Sun Sep 23 01:12:01 2012 UTC ()
use 64-bit DMA where possible.


(chs)
diff -r1.56 -r1.57 src/sys/dev/pci/if_nfe.c

cvs diff -r1.56 -r1.57 src/sys/dev/pci/if_nfe.c (switch to unified diff)

--- src/sys/dev/pci/if_nfe.c 2012/07/22 14:33:03 1.56
+++ src/sys/dev/pci/if_nfe.c 2012/09/23 01:12:01 1.57
@@ -1,1325 +1,1328 @@ @@ -1,1325 +1,1328 @@
1/* $NetBSD: if_nfe.c,v 1.56 2012/07/22 14:33:03 matt Exp $ */ 1/* $NetBSD: if_nfe.c,v 1.57 2012/09/23 01:12:01 chs Exp $ */
2/* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */ 2/* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */
3 3
4/*- 4/*-
5 * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini@free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org> 6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
7 * 7 *
8 * Permission to use, copy, modify, and distribute this software for any 8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above 9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies. 10 * copyright notice and this permission notice appear in all copies.
11 * 11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */ 19 */
20 20
21/* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */ 21/* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 22
23#include <sys/cdefs.h> 23#include <sys/cdefs.h>
24__KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.56 2012/07/22 14:33:03 matt Exp $"); 24__KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.57 2012/09/23 01:12:01 chs Exp $");
25 25
26#include "opt_inet.h" 26#include "opt_inet.h"
27#include "vlan.h" 27#include "vlan.h"
28 28
29#include <sys/param.h> 29#include <sys/param.h>
30#include <sys/endian.h> 30#include <sys/endian.h>
31#include <sys/systm.h> 31#include <sys/systm.h>
32#include <sys/types.h> 32#include <sys/types.h>
33#include <sys/sockio.h> 33#include <sys/sockio.h>
34#include <sys/mbuf.h> 34#include <sys/mbuf.h>
35#include <sys/mutex.h> 35#include <sys/mutex.h>
36#include <sys/queue.h> 36#include <sys/queue.h>
37#include <sys/kernel.h> 37#include <sys/kernel.h>
38#include <sys/device.h> 38#include <sys/device.h>
39#include <sys/callout.h> 39#include <sys/callout.h>
40#include <sys/socket.h> 40#include <sys/socket.h>
41 41
42#include <sys/bus.h> 42#include <sys/bus.h>
43 43
44#include <net/if.h> 44#include <net/if.h>
45#include <net/if_dl.h> 45#include <net/if_dl.h>
46#include <net/if_media.h> 46#include <net/if_media.h>
47#include <net/if_ether.h> 47#include <net/if_ether.h>
48#include <net/if_arp.h> 48#include <net/if_arp.h>
49 49
50#ifdef INET 50#ifdef INET
51#include <netinet/in.h> 51#include <netinet/in.h>
52#include <netinet/in_systm.h> 52#include <netinet/in_systm.h>
53#include <netinet/in_var.h> 53#include <netinet/in_var.h>
54#include <netinet/ip.h> 54#include <netinet/ip.h>
55#include <netinet/if_inarp.h> 55#include <netinet/if_inarp.h>
56#endif 56#endif
57 57
58#if NVLAN > 0 58#if NVLAN > 0
59#include <net/if_types.h> 59#include <net/if_types.h>
60#endif 60#endif
61 61
62#include <net/bpf.h> 62#include <net/bpf.h>
63 63
64#include <dev/mii/mii.h> 64#include <dev/mii/mii.h>
65#include <dev/mii/miivar.h> 65#include <dev/mii/miivar.h>
66 66
67#include <dev/pci/pcireg.h> 67#include <dev/pci/pcireg.h>
68#include <dev/pci/pcivar.h> 68#include <dev/pci/pcivar.h>
69#include <dev/pci/pcidevs.h> 69#include <dev/pci/pcidevs.h>
70 70
71#include <dev/pci/if_nfereg.h> 71#include <dev/pci/if_nfereg.h>
72#include <dev/pci/if_nfevar.h> 72#include <dev/pci/if_nfevar.h>
73 73
74static int nfe_ifflags_cb(struct ethercom *); 74static int nfe_ifflags_cb(struct ethercom *);
75 75
76int nfe_match(device_t, cfdata_t, void *); 76int nfe_match(device_t, cfdata_t, void *);
77void nfe_attach(device_t, device_t, void *); 77void nfe_attach(device_t, device_t, void *);
78int nfe_detach(device_t, int); 78int nfe_detach(device_t, int);
79void nfe_power(int, void *); 79void nfe_power(int, void *);
80void nfe_miibus_statchg(struct ifnet *); 80void nfe_miibus_statchg(struct ifnet *);
81int nfe_miibus_readreg(device_t, int, int); 81int nfe_miibus_readreg(device_t, int, int);
82void nfe_miibus_writereg(device_t, int, int, int); 82void nfe_miibus_writereg(device_t, int, int, int);
83int nfe_intr(void *); 83int nfe_intr(void *);
84int nfe_ioctl(struct ifnet *, u_long, void *); 84int nfe_ioctl(struct ifnet *, u_long, void *);
85void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); 85void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
86void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); 86void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
87void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int); 87void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
88void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int); 88void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
89void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); 89void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
90void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); 90void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
91void nfe_rxeof(struct nfe_softc *); 91void nfe_rxeof(struct nfe_softc *);
92void nfe_txeof(struct nfe_softc *); 92void nfe_txeof(struct nfe_softc *);
93int nfe_encap(struct nfe_softc *, struct mbuf *); 93int nfe_encap(struct nfe_softc *, struct mbuf *);
94void nfe_start(struct ifnet *); 94void nfe_start(struct ifnet *);
95void nfe_watchdog(struct ifnet *); 95void nfe_watchdog(struct ifnet *);
96int nfe_init(struct ifnet *); 96int nfe_init(struct ifnet *);
97void nfe_stop(struct ifnet *, int); 97void nfe_stop(struct ifnet *, int);
98struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int); 98struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
99void nfe_jfree(struct mbuf *, void *, size_t, void *); 99void nfe_jfree(struct mbuf *, void *, size_t, void *);
100int nfe_jpool_alloc(struct nfe_softc *); 100int nfe_jpool_alloc(struct nfe_softc *);
101void nfe_jpool_free(struct nfe_softc *); 101void nfe_jpool_free(struct nfe_softc *);
102int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 102int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 103void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); 104void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 105int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 106void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); 107void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108void nfe_setmulti(struct nfe_softc *); 108void nfe_setmulti(struct nfe_softc *);
109void nfe_get_macaddr(struct nfe_softc *, uint8_t *); 109void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
110void nfe_set_macaddr(struct nfe_softc *, const uint8_t *); 110void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
111void nfe_tick(void *); 111void nfe_tick(void *);
112void nfe_poweron(device_t); 112void nfe_poweron(device_t);
113bool nfe_resume(device_t, const pmf_qual_t *); 113bool nfe_resume(device_t, const pmf_qual_t *);
114 114
115CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), 115CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc),
116 nfe_match, nfe_attach, nfe_detach, NULL); 116 nfe_match, nfe_attach, nfe_detach, NULL);
117 117
118/* #define NFE_NO_JUMBO */ 118/* #define NFE_NO_JUMBO */
119 119
120#ifdef NFE_DEBUG 120#ifdef NFE_DEBUG
121int nfedebug = 0; 121int nfedebug = 0;
122#define DPRINTF(x) do { if (nfedebug) printf x; } while (0) 122#define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
123#define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0) 123#define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
124#else 124#else
125#define DPRINTF(x) 125#define DPRINTF(x)
126#define DPRINTFN(n,x) 126#define DPRINTFN(n,x)
127#endif 127#endif
128 128
129/* deal with naming differences */ 129/* deal with naming differences */
130 130
131#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \ 131#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1 132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
133#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \ 133#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
134 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2 134 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
135#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \ 135#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
136 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN 136 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
137 137
138#define PCI_PRODUCT_NVIDIA_CK804_LAN1 \ 138#define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1 139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
140#define PCI_PRODUCT_NVIDIA_CK804_LAN2 \ 140#define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
141 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2 141 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
142 142
143#define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \ 143#define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1 144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
145#define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \ 145#define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
146 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2 146 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
147 147
148#ifdef _LP64 148#ifdef _LP64
149#define __LP64__ 1 149#define __LP64__ 1
150#endif 150#endif
151 151
152const struct nfe_product { 152const struct nfe_product {
153 pci_vendor_id_t vendor; 153 pci_vendor_id_t vendor;
154 pci_product_id_t product; 154 pci_product_id_t product;
155} nfe_devices[] = { 155} nfe_devices[] = {
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN }, 156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN }, 157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 }, 158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 }, 159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 }, 160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 }, 161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 }, 162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 }, 163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 }, 164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 }, 165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 }, 166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 }, 167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 }, 168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 }, 169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 }, 170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 }, 171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 }, 172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 }, 173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 }, 174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 }, 175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 }, 176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 }, 177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }, 178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 }, 179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 }, 180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 }, 181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 }, 182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 }, 183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 }, 184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
