RD(sc, BNX_NVM_READ); 1422 val = REG_RD(sc, BNX_NVM_READ);
1423 1423
1424 val = bnx_be32toh(val); 1424 val = bnx_be32toh(val);
1425 memcpy(ret_val, &val, 4); 1425 memcpy(ret_val, &val, 4);
1426 break; 1426 break;
1427 } 1427 }
1428 } 1428 }
1429 1429
1430 /* Check for errors. */ 1430 /* Check for errors. */
1431 if (i >= NVRAM_TIMEOUT_COUNT) { 1431 if (i >= NVRAM_TIMEOUT_COUNT) {
1432 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at " 1432 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1433 "offset 0x%08X!\n", __FILE__, __LINE__, offset); 1433 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1434 rc = EBUSY; 1434 rc = EBUSY;
1435 } 1435 }
1436 1436
1437 return(rc); 1437 return(rc);
1438} 1438}
1439 1439
1440#ifdef BNX_NVRAM_WRITE_SUPPORT 1440#ifdef BNX_NVRAM_WRITE_SUPPORT
1441/****************************************************************************/ 1441/****************************************************************************/
1442/* Write a dword (32 bits) to NVRAM. */ 1442/* Write a dword (32 bits) to NVRAM. */
1443/* */ 1443/* */
1444/* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 1444/* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1445/* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 1445/* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1446/* enabled NVRAM write access. */ 1446/* enabled NVRAM write access. */
1447/* */ 1447/* */
1448/* Returns: */ 1448/* Returns: */
1449/* 0 on success, positive value on failure. */ 1449/* 0 on success, positive value on failure. */
1450/****************************************************************************/ 1450/****************************************************************************/
1451int 1451int
1452bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val, 1452bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1453 u_int32_t cmd_flags) 1453 u_int32_t cmd_flags)
1454{ 1454{
1455 u_int32_t cmd, val32; 1455 u_int32_t cmd, val32;
1456 int j; 1456 int j;
1457 1457
1458 /* Build the command word. */ 1458 /* Build the command word. */
1459 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags; 1459 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1460 1460
1461 /* Calculate the offset for buffered flash if translation is used. */ 1461 /* Calculate the offset for buffered flash if translation is used. */
1462 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) { 1462 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1463 offset = ((offset / sc->bnx_flash_info->page_size) << 1463 offset = ((offset / sc->bnx_flash_info->page_size) <<
1464 sc->bnx_flash_info->page_bits) + 1464 sc->bnx_flash_info->page_bits) +
1465 (offset % sc->bnx_flash_info->page_size); 1465 (offset % sc->bnx_flash_info->page_size);
1466 } 1466 }
1467 1467
1468 /* 1468 /*
1469 * Clear the DONE bit separately, convert NVRAM data to big-endian, 1469 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1470 * set the NVRAM address to write, and issue the write command 1470 * set the NVRAM address to write, and issue the write command
1471 */ 1471 */
1472 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1472 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1473 memcpy(&val32, val, 4); 1473 memcpy(&val32, val, 4);
1474 val32 = htobe32(val32); 1474 val32 = htobe32(val32);
1475 REG_WR(sc, BNX_NVM_WRITE, val32); 1475 REG_WR(sc, BNX_NVM_WRITE, val32);
1476 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); 1476 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1477 REG_WR(sc, BNX_NVM_COMMAND, cmd); 1477 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1478 1478
1479 /* Wait for completion. */ 1479 /* Wait for completion. */
1480 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1480 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1481 DELAY(5); 1481 DELAY(5);
1482 1482
1483 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE) 1483 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1484 break; 1484 break;
1485 } 1485 }
1486 if (j >= NVRAM_TIMEOUT_COUNT) { 1486 if (j >= NVRAM_TIMEOUT_COUNT) {