185 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 }, 185 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 }, 186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
187 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 }, 187 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 }, 188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 }, 189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
190 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 }, 190 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 }, 191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
192 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 }, 192 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 }, 193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
194 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 } 194 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
195}; 195};
196 196
197int 197int
198nfe_match(device_t dev, cfdata_t match, void *aux) 198nfe_match(device_t dev, cfdata_t match, void *aux)
199{ 199{
200 struct pci_attach_args *pa = aux; 200 struct pci_attach_args *pa = aux;
201 const struct nfe_product *np; 201 const struct nfe_product *np;
202 int i; 202 int i;
203 203
204 for (i = 0; i < __arraycount(nfe_devices); i++) { 204 for (i = 0; i < __arraycount(nfe_devices); i++) {
205 np = &nfe_devices[i]; 205 np = &nfe_devices[i];
206 if (PCI_VENDOR(pa->pa_id) == np->vendor && 206 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
207 PCI_PRODUCT(pa->pa_id) == np->product) 207 PCI_PRODUCT(pa->pa_id) == np->product)
208 return 1; 208 return 1;
209 } 209 }
210 return 0; 210 return 0;
211} 211}
212 212
213void 213void
214nfe_attach(device_t parent, device_t self, void *aux) 214nfe_attach(device_t parent, device_t self, void *aux)
215{ 215{
216 struct nfe_softc *sc = device_private(self); 216 struct nfe_softc *sc = device_private(self);
217 struct pci_attach_args *pa = aux; 217 struct pci_attach_args *pa = aux;
218 pci_chipset_tag_t pc = pa->pa_pc; 218 pci_chipset_tag_t pc = pa->pa_pc;
219 pci_intr_handle_t ih; 219 pci_intr_handle_t ih;
220 const char *intrstr; 220 const char *intrstr;
221 struct ifnet *ifp; 221 struct ifnet *ifp;
222 pcireg_t memtype, csr; 222 pcireg_t memtype, csr;
223 int mii_flags = 0; 223 int mii_flags = 0;
224 224
225 sc->sc_dev = self; 225 sc->sc_dev = self;
226 sc->sc_pc = pa->pa_pc; 226 sc->sc_pc = pa->pa_pc;
227 pci_aprint_devinfo(pa, NULL); 227 pci_aprint_devinfo(pa, NULL);
228 228
229 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA); 229 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
230 switch (memtype) { 230 switch (memtype) {
231 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 231 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
232 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 232 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
233 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt, 233 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
234 &sc->sc_memh, NULL, &sc->sc_mems) == 0) 234 &sc->sc_memh, NULL, &sc->sc_mems) == 0)
235 break; 235 break;
236 /* FALLTHROUGH */ 236 /* FALLTHROUGH */
237 default: 237 default:
238 aprint_error_dev(self, "could not map mem space\n"); 238 aprint_error_dev(self, "could not map mem space\n");
239 return; 239 return;
240 } 240 }
241 241
242 if (pci_intr_map(pa, &ih) != 0) { 242 if (pci_intr_map(pa, &ih) != 0) {
243 aprint_error_dev(self, "could not map interrupt\n"); 243 aprint_error_dev(self, "could not map interrupt\n");
244 goto fail; 244 goto fail;
245 } 245 }
246 246
247 intrstr = pci_intr_string(pc, ih); 247 intrstr = pci_intr_string(pc, ih);
248 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc); 248 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
249 if (sc->sc_ih == NULL) { 249 if (sc->sc_ih == NULL) {
250 aprint_error_dev(self, "could not establish interrupt"); 250 aprint_error_dev(self, "could not establish interrupt");
251 if (intrstr != NULL) 251 if (intrstr != NULL)
252 aprint_error(" at %s", intrstr); 252 aprint_error(" at %s", intrstr);
253 aprint_error("\n"); 253 aprint_error("\n");
254 goto fail; 254 goto fail;
255 } 255 }
256 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 256 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
257 257
258 sc->sc_dmat = pa->pa_dmat; 
259 
260 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 258 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
261 csr |= PCI_COMMAND_MASTER_ENABLE; 259 csr |= PCI_COMMAND_MASTER_ENABLE;
262 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr); 260 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
263 261
264 sc->sc_flags = 0; 262 sc->sc_flags = 0;
265 263
266 switch (PCI_PRODUCT(pa->pa_id)) { 264 switch (PCI_PRODUCT(pa->pa_id)) {
267 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2: 265 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
268 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3: 266 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
269 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4: 267 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
270 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5: 268 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
271 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM; 269 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
272 break; 270 break;
273 case PCI_PRODUCT_NVIDIA_MCP51_LAN1: 271 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
274 case PCI_PRODUCT_NVIDIA_MCP51_LAN2: 272 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
275 sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT; 273 sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
276 break; 274 break;
277 case PCI_PRODUCT_NVIDIA_MCP61_LAN1: 275 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
278 case PCI_PRODUCT_NVIDIA_MCP61_LAN2: 276 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
279 case PCI_PRODUCT_NVIDIA_MCP61_LAN3: 277 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
280 case PCI_PRODUCT_NVIDIA_MCP61_LAN4: 278 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
281 case PCI_PRODUCT_NVIDIA_MCP67_LAN1: 279 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
282 case PCI_PRODUCT_NVIDIA_MCP67_LAN2: 280 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
283 case PCI_PRODUCT_NVIDIA_MCP67_LAN3: 281 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
284 case PCI_PRODUCT_NVIDIA_MCP67_LAN4: 282 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
285 case PCI_PRODUCT_NVIDIA_MCP73_LAN1: 283 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
286 case PCI_PRODUCT_NVIDIA_MCP73_LAN2: 284 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
287 case PCI_PRODUCT_NVIDIA_MCP73_LAN3: 285 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
288 case PCI_PRODUCT_NVIDIA_MCP73_LAN4: 286 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
289 sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR | 287 sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
290 NFE_PWR_MGMT; 288 NFE_PWR_MGMT;
291 break; 289 break;
292 case PCI_PRODUCT_NVIDIA_MCP77_LAN1: 290 case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
293 case PCI_PRODUCT_NVIDIA_MCP77_LAN2: 291 case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
294 case PCI_PRODUCT_NVIDIA_MCP77_LAN3: 292 case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
295 case PCI_PRODUCT_NVIDIA_MCP77_LAN4: 293 case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
296 sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | 294 sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
297 NFE_CORRECT_MACADDR | NFE_PWR_MGMT; 295 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
298 break; 296 break;
299 case PCI_PRODUCT_NVIDIA_MCP79_LAN1: 297 case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
300 case PCI_PRODUCT_NVIDIA_MCP79_LAN2: 298 case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
301 case PCI_PRODUCT_NVIDIA_MCP79_LAN3: 299 case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
302 case PCI_PRODUCT_NVIDIA_MCP79_LAN4: 300 case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
303 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 301 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
304 NFE_CORRECT_MACADDR | NFE_PWR_MGMT; 302 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
305 break; 303 break;
306 case PCI_PRODUCT_NVIDIA_CK804_LAN1: 304 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
307 case PCI_PRODUCT_NVIDIA_CK804_LAN2: 305 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
308 case PCI_PRODUCT_NVIDIA_MCP04_LAN1: 306 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
309 case PCI_PRODUCT_NVIDIA_MCP04_LAN2: 307 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
310 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM; 308 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
311 break; 309 break;
312 case PCI_PRODUCT_NVIDIA_MCP65_LAN1: 310 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
313 case PCI_PRODUCT_NVIDIA_MCP65_LAN2: 311 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
314 case PCI_PRODUCT_NVIDIA_MCP65_LAN3: 312 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
315 case PCI_PRODUCT_NVIDIA_MCP65_LAN4: 313 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
316 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | 314 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
317 NFE_CORRECT_MACADDR | NFE_PWR_MGMT; 315 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
318 mii_flags = MIIF_DOPAUSE; 316 mii_flags = MIIF_DOPAUSE;
319 break; 317 break;
320 case PCI_PRODUCT_NVIDIA_MCP55_LAN1: 318 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
321 case PCI_PRODUCT_NVIDIA_MCP55_LAN2: 319 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
322 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | 320 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
323 NFE_HW_VLAN | NFE_PWR_MGMT; 321 NFE_HW_VLAN | NFE_PWR_MGMT;
324 break; 322 break;
325 } 323 }
326 324
 325 if (pci_dma64_available(pa) && (sc->sc_flags & NFE_40BIT_ADDR) != 0)
 326 sc->sc_dmat = pa->pa_dmat64;
 327 else
 328 sc->sc_dmat = pa->pa_dmat;
 329
327 nfe_poweron(self); 330 nfe_poweron(self);
328 331
329#ifndef NFE_NO_JUMBO 332#ifndef NFE_NO_JUMBO
330 /* enable jumbo frames for adapters that support it */ 333 /* enable jumbo frames for adapters that support it */
331 if (sc->sc_flags & NFE_JUMBO_SUP) 334 if (sc->sc_flags & NFE_JUMBO_SUP)
332 sc->sc_flags |= NFE_USE_JUMBO; 335 sc->sc_flags |= NFE_USE_JUMBO;
333#endif 336#endif
334 337
335 /* Check for reversed ethernet address */ 338 /* Check for reversed ethernet address */
336 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0) 339 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
337 sc->sc_flags |= NFE_CORRECT_MACADDR; 340 sc->sc_flags |= NFE_CORRECT_MACADDR;
338 341
339 nfe_get_macaddr(sc, sc->sc_enaddr); 342 nfe_get_macaddr(sc, sc->sc_enaddr);
340 aprint_normal_dev(self, "Ethernet address %s\n", 343 aprint_normal_dev(self, "Ethernet address %s\n",
341 ether_sprintf(sc->sc_enaddr)); 344 ether_sprintf(sc->sc_enaddr));
342 345
343 /* 346 /*
344 * Allocate Tx and Rx rings. 347 * Allocate Tx and Rx rings.
345 */ 348 */
346 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) { 349 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
347 aprint_error_dev(self, "could not allocate Tx ring\n"); 350 aprint_error_dev(self, "could not allocate Tx ring\n");
348 goto fail; 351 goto fail;
349 } 352 }
350 353
351 mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET); 354 mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
352 355
353 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) { 356 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
354 aprint_error_dev(self, "could not allocate Rx ring\n"); 357 aprint_error_dev(self, "could not allocate Rx ring\n");
355 nfe_free_tx_ring(sc, &sc->txq); 358 nfe_free_tx_ring(sc, &sc->txq);
356 goto fail; 359 goto fail;
357 } 360 }
358 361
359 ifp = &sc->sc_ethercom.ec_if; 362 ifp = &sc->sc_ethercom.ec_if;
360 ifp->if_softc = sc; 363 ifp->if_softc = sc;
361 ifp->if_mtu = ETHERMTU; 364 ifp->if_mtu = ETHERMTU;
362 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 365 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
363 ifp->if_ioctl = nfe_ioctl; 366 ifp->if_ioctl = nfe_ioctl;
364 ifp->if_start = nfe_start; 367 ifp->if_start = nfe_start;
365 ifp->if_stop = nfe_stop; 368 ifp->if_stop = nfe_stop;
366 ifp->if_watchdog = nfe_watchdog; 369 ifp->if_watchdog = nfe_watchdog;
367 ifp->if_init = nfe_init; 370 ifp->if_init = nfe_init;
368 ifp->if_baudrate = IF_Gbps(1); 371 ifp->if_baudrate = IF_Gbps(1);
369 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN); 372 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
370 IFQ_SET_READY(&ifp->if_snd); 373 IFQ_SET_READY(&ifp->if_snd);
371 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 374 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
372 375
373 if (sc->sc_flags & NFE_USE_JUMBO) 376 if (sc->sc_flags & NFE_USE_JUMBO)
374 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 377 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
375 378
376#if NVLAN > 0 379#if NVLAN > 0
377 if (sc->sc_flags & NFE_HW_VLAN) 380 if (sc->sc_flags & NFE_HW_VLAN)
378 sc->sc_ethercom.ec_capabilities |= 381 sc->sc_ethercom.ec_capabilities |=
379 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU; 382 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
380#endif 383#endif
381 if (sc->sc_flags & NFE_HW_CSUM) { 384 if (sc->sc_flags & NFE_HW_CSUM) {
382 ifp->if_capabilities |= 385 ifp->if_capabilities |=
383 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 386 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
384 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 387 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
385 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 388 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
386 } 389 }
387 390
388 sc->sc_mii.mii_ifp = ifp; 391 sc->sc_mii.mii_ifp = ifp;
389 sc->sc_mii.mii_readreg = nfe_miibus_readreg; 392 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
390 sc->sc_mii.mii_writereg = nfe_miibus_writereg; 393 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
391 sc->sc_mii.mii_statchg = nfe_miibus_statchg; 394 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
392 395
393 sc->sc_ethercom.ec_mii = &sc->sc_mii; 396 sc->sc_ethercom.ec_mii = &sc->sc_mii;
394 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange, 397 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
395 ether_mediastatus); 398 ether_mediastatus);
396 399
397 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 0, mii_flags); 400 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 0, mii_flags);
398 401
399 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 402 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
400 aprint_error_dev(self, "no PHY found!\n"); 403 aprint_error_dev(self, "no PHY found!\n");
401 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL, 404 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
402 0, NULL); 405 0, NULL);
403 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL); 406 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
404 } else 407 } else
405 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO); 408 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
406 409
407 if_attach(ifp); 410 if_attach(ifp);
408 ether_ifattach(ifp, sc->sc_enaddr); 411 ether_ifattach(ifp, sc->sc_enaddr);
409 ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb); 412 ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
410 413
411 callout_init(&sc->sc_tick_ch, 0); 414 callout_init(&sc->sc_tick_ch, 0);
412 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc); 415 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
413 416
414 if (pmf_device_register(self, NULL, nfe_resume)) 417 if (pmf_device_register(self, NULL, nfe_resume))
415 pmf_class_network_register(self, ifp); 418 pmf_class_network_register(self, ifp);
416 else 419 else
417 aprint_error_dev(self, "couldn't establish power handler\n"); 420 aprint_error_dev(self, "couldn't establish power handler\n");
418 421
419 return; 422 return;
420 423
421fail: 424fail:
422 if (sc->sc_ih != NULL) { 425 if (sc->sc_ih != NULL) {
423 pci_intr_disestablish(pc, sc->sc_ih); 426 pci_intr_disestablish(pc, sc->sc_ih);
424 sc->sc_ih = NULL; 427 sc->sc_ih = NULL;
425 } 428 }
426 if (sc->sc_mems != 0) { 429 if (sc->sc_mems != 0) {
427 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems); 430 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
428 sc->sc_mems = 0; 431 sc->sc_mems = 0;
429 } 432 }
430} 433}
431 434
432int 435int
433nfe_detach(device_t self, int flags) 436nfe_detach(device_t self, int flags)
434{ 437{
435 struct nfe_softc *sc = device_private(self); 438 struct nfe_softc *sc = device_private(self);
436 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 439 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
437 int s; 440 int s;
438 441
439 s = splnet(); 442 s = splnet();
440 443
441 nfe_stop(ifp, 1); 444 nfe_stop(ifp, 1);
442 445
443 pmf_device_deregister(self); 446 pmf_device_deregister(self);
444 callout_destroy(&sc->sc_tick_ch); 447 callout_destroy(&sc->sc_tick_ch);
445 ether_ifdetach(ifp); 448 ether_ifdetach(ifp);
446 if_detach(ifp); 449 if_detach(ifp);
447 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 450 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
448 451
449 nfe_free_rx_ring(sc, &sc->rxq); 452 nfe_free_rx_ring(sc, &sc->rxq);
450 mutex_destroy(&sc->rxq.mtx); 453 mutex_destroy(&sc->rxq.mtx);
451 nfe_free_tx_ring(sc, &sc->txq); 454 nfe_free_tx_ring(sc, &sc->txq);
452 455
453 if (sc->sc_ih != NULL) { 456 if (sc->sc_ih != NULL) {
454 pci_intr_disestablish(sc->sc_pc, sc->sc_ih); 457 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
455 sc->sc_ih = NULL; 458 sc->sc_ih = NULL;
456 } 459 }
457 460
458 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) { 461 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
459 nfe_set_macaddr(sc, sc->sc_enaddr); 462 nfe_set_macaddr(sc, sc->sc_enaddr);
460 } else { 463 } else {
461 NFE_WRITE(sc, NFE_MACADDR_LO, 464 NFE_WRITE(sc, NFE_MACADDR_LO,
462 sc->sc_enaddr[0] << 8 | sc->sc_enaddr[1]); 465 sc->sc_enaddr[0] << 8 | sc->sc_enaddr[1]);
463 NFE_WRITE(sc, NFE_MACADDR_HI, 466 NFE_WRITE(sc, NFE_MACADDR_HI,
464 sc->sc_enaddr[2] << 24 | sc->sc_enaddr[3] << 16 | 467 sc->sc_enaddr[2] << 24 | sc->sc_enaddr[3] << 16 |
465 sc->sc_enaddr[4] << 8 | sc->sc_enaddr[5]); 468 sc->sc_enaddr[4] << 8 | sc->sc_enaddr[5]);
466 } 469 }
467 470
468 if (sc->sc_mems != 0) { 471 if (sc->sc_mems != 0) {
469 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems); 472 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
470 sc->sc_mems = 0; 473 sc->sc_mems = 0;
471 } 474 }
472 475
473 splx(s); 476 splx(s);
474 477
475 return 0; 478 return 0;
476} 479}
477 480
478void 481void
479nfe_miibus_statchg(struct ifnet *ifp) 482nfe_miibus_statchg(struct ifnet *ifp)
480{ 483{
481 struct nfe_softc *sc = ifp->if_softc; 484 struct nfe_softc *sc = ifp->if_softc;
482 struct mii_data *mii = &sc->sc_mii; 485 struct mii_data *mii = &sc->sc_mii;
483 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET; 486 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
484 487