1487 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at " 1487 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1488 "offset 0x%08X\n", __FILE__, __LINE__, offset); 1488 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1489 return (EBUSY); 1489 return (EBUSY);
1490 } 1490 }
1491 1491
1492 return (0); 1492 return (0);
1493} 1493}
1494#endif /* BNX_NVRAM_WRITE_SUPPORT */ 1494#endif /* BNX_NVRAM_WRITE_SUPPORT */
1495 1495
1496/****************************************************************************/ 1496/****************************************************************************/
1497/* Initialize NVRAM access. */ 1497/* Initialize NVRAM access. */
1498/* */ 1498/* */
1499/* Identify the NVRAM device in use and prepare the NVRAM interface to */ 1499/* Identify the NVRAM device in use and prepare the NVRAM interface to */
1500/* access that device. */ 1500/* access that device. */
1501/* */ 1501/* */
1502/* Returns: */ 1502/* Returns: */
1503/* 0 on success, positive value on failure. */ 1503/* 0 on success, positive value on failure. */
1504/****************************************************************************/ 1504/****************************************************************************/
1505int 1505int
1506bnx_init_nvram(struct bnx_softc *sc) 1506bnx_init_nvram(struct bnx_softc *sc)
1507{ 1507{
1508 u_int32_t val; 1508 u_int32_t val;
1509 int j, entry_count, rc = 0; 1509 int j, entry_count, rc = 0;
1510 struct flash_spec *flash; 1510 struct flash_spec *flash;
1511 1511
1512 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 1512 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1513 1513
1514 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 1514 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1515 sc->bnx_flash_info = &flash_5709; 1515 sc->bnx_flash_info = &flash_5709;
1516 goto bnx_init_nvram_get_flash_size; 1516 goto bnx_init_nvram_get_flash_size;
1517 } 1517 }
1518 1518
1519 /* Determine the selected interface. */ 1519 /* Determine the selected interface. */
1520 val = REG_RD(sc, BNX_NVM_CFG1); 1520 val = REG_RD(sc, BNX_NVM_CFG1);
1521 1521
1522 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 1522 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1523 1523
1524 /* 1524 /*
1525 * Flash reconfiguration is required to support additional 1525 * Flash reconfiguration is required to support additional
1526 * NVRAM devices not directly supported in hardware. 1526 * NVRAM devices not directly supported in hardware.
1527 * Check if the flash interface was reconfigured 1527 * Check if the flash interface was reconfigured
1528 * by the bootcode. 1528 * by the bootcode.
1529 */ 1529 */
1530 1530
1531 if (val & 0x40000000) { 1531 if (val & 0x40000000) {
1532 /* Flash interface reconfigured by bootcode. */ 1532 /* Flash interface reconfigured by bootcode. */
1533 1533
1534 DBPRINT(sc,BNX_INFO_LOAD,  1534 DBPRINT(sc,BNX_INFO_LOAD,
1535 "bnx_init_nvram(): Flash WAS reconfigured.\n"); 1535 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1536 1536
1537 for (j = 0, flash = &flash_table[0]; j < entry_count; 1537 for (j = 0, flash = &flash_table[0]; j < entry_count;
1538 j++, flash++) { 1538 j++, flash++) {
1539 if ((val & FLASH_BACKUP_STRAP_MASK) == 1539 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1540 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 1540 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1541 sc->bnx_flash_info = flash; 1541 sc->bnx_flash_info = flash;
1542 break; 1542 break;
1543 } 1543 }
1544 } 1544 }
1545 } else { 1545 } else {
1546 /* Flash interface not yet reconfigured. */ 1546 /* Flash interface not yet reconfigured. */
1547 u_int32_t mask; 1547 u_int32_t mask;
1548 1548
1549 DBPRINT(sc,BNX_INFO_LOAD,  1549 DBPRINT(sc,BNX_INFO_LOAD,
1550 "bnx_init_nvram(): Flash was NOT reconfigured.\n"); 1550 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1551 1551
1552 if (val & (1 << 23)) 1552 if (val & (1 << 23))
1553 mask = FLASH_BACKUP_STRAP_MASK; 1553 mask = FLASH_BACKUP_STRAP_MASK;
1554 else 1554 else
1555 mask = FLASH_STRAP_MASK; 1555 mask = FLASH_STRAP_MASK;
1556 1556