485 phy = NFE_READ(sc, NFE_PHY_IFACE); 488 phy = NFE_READ(sc, NFE_PHY_IFACE);
486 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T); 489 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
487 490
488 seed = NFE_READ(sc, NFE_RNDSEED); 491 seed = NFE_READ(sc, NFE_RNDSEED);
489 seed &= ~NFE_SEED_MASK; 492 seed &= ~NFE_SEED_MASK;
490 493
491 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 494 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
492 phy |= NFE_PHY_HDX; /* half-duplex */ 495 phy |= NFE_PHY_HDX; /* half-duplex */
493 misc |= NFE_MISC1_HDX; 496 misc |= NFE_MISC1_HDX;
494 } 497 }
495 498
496 switch (IFM_SUBTYPE(mii->mii_media_active)) { 499 switch (IFM_SUBTYPE(mii->mii_media_active)) {
497 case IFM_1000_T: /* full-duplex only */ 500 case IFM_1000_T: /* full-duplex only */
498 link |= NFE_MEDIA_1000T; 501 link |= NFE_MEDIA_1000T;
499 seed |= NFE_SEED_1000T; 502 seed |= NFE_SEED_1000T;
500 phy |= NFE_PHY_1000T; 503 phy |= NFE_PHY_1000T;
501 break; 504 break;
502 case IFM_100_TX: 505 case IFM_100_TX:
503 link |= NFE_MEDIA_100TX; 506 link |= NFE_MEDIA_100TX;
504 seed |= NFE_SEED_100TX; 507 seed |= NFE_SEED_100TX;
505 phy |= NFE_PHY_100TX; 508 phy |= NFE_PHY_100TX;
506 break; 509 break;
507 case IFM_10_T: 510 case IFM_10_T:
508 link |= NFE_MEDIA_10T; 511 link |= NFE_MEDIA_10T;
509 seed |= NFE_SEED_10T; 512 seed |= NFE_SEED_10T;
510 break; 513 break;
511 } 514 }
512 515
513 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */ 516 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
514 517
515 NFE_WRITE(sc, NFE_PHY_IFACE, phy); 518 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
516 NFE_WRITE(sc, NFE_MISC1, misc); 519 NFE_WRITE(sc, NFE_MISC1, misc);
517 NFE_WRITE(sc, NFE_LINKSPEED, link); 520 NFE_WRITE(sc, NFE_LINKSPEED, link);
518} 521}
519 522
520int 523int
521nfe_miibus_readreg(device_t dev, int phy, int reg) 524nfe_miibus_readreg(device_t dev, int phy, int reg)
522{ 525{
523 struct nfe_softc *sc = device_private(dev); 526 struct nfe_softc *sc = device_private(dev);
524 uint32_t val; 527 uint32_t val;
525 int ntries; 528 int ntries;
526 529
527 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 530 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
528 531
529 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 532 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
530 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 533 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
531 DELAY(100); 534 DELAY(100);
532 } 535 }
533 536
534 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg); 537 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
535 538
536 for (ntries = 0; ntries < 1000; ntries++) { 539 for (ntries = 0; ntries < 1000; ntries++) {
537 DELAY(100); 540 DELAY(100);
538 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 541 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
539 break; 542 break;
540 } 543 }
541 if (ntries == 1000) { 544 if (ntries == 1000) {
542 DPRINTFN(2, ("%s: timeout waiting for PHY\n", 545 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
543 device_xname(sc->sc_dev))); 546 device_xname(sc->sc_dev)));
544 return 0; 547 return 0;
545 } 548 }
546 549
547 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) { 550 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
548 DPRINTFN(2, ("%s: could not read PHY\n", 551 DPRINTFN(2, ("%s: could not read PHY\n",
549 device_xname(sc->sc_dev))); 552 device_xname(sc->sc_dev)));
550 return 0; 553 return 0;
551 } 554 }
552 555
553 val = NFE_READ(sc, NFE_PHY_DATA); 556 val = NFE_READ(sc, NFE_PHY_DATA);
554 if (val != 0xffffffff && val != 0) 557 if (val != 0xffffffff && val != 0)
555 sc->mii_phyaddr = phy; 558 sc->mii_phyaddr = phy;
556 559
557 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n", 560 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
558 device_xname(sc->sc_dev), phy, reg, val)); 561 device_xname(sc->sc_dev), phy, reg, val));
559 562
560 return val; 563 return val;
561} 564}
562 565
563void 566void
564nfe_miibus_writereg(device_t dev, int phy, int reg, int val) 567nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
565{ 568{
566 struct nfe_softc *sc = device_private(dev); 569 struct nfe_softc *sc = device_private(dev);
567 uint32_t ctl; 570 uint32_t ctl;
568 int ntries; 571 int ntries;
569 572
570 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 573 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
571 574
572 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { 575 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
573 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); 576 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
574 DELAY(100); 577 DELAY(100);
575 } 578 }
576 579
577 NFE_WRITE(sc, NFE_PHY_DATA, val); 580 NFE_WRITE(sc, NFE_PHY_DATA, val);
578 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg; 581 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
579 NFE_WRITE(sc, NFE_PHY_CTL, ctl); 582 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
580 583
581 for (ntries = 0; ntries < 1000; ntries++) { 584 for (ntries = 0; ntries < 1000; ntries++) {
582 DELAY(100); 585 DELAY(100);
583 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) 586 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
584 break; 587 break;
585 } 588 }
586#ifdef NFE_DEBUG 589#ifdef NFE_DEBUG
587 if (nfedebug >= 2 && ntries == 1000) 590 if (nfedebug >= 2 && ntries == 1000)
588 printf("could not write to PHY\n"); 591 printf("could not write to PHY\n");
589#endif 592#endif
590} 593}
591 594
592int 595int
593nfe_intr(void *arg) 596nfe_intr(void *arg)
594{ 597{
595 struct nfe_softc *sc = arg; 598 struct nfe_softc *sc = arg;
596 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 599 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
597 uint32_t r; 600 uint32_t r;
598 int handled; 601 int handled;
599 602
600 if ((ifp->if_flags & IFF_UP) == 0) 603 if ((ifp->if_flags & IFF_UP) == 0)
601 return 0; 604 return 0;
602 605
603 handled = 0; 606 handled = 0;
604 607
605 for (;;) { 608 for (;;) {
606 r = NFE_READ(sc, NFE_IRQ_STATUS); 609 r = NFE_READ(sc, NFE_IRQ_STATUS);
607 if ((r & NFE_IRQ_WANTED) == 0) 610 if ((r & NFE_IRQ_WANTED) == 0)
608 break; 611 break;
609 612
610 NFE_WRITE(sc, NFE_IRQ_STATUS, r); 613 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
611 handled = 1; 614 handled = 1;
612 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r)); 615 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
613 616
614 if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) { 617 if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
615 /* check Rx ring */ 618 /* check Rx ring */
616 nfe_rxeof(sc); 619 nfe_rxeof(sc);
617 } 620 }
618 if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) { 621 if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
619 /* check Tx ring */ 622 /* check Tx ring */
620 nfe_txeof(sc); 623 nfe_txeof(sc);
621 } 624 }
622 if ((r & NFE_IRQ_LINK) != 0) { 625 if ((r & NFE_IRQ_LINK) != 0) {
623 NFE_READ(sc, NFE_PHY_STATUS); 626 NFE_READ(sc, NFE_PHY_STATUS);
624 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); 627 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
625 DPRINTF(("%s: link state changed\n", 628 DPRINTF(("%s: link state changed\n",
626 device_xname(sc->sc_dev))); 629 device_xname(sc->sc_dev)));
627 } 630 }
628 } 631 }
629 632
630 if (handled && !IF_IS_EMPTY(&ifp->if_snd)) 633 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
631 nfe_start(ifp); 634 nfe_start(ifp);
632 635
633 return handled; 636 return handled;
634} 637}
635 638
636static int 639static int
637nfe_ifflags_cb(struct ethercom *ec) 640nfe_ifflags_cb(struct ethercom *ec)
638{ 641{
639 struct ifnet *ifp = &ec->ec_if; 642 struct ifnet *ifp = &ec->ec_if;
640 struct nfe_softc *sc = ifp->if_softc; 643 struct nfe_softc *sc = ifp->if_softc;
641 int change = ifp->if_flags ^ sc->sc_if_flags; 644 int change = ifp->if_flags ^ sc->sc_if_flags;
642 645
643 /* 646 /*
644 * If only the PROMISC flag changes, then 647 * If only the PROMISC flag changes, then
645 * don't do a full re-init of the chip, just update 648 * don't do a full re-init of the chip, just update
646 * the Rx filter. 649 * the Rx filter.
647 */ 650 */
648 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) 651 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
649 return ENETRESET; 652 return ENETRESET;
650 else if ((change & IFF_PROMISC) != 0) 653 else if ((change & IFF_PROMISC) != 0)
651 nfe_setmulti(sc); 654 nfe_setmulti(sc);
652 655
653 return 0; 656 return 0;
654} 657}
655 658
656int 659int
657nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data) 660nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
658{ 661{
659 struct nfe_softc *sc = ifp->if_softc; 662 struct nfe_softc *sc = ifp->if_softc;
660 struct ifaddr *ifa = (struct ifaddr *)data; 663 struct ifaddr *ifa = (struct ifaddr *)data;
661 int s, error = 0; 664 int s, error = 0;
662 665
663 s = splnet(); 666 s = splnet();
664 667
665 switch (cmd) { 668 switch (cmd) {
666 case SIOCINITIFADDR: 669 case SIOCINITIFADDR:
667 ifp->if_flags |= IFF_UP; 670 ifp->if_flags |= IFF_UP;
668 nfe_init(ifp); 671 nfe_init(ifp);
669 switch (ifa->ifa_addr->sa_family) { 672 switch (ifa->ifa_addr->sa_family) {
670#ifdef INET 673#ifdef INET
671 case AF_INET: 674 case AF_INET:
672 arp_ifinit(ifp, ifa); 675 arp_ifinit(ifp, ifa);
673 break; 676 break;
674#endif 677#endif
675 default: 678 default:
676 break; 679 break;
677 } 680 }
678 break; 681 break;
679 default: 682 default:
680 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 683 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
681 break; 684 break;
682 685
683 error = 0; 686 error = 0;
684 687
685 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 688 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
686 ; 689 ;
687 else if (ifp->if_flags & IFF_RUNNING) 690 else if (ifp->if_flags & IFF_RUNNING)
688 nfe_setmulti(sc); 691 nfe_setmulti(sc);
689 break; 692 break;
690 } 693 }
691 sc->sc_if_flags = ifp->if_flags; 694 sc->sc_if_flags = ifp->if_flags;
692 695
693 splx(s); 696 splx(s);
694 697
695 return error; 698 return error;
696} 699}
697 700
698void 701void
699nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) 702nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
700{ 703{
701 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 704 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
702 (char *)desc32 - (char *)sc->txq.desc32, 705 (char *)desc32 - (char *)sc->txq.desc32,
703 sizeof (struct nfe_desc32), ops); 706 sizeof (struct nfe_desc32), ops);
704} 707}
705 708
706void 709void
707nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) 710nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
708{ 711{
709 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 712 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
710 (char *)desc64 - (char *)sc->txq.desc64, 713 (char *)desc64 - (char *)sc->txq.desc64,
711 sizeof (struct nfe_desc64), ops); 714 sizeof (struct nfe_desc64), ops);
712} 715}
713 716
714void 717void
715nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops) 718nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
716{ 719{
717 if (end > start) { 720 if (end > start) {
718 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 721 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
719 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32, 722 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
720 (char *)&sc->txq.desc32[end] - 723 (char *)&sc->txq.desc32[end] -
721 (char *)&sc->txq.desc32[start], ops); 724 (char *)&sc->txq.desc32[start], ops);
722 return; 725 return;
723 } 726 }
724 /* sync from 'start' to end of ring */ 727 /* sync from 'start' to end of ring */
725 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 728 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
726 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32, 729 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
727 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] - 730 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
728 (char *)&sc->txq.desc32[start], ops); 731 (char *)&sc->txq.desc32[start], ops);
729 732
730 /* sync from start of ring to 'end' */ 733 /* sync from start of ring to 'end' */
731 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0, 734 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
732 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops); 735 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
733} 736}
734 737
735void 738void
736nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops) 739nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
737{ 740{
738 if (end > start) { 741 if (end > start) {
739 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 742 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
740 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64, 743 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
741 (char *)&sc->txq.desc64[end] - 744 (char *)&sc->txq.desc64[end] -
742 (char *)&sc->txq.desc64[start], ops); 745 (char *)&sc->txq.desc64[start], ops);
743 return; 746 return;
744 } 747 }
745 /* sync from 'start' to end of ring */ 748 /* sync from 'start' to end of ring */
746 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 749 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
747 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64, 750 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
748 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] - 751 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
749 (char *)&sc->txq.desc64[start], ops); 752 (char *)&sc->txq.desc64[start], ops);
750 753
751 /* sync from start of ring to 'end' */ 754 /* sync from start of ring to 'end' */
752 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0, 755 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
753 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops); 756 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
754} 757}
755 758
756void 759void
757nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) 760nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
758{ 761{
759 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 762 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
760 (char *)desc32 - (char *)sc->rxq.desc32, 763 (char *)desc32 - (char *)sc->rxq.desc32,
761 sizeof (struct nfe_desc32), ops); 764 sizeof (struct nfe_desc32), ops);
762} 765}
763 766
764void 767void
765nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) 768nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
766{ 769{
767 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, 770 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
768 (char *)desc64 - (char *)sc->rxq.desc64, 771 (char *)desc64 - (char *)sc->rxq.desc64,
769 sizeof (struct nfe_desc64), ops); 772 sizeof (struct nfe_desc64), ops);
770} 773}
771 774
772void 775void
773nfe_rxeof(struct nfe_softc *sc) 776nfe_rxeof(struct nfe_softc *sc)
774{ 777{
775 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 778 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
776 struct nfe_desc32 *desc32; 779 struct nfe_desc32 *desc32;
777 struct nfe_desc64 *desc64; 780 struct nfe_desc64 *desc64;
778 struct nfe_rx_data *data; 781 struct nfe_rx_data *data;
779 struct nfe_jbuf *jbuf; 782 struct nfe_jbuf *jbuf;
780 struct mbuf *m, *mnew; 783 struct mbuf *m, *mnew;
781 bus_addr_t physaddr; 784 bus_addr_t physaddr;
782 uint16_t flags; 785 uint16_t flags;
783 int error, len, i; 786 int error, len, i;
784 787
785 desc32 = NULL; 788 desc32 = NULL;
786 desc64 = NULL; 789 desc64 = NULL;
787 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) { 790 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
788 data = &sc->rxq.data[i]; 791 data = &sc->rxq.data[i];
789 792
790 if (sc->sc_flags & NFE_40BIT_ADDR) { 793 if (sc->sc_flags & NFE_40BIT_ADDR) {
791 desc64 = &sc->rxq.desc64[i]; 794 desc64 = &sc->rxq.desc64[i];
792 nfe_rxdesc64_sync(sc, desc64, 795 nfe_rxdesc64_sync(sc, desc64,
793 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 796 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
794 797
795 flags = le16toh(desc64->flags); 798 flags = le16toh(desc64->flags);
796 len = le16toh(desc64->length) & 0x3fff; 799 len = le16toh(desc64->length) & 0x3fff;
797 } else { 800 } else {
798 desc32 = &sc->rxq.desc32[i]; 801 desc32 = &sc->rxq.desc32[i];
799 nfe_rxdesc32_sync(sc, desc32, 802 nfe_rxdesc32_sync(sc, desc32,
800 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 803 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
801 804
802 flags = le16toh(desc32->flags); 805 flags = le16toh(desc32->flags);
803 len = le16toh(desc32->length) & 0x3fff; 806 len = le16toh(desc32->length) & 0x3fff;
804 } 807 }
805 808
806 if ((flags & NFE_RX_READY) != 0) 809 if ((flags & NFE_RX_READY) != 0)
807 break; 810 break;
808 811
809 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 812 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
810 if ((flags & NFE_RX_VALID_V1) == 0) 813 if ((flags & NFE_RX_VALID_V1) == 0)
811 goto skip; 814 goto skip;
812 815
813 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { 816 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
814 flags &= ~NFE_RX_ERROR; 817 flags &= ~NFE_RX_ERROR;
815 len--; /* fix buffer length */ 818 len--; /* fix buffer length */
816 } 819 }
817 } else { 820 } else {
818 if ((flags & NFE_RX_VALID_V2) == 0) 821 if ((flags & NFE_RX_VALID_V2) == 0)
819 goto skip; 822 goto skip;
820 823
821 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { 824 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
822 flags &= ~NFE_RX_ERROR; 825 flags &= ~NFE_RX_ERROR;
823 len--; /* fix buffer length */ 826 len--; /* fix buffer length */
824 } 827 }
825 } 828 }
826 829
827 if (flags & NFE_RX_ERROR) { 830 if (flags & NFE_RX_ERROR) {
828 ifp->if_ierrors++; 831 ifp->if_ierrors++;
829 goto skip; 832 goto skip;
830 } 833 }
831 834
832 /* 835 /*
833 * Try to allocate a new mbuf for this ring element and load 836 * Try to allocate a new mbuf for this ring element and load
834 * it before processing the current mbuf. If the ring element 837 * it before processing the current mbuf. If the ring element
835 * cannot be loaded, drop the received packet and reuse the 838 * cannot be loaded, drop the received packet and reuse the
836 * old mbuf. In the unlikely case that the old mbuf can't be 839 * old mbuf. In the unlikely case that the old mbuf can't be
837 * reloaded either, explicitly panic. 840 * reloaded either, explicitly panic.