1557 /* Look for the matching NVRAM device configuration data. */ 1557 /* Look for the matching NVRAM device configuration data. */
1558 for (j = 0, flash = &flash_table[0]; j < entry_count; 1558 for (j = 0, flash = &flash_table[0]; j < entry_count;
1559 j++, flash++) { 1559 j++, flash++) {
1560 /* Check if the dev matches any of the known devices. */ 1560 /* Check if the dev matches any of the known devices. */
1561 if ((val & mask) == (flash->strapping & mask)) { 1561 if ((val & mask) == (flash->strapping & mask)) {
1562 /* Found a device match. */ 1562 /* Found a device match. */
1563 sc->bnx_flash_info = flash; 1563 sc->bnx_flash_info = flash;
1564 1564
1565 /* Request access to the flash interface. */ 1565 /* Request access to the flash interface. */
1566 if ((rc = bnx_acquire_nvram_lock(sc)) != 0) 1566 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1567 return (rc); 1567 return (rc);
1568 1568
1569 /* Reconfigure the flash interface. */ 1569 /* Reconfigure the flash interface. */
1570 bnx_enable_nvram_access(sc); 1570 bnx_enable_nvram_access(sc);
1571 REG_WR(sc, BNX_NVM_CFG1, flash->config1); 1571 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1572 REG_WR(sc, BNX_NVM_CFG2, flash->config2); 1572 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1573 REG_WR(sc, BNX_NVM_CFG3, flash->config3); 1573 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1574 REG_WR(sc, BNX_NVM_WRITE1, flash->write1); 1574 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1575 bnx_disable_nvram_access(sc); 1575 bnx_disable_nvram_access(sc);
1576 bnx_release_nvram_lock(sc); 1576 bnx_release_nvram_lock(sc);
1577 1577
1578 break; 1578 break;
1579 } 1579 }
1580 } 1580 }
1581 } 1581 }
1582 1582
1583 /* Check if a matching device was found. */ 1583 /* Check if a matching device was found. */
1584 if (j == entry_count) { 1584 if (j == entry_count) {
1585 sc->bnx_flash_info = NULL; 1585 sc->bnx_flash_info = NULL;
1586 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n", 1586 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1587 __FILE__, __LINE__); 1587 __FILE__, __LINE__);
1588 rc = ENODEV; 1588 rc = ENODEV;
1589 } 1589 }
1590 1590
1591bnx_init_nvram_get_flash_size: 1591bnx_init_nvram_get_flash_size:
1592 /* Write the flash config data to the shared memory interface. */ 1592 /* Write the flash config data to the shared memory interface. */
1593 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2); 1593 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1594 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK; 1594 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1595 if (val) 1595 if (val)
1596 sc->bnx_flash_size = val; 1596 sc->bnx_flash_size = val;
1597 else 1597 else
1598 sc->bnx_flash_size = sc->bnx_flash_info->total_size; 1598 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1599 1599
1600 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = " 1600 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1601 "0x%08X\n", sc->bnx_flash_info->total_size); 1601 "0x%08X\n", sc->bnx_flash_info->total_size);
1602 1602
1603 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 1603 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1604 1604
1605 return (rc); 1605 return (rc);
1606} 1606}
1607 1607
1608/****************************************************************************/ 1608/****************************************************************************/
1609/* Read an arbitrary range of data from NVRAM. */ 1609/* Read an arbitrary range of data from NVRAM. */
1610/* */ 1610/* */
1611/* Prepares the NVRAM interface for access and reads the requested data */ 1611/* Prepares the NVRAM interface for access and reads the requested data */
1612/* into the supplied buffer. */ 1612/* into the supplied buffer. */
1613/* */ 1613/* */
1614/* Returns: */ 1614/* Returns: */
1615/* 0 on success and the data read, positive value on failure. */ 1615/* 0 on success and the data read, positive value on failure. */
1616/****************************************************************************/ 1616/****************************************************************************/