838 */ 841 */
839 MGETHDR(mnew, M_DONTWAIT, MT_DATA); 842 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
840 if (mnew == NULL) { 843 if (mnew == NULL) {
841 ifp->if_ierrors++; 844 ifp->if_ierrors++;
842 goto skip; 845 goto skip;
843 } 846 }
844 847
845 if (sc->sc_flags & NFE_USE_JUMBO) { 848 if (sc->sc_flags & NFE_USE_JUMBO) {
846 physaddr = 849 physaddr =
847 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr; 850 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
848 if ((jbuf = nfe_jalloc(sc, i)) == NULL) { 851 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
849 if (len > MCLBYTES) { 852 if (len > MCLBYTES) {
850 m_freem(mnew); 853 m_freem(mnew);
851 ifp->if_ierrors++; 854 ifp->if_ierrors++;
852 goto skip1; 855 goto skip1;
853 } 856 }
854 MCLGET(mnew, M_DONTWAIT); 857 MCLGET(mnew, M_DONTWAIT);
855 if ((mnew->m_flags & M_EXT) == 0) { 858 if ((mnew->m_flags & M_EXT) == 0) {
856 m_freem(mnew); 859 m_freem(mnew);
857 ifp->if_ierrors++; 860 ifp->if_ierrors++;
858 goto skip1; 861 goto skip1;
859 } 862 }
860 863
861 (void)memcpy(mtod(mnew, void *), 864 (void)memcpy(mtod(mnew, void *),
862 mtod(data->m, const void *), len); 865 mtod(data->m, const void *), len);
863 m = mnew; 866 m = mnew;
864 goto mbufcopied; 867 goto mbufcopied;
865 } else { 868 } else {
866 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc); 869 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
867 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap, 870 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
868 mtod(data->m, char *) - (char *)sc->rxq.jpool, 871 mtod(data->m, char *) - (char *)sc->rxq.jpool,
869 NFE_JBYTES, BUS_DMASYNC_POSTREAD); 872 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
870 873
871 physaddr = jbuf->physaddr; 874 physaddr = jbuf->physaddr;
872 } 875 }
873 } else { 876 } else {
874 MCLGET(mnew, M_DONTWAIT); 877 MCLGET(mnew, M_DONTWAIT);
875 if ((mnew->m_flags & M_EXT) == 0) { 878 if ((mnew->m_flags & M_EXT) == 0) {
876 m_freem(mnew); 879 m_freem(mnew);
877 ifp->if_ierrors++; 880 ifp->if_ierrors++;
878 goto skip; 881 goto skip;
879 } 882 }
880 883
881 bus_dmamap_sync(sc->sc_dmat, data->map, 0, 884 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
882 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 885 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
883 bus_dmamap_unload(sc->sc_dmat, data->map); 886 bus_dmamap_unload(sc->sc_dmat, data->map);
884 887
885 error = bus_dmamap_load(sc->sc_dmat, data->map, 888 error = bus_dmamap_load(sc->sc_dmat, data->map,
886 mtod(mnew, void *), MCLBYTES, NULL, 889 mtod(mnew, void *), MCLBYTES, NULL,
887 BUS_DMA_READ | BUS_DMA_NOWAIT); 890 BUS_DMA_READ | BUS_DMA_NOWAIT);
888 if (error != 0) { 891 if (error != 0) {
889 m_freem(mnew); 892 m_freem(mnew);
890 893
891 /* try to reload the old mbuf */ 894 /* try to reload the old mbuf */
892 error = bus_dmamap_load(sc->sc_dmat, data->map, 895 error = bus_dmamap_load(sc->sc_dmat, data->map,
893 mtod(data->m, void *), MCLBYTES, NULL, 896 mtod(data->m, void *), MCLBYTES, NULL,
894 BUS_DMA_READ | BUS_DMA_NOWAIT); 897 BUS_DMA_READ | BUS_DMA_NOWAIT);
895 if (error != 0) { 898 if (error != 0) {
896 /* very unlikely that it will fail.. */ 899 /* very unlikely that it will fail.. */
897 panic("%s: could not load old rx mbuf", 900 panic("%s: could not load old rx mbuf",
898 device_xname(sc->sc_dev)); 901 device_xname(sc->sc_dev));
899 } 902 }
900 ifp->if_ierrors++; 903 ifp->if_ierrors++;
901 goto skip; 904 goto skip;
902 } 905 }
903 physaddr = data->map->dm_segs[0].ds_addr; 906 physaddr = data->map->dm_segs[0].ds_addr;
904 } 907 }
905 908
906 /* 909 /*
907 * New mbuf successfully loaded, update Rx ring and continue 910 * New mbuf successfully loaded, update Rx ring and continue
908 * processing. 911 * processing.
909 */ 912 */
910 m = data->m; 913 m = data->m;
911 data->m = mnew; 914 data->m = mnew;
912 915
913mbufcopied: 916mbufcopied:
914 /* finalize mbuf */ 917 /* finalize mbuf */
915 m->m_pkthdr.len = m->m_len = len; 918 m->m_pkthdr.len = m->m_len = len;
916 m->m_pkthdr.rcvif = ifp; 919 m->m_pkthdr.rcvif = ifp;
917 920
918 if ((sc->sc_flags & NFE_HW_CSUM) != 0) { 921 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
919 /* 922 /*
920 * XXX 923 * XXX
921 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets? 924 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
922 */ 925 */
923 if (flags & NFE_RX_IP_CSUMOK) { 926 if (flags & NFE_RX_IP_CSUMOK) {
924 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 927 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
925 DPRINTFN(3, ("%s: ip4csum-rx ok\n", 928 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
926 device_xname(sc->sc_dev))); 929 device_xname(sc->sc_dev)));
927 } 930 }
928 /* 931 /*
929 * XXX 932 * XXX
930 * no way to check M_CSUM_TCP_UDP_BAD or 933 * no way to check M_CSUM_TCP_UDP_BAD or
931 * other protocols? 934 * other protocols?
932 */ 935 */
933 if (flags & NFE_RX_UDP_CSUMOK) { 936 if (flags & NFE_RX_UDP_CSUMOK) {
934 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4; 937 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
935 DPRINTFN(3, ("%s: udp4csum-rx ok\n", 938 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
936 device_xname(sc->sc_dev))); 939 device_xname(sc->sc_dev)));
937 } else if (flags & NFE_RX_TCP_CSUMOK) { 940 } else if (flags & NFE_RX_TCP_CSUMOK) {
938 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4; 941 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
939 DPRINTFN(3, ("%s: tcp4csum-rx ok\n", 942 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
940 device_xname(sc->sc_dev))); 943 device_xname(sc->sc_dev)));
941 } 944 }
942 } 945 }
943 bpf_mtap(ifp, m); 946 bpf_mtap(ifp, m);
944 ifp->if_ipackets++; 947 ifp->if_ipackets++;
945 (*ifp->if_input)(ifp, m); 948 (*ifp->if_input)(ifp, m);
946 949
947skip1: 950skip1:
948 /* update mapping address in h/w descriptor */ 951 /* update mapping address in h/w descriptor */
949 if (sc->sc_flags & NFE_40BIT_ADDR) { 952 if (sc->sc_flags & NFE_40BIT_ADDR) {
950#if defined(__LP64__) 953#if defined(__LP64__)
951 desc64->physaddr[0] = htole32(physaddr >> 32); 954 desc64->physaddr[0] = htole32(physaddr >> 32);
952#endif 955#endif
953 desc64->physaddr[1] = htole32(physaddr & 0xffffffff); 956 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
954 } else { 957 } else {
955 desc32->physaddr = htole32(physaddr); 958 desc32->physaddr = htole32(physaddr);
956 } 959 }
957 960
958skip:  961skip:
959 if (sc->sc_flags & NFE_40BIT_ADDR) { 962 if (sc->sc_flags & NFE_40BIT_ADDR) {
960 desc64->length = htole16(sc->rxq.bufsz); 963 desc64->length = htole16(sc->rxq.bufsz);
961 desc64->flags = htole16(NFE_RX_READY); 964 desc64->flags = htole16(NFE_RX_READY);
962 965
963 nfe_rxdesc64_sync(sc, desc64, 966 nfe_rxdesc64_sync(sc, desc64,
964 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 967 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
965 } else { 968 } else {
966 desc32->length = htole16(sc->rxq.bufsz); 969 desc32->length = htole16(sc->rxq.bufsz);
967 desc32->flags = htole16(NFE_RX_READY); 970 desc32->flags = htole16(NFE_RX_READY);
968 971
969 nfe_rxdesc32_sync(sc, desc32, 972 nfe_rxdesc32_sync(sc, desc32,
970 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 973 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
971 } 974 }
972 } 975 }
973 /* update current RX pointer */ 976 /* update current RX pointer */
974 sc->rxq.cur = i; 977 sc->rxq.cur = i;
975} 978}
976 979
977void 980void
978nfe_txeof(struct nfe_softc *sc) 981nfe_txeof(struct nfe_softc *sc)
979{ 982{
980 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 983 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
981 struct nfe_desc32 *desc32; 984 struct nfe_desc32 *desc32;
982 struct nfe_desc64 *desc64; 985 struct nfe_desc64 *desc64;
983 struct nfe_tx_data *data = NULL; 986 struct nfe_tx_data *data = NULL;
984 int i; 987 int i;
985 uint16_t flags; 988 uint16_t flags;
986 char buf[128]; 989 char buf[128];
987 990
988 for (i = sc->txq.next; 991 for (i = sc->txq.next;
989 sc->txq.queued > 0; 992 sc->txq.queued > 0;
990 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) { 993 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
991 if (sc->sc_flags & NFE_40BIT_ADDR) { 994 if (sc->sc_flags & NFE_40BIT_ADDR) {
992 desc64 = &sc->txq.desc64[i]; 995 desc64 = &sc->txq.desc64[i];
993 nfe_txdesc64_sync(sc, desc64, 996 nfe_txdesc64_sync(sc, desc64,
994 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 997 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
995 998
996 flags = le16toh(desc64->flags); 999 flags = le16toh(desc64->flags);
997 } else { 1000 } else {
998 desc32 = &sc->txq.desc32[i]; 1001 desc32 = &sc->txq.desc32[i];
999 nfe_txdesc32_sync(sc, desc32, 1002 nfe_txdesc32_sync(sc, desc32,
1000 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1003 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1001 1004
1002 flags = le16toh(desc32->flags); 1005 flags = le16toh(desc32->flags);
1003 } 1006 }
1004 1007
1005 if ((flags & NFE_TX_VALID) != 0) 1008 if ((flags & NFE_TX_VALID) != 0)
1006 break; 1009 break;
1007 1010
1008 data = &sc->txq.data[i]; 1011 data = &sc->txq.data[i];
1009 1012
1010 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { 1013 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1011 if ((flags & NFE_TX_LASTFRAG_V1) == 0 && 1014 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
1012 data->m == NULL) 1015 data->m == NULL)
1013 continue; 1016 continue;
1014 1017
1015 if ((flags & NFE_TX_ERROR_V1) != 0) { 1018 if ((flags & NFE_TX_ERROR_V1) != 0) {
1016 snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags); 1019 snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
1017 aprint_error_dev(sc->sc_dev, "tx v1 error %s\n", 1020 aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
1018 buf); 1021 buf);
1019 ifp->if_oerrors++; 1022 ifp->if_oerrors++;
1020 } else 1023 } else
1021 ifp->if_opackets++; 1024 ifp->if_opackets++;
1022 } else { 1025 } else {
1023 if ((flags & NFE_TX_LASTFRAG_V2) == 0 && 1026 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
1024 data->m == NULL) 1027 data->m == NULL)
1025 continue; 1028 continue;
1026 1029
1027 if ((flags & NFE_TX_ERROR_V2) != 0) { 1030 if ((flags & NFE_TX_ERROR_V2) != 0) {
1028 snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags); 1031 snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
1029 aprint_error_dev(sc->sc_dev, "tx v2 error %s\n", 1032 aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
1030 buf); 1033 buf);
1031 ifp->if_oerrors++; 1034 ifp->if_oerrors++;
1032 } else 1035 } else
1033 ifp->if_opackets++; 1036 ifp->if_opackets++;
1034 } 1037 }
1035 1038
1036 if (data->m == NULL) { /* should not get there */ 1039 if (data->m == NULL) { /* should not get there */
1037 aprint_error_dev(sc->sc_dev, 1040 aprint_error_dev(sc->sc_dev,
1038 "last fragment bit w/o associated mbuf!\n"); 1041 "last fragment bit w/o associated mbuf!\n");
1039 continue; 1042 continue;
1040 } 1043 }
1041 1044
1042 /* last fragment of the mbuf chain transmitted */ 1045 /* last fragment of the mbuf chain transmitted */
1043 bus_dmamap_sync(sc->sc_dmat, data->active, 0, 1046 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1044 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1047 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1045 bus_dmamap_unload(sc->sc_dmat, data->active); 1048 bus_dmamap_unload(sc->sc_dmat, data->active);
1046 m_freem(data->m); 1049 m_freem(data->m);
1047 data->m = NULL; 1050 data->m = NULL;
1048 } 1051 }
1049 1052
1050 sc->txq.next = i; 1053 sc->txq.next = i;
1051 1054
1052 if (sc->txq.queued < NFE_TX_RING_COUNT) { 1055 if (sc->txq.queued < NFE_TX_RING_COUNT) {
1053 /* at least one slot freed */ 1056 /* at least one slot freed */
1054 ifp->if_flags &= ~IFF_OACTIVE; 1057 ifp->if_flags &= ~IFF_OACTIVE;
1055 } 1058 }
1056 1059
1057 if (sc->txq.queued == 0) { 1060 if (sc->txq.queued == 0) {
1058 /* all queued packets are sent */ 1061 /* all queued packets are sent */
1059 ifp->if_timer = 0; 1062 ifp->if_timer = 0;
1060 } 1063 }
1061} 1064}
1062 1065
1063int 1066int
1064nfe_encap(struct nfe_softc *sc, struct mbuf *m0) 1067nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1065{ 1068{
1066 struct nfe_desc32 *desc32; 1069 struct nfe_desc32 *desc32;
1067 struct nfe_desc64 *desc64; 1070 struct nfe_desc64 *desc64;
1068 struct nfe_tx_data *data; 1071 struct nfe_tx_data *data;
1069 bus_dmamap_t map; 1072 bus_dmamap_t map;
1070 uint16_t flags, csumflags; 1073 uint16_t flags, csumflags;
1071#if NVLAN > 0 1074#if NVLAN > 0
1072 struct m_tag *mtag; 1075 struct m_tag *mtag;
1073 uint32_t vtag = 0; 1076 uint32_t vtag = 0;
1074#endif 1077#endif
1075 int error, i, first; 1078 int error, i, first;
1076 1079
1077 desc32 = NULL; 1080 desc32 = NULL;
1078 desc64 = NULL; 1081 desc64 = NULL;
1079 data = NULL; 1082 data = NULL;
1080 1083
1081 flags = 0; 1084 flags = 0;
1082 csumflags = 0; 1085 csumflags = 0;
1083 first = sc->txq.cur; 1086 first = sc->txq.cur;
1084 1087
1085 map = sc->txq.data[first].map; 1088 map = sc->txq.data[first].map;
1086 1089
1087 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT); 1090 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1088 if (error != 0) { 1091 if (error != 0) {
1089 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", 1092 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1090 error); 1093 error);
1091 return error; 1094 return error;
1092 } 1095 }
1093 1096
1094 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) { 1097 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1095 bus_dmamap_unload(sc->sc_dmat, map); 1098 bus_dmamap_unload(sc->sc_dmat, map);
1096 return ENOBUFS; 1099 return ENOBUFS;
1097 } 1100 }
1098 1101
1099#if NVLAN > 0 1102#if NVLAN > 0
1100 /* setup h/w VLAN tagging */ 1103 /* setup h/w VLAN tagging */
1101 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) 1104 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1102 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag); 1105 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1103#endif 1106#endif
1104 if ((sc->sc_flags & NFE_HW_CSUM) != 0) { 1107 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1105 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) 1108 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1106 csumflags |= NFE_TX_IP_CSUM; 1109 csumflags |= NFE_TX_IP_CSUM;
1107 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) 1110 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1108 csumflags |= NFE_TX_TCP_UDP_CSUM; 1111 csumflags |= NFE_TX_TCP_UDP_CSUM;
1109 } 1112 }
1110 1113
1111 for (i = 0; i < map->dm_nsegs; i++) { 1114 for (i = 0; i < map->dm_nsegs; i++) {
1112 data = &sc->txq.data[sc->txq.cur]; 1115 data = &sc->txq.data[sc->txq.cur];
1113 1116
1114 if (sc->sc_flags & NFE_40BIT_ADDR) { 1117 if (sc->sc_flags & NFE_40BIT_ADDR) {
1115 desc64 = &sc->txq.desc64[sc->txq.cur]; 1118 desc64 = &sc->txq.desc64[sc->txq.cur];
1116#if defined(__LP64__) 1119#if defined(__LP64__)
1117 desc64->physaddr[0] = 1120 desc64->physaddr[0] =
1118 htole32(map->dm_segs[i].ds_addr >> 32); 1121 htole32(map->dm_segs[i].ds_addr >> 32);
1119#endif 1122#endif
1120 desc64->physaddr[1] = 1123 desc64->physaddr[1] =
1121 htole32(map->dm_segs[i].ds_addr & 0xffffffff); 1124 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1122 desc64->length = htole16(map->dm_segs[i].ds_len - 1); 1125 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1123 desc64->flags = htole16(flags); 1126 desc64->flags = htole16(flags);
1124 desc64->vtag = 0; 1127 desc64->vtag = 0;
1125 } else { 1128 } else {
1126 desc32 = &sc->txq.desc32[sc->txq.cur]; 1129 desc32 = &sc->txq.desc32[sc->txq.cur];
1127 1130
1128 desc32->physaddr = htole32(map->dm_segs[i].ds_addr); 1131 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1129 desc32->length = htole16(map->dm_segs[i].ds_len - 1); 1132 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1130 desc32->flags = htole16(flags); 1133 desc32->flags = htole16(flags);
1131 } 1134 }
1132 1135
1133 /* 1136 /*
1134 * Setting of the valid bit in the first descriptor is 1137 * Setting of the valid bit in the first descriptor is
1135 * deferred until the whole chain is fully setup. 1138 * deferred until the whole chain is fully setup.