1617int 1617int
1618bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf, 1618bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1619 int buf_size) 1619 int buf_size)
1620{ 1620{
1621 int rc = 0; 1621 int rc = 0;
1622 u_int32_t cmd_flags, offset32, len32, extra; 1622 u_int32_t cmd_flags, offset32, len32, extra;
1623 1623
1624 if (buf_size == 0) 1624 if (buf_size == 0)
1625 return (0); 1625 return (0);
1626 1626
1627 /* Request access to the flash interface. */ 1627 /* Request access to the flash interface. */
1628 if ((rc = bnx_acquire_nvram_lock(sc)) != 0) 1628 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1629 return (rc); 1629 return (rc);
1630 1630
1631 /* Enable access to flash interface */ 1631 /* Enable access to flash interface */
1632 bnx_enable_nvram_access(sc); 1632 bnx_enable_nvram_access(sc);
1633 1633
1634 len32 = buf_size; 1634 len32 = buf_size;
1635 offset32 = offset; 1635 offset32 = offset;
1636 extra = 0; 1636 extra = 0;
1637 1637
1638 cmd_flags = 0; 1638 cmd_flags = 0;
1639 1639
1640 if (offset32 & 3) { 1640 if (offset32 & 3) {
1641 u_int8_t buf[4]; 1641 u_int8_t buf[4];
1642 u_int32_t pre_len; 1642 u_int32_t pre_len;
1643 1643
1644 offset32 &= ~3; 1644 offset32 &= ~3;
1645 pre_len = 4 - (offset & 3); 1645 pre_len = 4 - (offset & 3);
1646 1646
1647 if (pre_len >= len32) { 1647 if (pre_len >= len32) {
1648 pre_len = len32; 1648 pre_len = len32;
1649 cmd_flags = 1649 cmd_flags =
1650 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST; 1650 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1651 } else 1651 } else
1652 cmd_flags = BNX_NVM_COMMAND_FIRST; 1652 cmd_flags = BNX_NVM_COMMAND_FIRST;
1653 1653
1654 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); 1654 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1655 1655
1656 if (rc) 1656 if (rc)
1657 return (rc); 1657 return (rc);
1658 1658
1659 memcpy(ret_buf, buf + (offset & 3), pre_len); 1659 memcpy(ret_buf, buf + (offset & 3), pre_len);
1660 1660
1661 offset32 += 4; 1661 offset32 += 4;
1662 ret_buf += pre_len; 1662 ret_buf += pre_len;
1663 len32 -= pre_len; 1663 len32 -= pre_len;
1664 } 1664 }
1665 1665
1666 if (len32 & 3) { 1666 if (len32 & 3) {
1667 extra = 4 - (len32 & 3); 1667 extra = 4 - (len32 & 3);
1668 len32 = (len32 + 4) & ~3; 1668 len32 = (len32 + 4) & ~3;
1669 } 1669 }
1670 1670
1671 if (len32 == 4) { 1671 if (len32 == 4) {
1672 u_int8_t buf[4]; 1672 u_int8_t buf[4];
1673 1673
1674 if (cmd_flags) 1674 if (cmd_flags)
1675 cmd_flags = BNX_NVM_COMMAND_LAST; 1675 cmd_flags = BNX_NVM_COMMAND_LAST;
1676 else 1676 else
1677 cmd_flags = 1677 cmd_flags =
1678 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST; 1678 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1679 1679
1680 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); 1680 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1681 1681
1682 memcpy(ret_buf, buf, 4 - extra); 1682 memcpy(ret_buf, buf, 4 - extra);
1683 } else if (len32 > 0) { 1683 } else if (len32 > 0) {
1684 u_int8_t buf[4]; 1684 u_int8_t buf[4];
1685 1685
1686 /* Read the first word. */ 1686 /* Read the first word. */
1687 if (cmd_flags) 1687 if (cmd_flags)
1688 cmd_flags = 0; 1688 cmd_flags = 0;
1689 else 1689 else
1690 cmd_flags = BNX_NVM_COMMAND_FIRST; 1690 cmd_flags = BNX_NVM_COMMAND_FIRST;
1691 1691
1692 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 1692 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1693 1693
1694 /* Advance to the next dword. */ 1694 /* Advance to the next dword. */
1695 offset32 += 4; 1695 offset32 += 4;
1696 ret_buf += 4; 1696 ret_buf += 4;
1697 len32 -= 4; 1697 len32 -= 4;
1698 1698
1699 while (len32 > 4 && rc == 0) { 1699 while (len32 > 4 && rc == 0) {
1700 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0); 1700 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1701 1701
1702 /* Advance to the next dword. */ 1702 /* Advance to the next dword. */
1703 offset32 += 4; 1703 offset32 += 4;
1704 ret_buf += 4; 1704 ret_buf += 4;
1705 len32 -= 4; 1705 len32 -= 4;
1706 } 1706 }
1707 1707
1708 if (rc) 1708 if (rc)
1709 return (rc); 1709 return (rc);