1136 */ 1139 */
1137 flags |= NFE_TX_VALID; 1140 flags |= NFE_TX_VALID;
1138 1141
1139 sc->txq.queued++; 1142 sc->txq.queued++;
1140 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur); 1143 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1141 } 1144 }
1142 1145
1143 /* the whole mbuf chain has been setup */ 1146 /* the whole mbuf chain has been setup */
1144 if (sc->sc_flags & NFE_40BIT_ADDR) { 1147 if (sc->sc_flags & NFE_40BIT_ADDR) {
1145 /* fix last descriptor */ 1148 /* fix last descriptor */
1146 flags |= NFE_TX_LASTFRAG_V2; 1149 flags |= NFE_TX_LASTFRAG_V2;
1147 desc64->flags = htole16(flags); 1150 desc64->flags = htole16(flags);
1148 1151
1149 /* Checksum flags and vtag belong to the first fragment only. */ 1152 /* Checksum flags and vtag belong to the first fragment only. */
1150#if NVLAN > 0 1153#if NVLAN > 0
1151 sc->txq.desc64[first].vtag = htole32(vtag); 1154 sc->txq.desc64[first].vtag = htole32(vtag);
1152#endif 1155#endif
1153 sc->txq.desc64[first].flags |= htole16(csumflags); 1156 sc->txq.desc64[first].flags |= htole16(csumflags);
1154 1157
1155 /* finally, set the valid bit in the first descriptor */ 1158 /* finally, set the valid bit in the first descriptor */
1156 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID); 1159 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1157 } else { 1160 } else {
1158 /* fix last descriptor */ 1161 /* fix last descriptor */
1159 if (sc->sc_flags & NFE_JUMBO_SUP) 1162 if (sc->sc_flags & NFE_JUMBO_SUP)
1160 flags |= NFE_TX_LASTFRAG_V2; 1163 flags |= NFE_TX_LASTFRAG_V2;
1161 else 1164 else
1162 flags |= NFE_TX_LASTFRAG_V1; 1165 flags |= NFE_TX_LASTFRAG_V1;
1163 desc32->flags = htole16(flags); 1166 desc32->flags = htole16(flags);
1164 1167
1165 /* Checksum flags belong to the first fragment only. */ 1168 /* Checksum flags belong to the first fragment only. */
1166 sc->txq.desc32[first].flags |= htole16(csumflags); 1169 sc->txq.desc32[first].flags |= htole16(csumflags);
1167 1170
1168 /* finally, set the valid bit in the first descriptor */ 1171 /* finally, set the valid bit in the first descriptor */
1169 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID); 1172 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1170 } 1173 }
1171 1174
1172 data->m = m0; 1175 data->m = m0;
1173 data->active = map; 1176 data->active = map;
1174 1177
1175 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1178 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1176 BUS_DMASYNC_PREWRITE); 1179 BUS_DMASYNC_PREWRITE);
1177 1180
1178 return 0; 1181 return 0;
1179} 1182}
1180 1183
1181void 1184void
1182nfe_start(struct ifnet *ifp) 1185nfe_start(struct ifnet *ifp)
1183{ 1186{
1184 struct nfe_softc *sc = ifp->if_softc; 1187 struct nfe_softc *sc = ifp->if_softc;
1185 int old = sc->txq.queued; 1188 int old = sc->txq.queued;
1186 struct mbuf *m0; 1189 struct mbuf *m0;
1187 1190
1188 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1191 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1189 return; 1192 return;
1190 1193
1191 for (;;) { 1194 for (;;) {
1192 IFQ_POLL(&ifp->if_snd, m0); 1195 IFQ_POLL(&ifp->if_snd, m0);
1193 if (m0 == NULL) 1196 if (m0 == NULL)
1194 break; 1197 break;
1195 1198
1196 if (nfe_encap(sc, m0) != 0) { 1199 if (nfe_encap(sc, m0) != 0) {
1197 ifp->if_flags |= IFF_OACTIVE; 1200 ifp->if_flags |= IFF_OACTIVE;
1198 break; 1201 break;
1199 } 1202 }
1200 1203
1201 /* packet put in h/w queue, remove from s/w queue */ 1204 /* packet put in h/w queue, remove from s/w queue */
1202 IFQ_DEQUEUE(&ifp->if_snd, m0); 1205 IFQ_DEQUEUE(&ifp->if_snd, m0);
1203 1206
1204 bpf_mtap(ifp, m0); 1207 bpf_mtap(ifp, m0);
1205 } 1208 }
1206 1209
1207 if (sc->txq.queued != old) { 1210 if (sc->txq.queued != old) {
1208 /* packets are queued */ 1211 /* packets are queued */
1209 if (sc->sc_flags & NFE_40BIT_ADDR) 1212 if (sc->sc_flags & NFE_40BIT_ADDR)
1210 nfe_txdesc64_rsync(sc, old, sc->txq.cur, 1213 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1211 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1214 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1212 else 1215 else
1213 nfe_txdesc32_rsync(sc, old, sc->txq.cur, 1216 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1214 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1217 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1215 /* kick Tx */ 1218 /* kick Tx */
1216 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); 1219 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1217 1220
1218 /* 1221 /*
1219 * Set a timeout in case the chip goes out to lunch. 1222 * Set a timeout in case the chip goes out to lunch.
1220 */ 1223 */
1221 ifp->if_timer = 5; 1224 ifp->if_timer = 5;
1222 } 1225 }
1223} 1226}
1224 1227
1225void 1228void
1226nfe_watchdog(struct ifnet *ifp) 1229nfe_watchdog(struct ifnet *ifp)
1227{ 1230{
1228 struct nfe_softc *sc = ifp->if_softc; 1231 struct nfe_softc *sc = ifp->if_softc;
1229 1232
1230 aprint_error_dev(sc->sc_dev, "watchdog timeout\n"); 1233 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1231 1234
1232 ifp->if_flags &= ~IFF_RUNNING; 1235 ifp->if_flags &= ~IFF_RUNNING;
1233 nfe_init(ifp); 1236 nfe_init(ifp);
1234 1237
1235 ifp->if_oerrors++; 1238 ifp->if_oerrors++;
1236} 1239}
1237 1240
1238int 1241int
1239nfe_init(struct ifnet *ifp) 1242nfe_init(struct ifnet *ifp)
1240{ 1243{
1241 struct nfe_softc *sc = ifp->if_softc; 1244 struct nfe_softc *sc = ifp->if_softc;
1242 uint32_t tmp; 1245 uint32_t tmp;
1243 int rc = 0, s; 1246 int rc = 0, s;
1244 1247
1245 if (ifp->if_flags & IFF_RUNNING) 1248 if (ifp->if_flags & IFF_RUNNING)
1246 return 0; 1249 return 0;
1247 1250
1248 nfe_stop(ifp, 0); 1251 nfe_stop(ifp, 0);
1249 1252
1250 NFE_WRITE(sc, NFE_TX_UNK, 0); 1253 NFE_WRITE(sc, NFE_TX_UNK, 0);
1251 NFE_WRITE(sc, NFE_STATUS, 0); 1254 NFE_WRITE(sc, NFE_STATUS, 0);
1252 1255
1253 sc->rxtxctl = NFE_RXTX_BIT2; 1256 sc->rxtxctl = NFE_RXTX_BIT2;
1254 if (sc->sc_flags & NFE_40BIT_ADDR) 1257 if (sc->sc_flags & NFE_40BIT_ADDR)
1255 sc->rxtxctl |= NFE_RXTX_V3MAGIC; 1258 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1256 else if (sc->sc_flags & NFE_JUMBO_SUP) 1259 else if (sc->sc_flags & NFE_JUMBO_SUP)
1257 sc->rxtxctl |= NFE_RXTX_V2MAGIC; 1260 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1258 if (sc->sc_flags & NFE_HW_CSUM) 1261 if (sc->sc_flags & NFE_HW_CSUM)
1259 sc->rxtxctl |= NFE_RXTX_RXCSUM; 1262 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1260#if NVLAN > 0 1263#if NVLAN > 0
1261 /* 1264 /*
1262 * Although the adapter is capable of stripping VLAN tags from received 1265 * Although the adapter is capable of stripping VLAN tags from received
1263 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on 1266 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1264 * purpose. This will be done in software by our network stack. 1267 * purpose. This will be done in software by our network stack.
1265 */ 1268 */
1266 if (sc->sc_flags & NFE_HW_VLAN) 1269 if (sc->sc_flags & NFE_HW_VLAN)
1267 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT; 1270 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1268#endif 1271#endif
1269 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl); 1272 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1270 DELAY(10); 1273 DELAY(10);
1271 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); 1274 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1272 1275
1273#if NVLAN 1276#if NVLAN
1274 if (sc->sc_flags & NFE_HW_VLAN) 1277 if (sc->sc_flags & NFE_HW_VLAN)
1275 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE); 1278 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1276#endif 1279#endif
1277 1280
1278 NFE_WRITE(sc, NFE_SETUP_R6, 0); 1281 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1279 1282
1280 /* set MAC address */ 1283 /* set MAC address */
1281 nfe_set_macaddr(sc, sc->sc_enaddr); 1284 nfe_set_macaddr(sc, sc->sc_enaddr);
1282 1285
1283 /* tell MAC where rings are in memory */ 1286 /* tell MAC where rings are in memory */
1284#ifdef __LP64__ 1287#ifdef __LP64__
1285 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32); 1288 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1286#endif 1289#endif
1287 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff); 1290 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1288#ifdef __LP64__ 1291#ifdef __LP64__
1289 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32); 1292 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1290#endif 1293#endif
1291 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff); 1294 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1292 1295
1293 NFE_WRITE(sc, NFE_RING_SIZE, 1296 NFE_WRITE(sc, NFE_RING_SIZE,
1294 (NFE_RX_RING_COUNT - 1) << 16 | 1297 (NFE_RX_RING_COUNT - 1) << 16 |
1295 (NFE_TX_RING_COUNT - 1)); 1298 (NFE_TX_RING_COUNT - 1));
1296 1299
1297 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz); 1300 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1298 1301
1299 /* force MAC to wakeup */ 1302 /* force MAC to wakeup */
1300 tmp = NFE_READ(sc, NFE_PWR_STATE); 1303 tmp = NFE_READ(sc, NFE_PWR_STATE);
1301 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP); 1304 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1302 DELAY(10); 1305 DELAY(10);
1303 tmp = NFE_READ(sc, NFE_PWR_STATE); 1306 tmp = NFE_READ(sc, NFE_PWR_STATE);
1304 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID); 1307 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1305 1308
1306 s = splnet(); 1309 s = splnet();
1307 NFE_WRITE(sc, NFE_IRQ_MASK, 0); 1310 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1308 nfe_intr(sc); /* XXX clear IRQ status registers */ 1311 nfe_intr(sc); /* XXX clear IRQ status registers */
1309 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); 1312 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1310 splx(s); 1313 splx(s);
1311 1314
1312#if 1 1315#if 1
1313 /* configure interrupts coalescing/mitigation */ 1316 /* configure interrupts coalescing/mitigation */
1314 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT); 1317 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1315#else 1318#else
1316 /* no interrupt mitigation: one interrupt per packet */ 1319 /* no interrupt mitigation: one interrupt per packet */
1317 NFE_WRITE(sc, NFE_IMTIMER, 970); 1320 NFE_WRITE(sc, NFE_IMTIMER, 970);
1318#endif 1321#endif
1319 1322
1320 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC); 1323 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1321 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC); 1324 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1322 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC); 1325 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1323 1326
1324 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */ 1327 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1325 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC); 1328 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);