Wed Jun 12 00:59:50 2013 UTC ()
Don't attach a9tmr if the CPU supports the generic timer.


(matt)
diff -r1.4 -r1.5 src/sys/arch/arm/cortex/a9tmr.c

cvs diff -r1.4 -r1.5 src/sys/arch/arm/cortex/a9tmr.c (switch to unified diff)

--- src/sys/arch/arm/cortex/a9tmr.c 2012/11/29 17:36:56 1.4
+++ src/sys/arch/arm/cortex/a9tmr.c 2013/06/12 00:59:50 1.5
@@ -1,333 +1,336 @@ @@ -1,333 +1,336 @@
1/* $NetBSD: a9tmr.c,v 1.4 2012/11/29 17:36:56 matt Exp $ */ 1/* $NetBSD: a9tmr.c,v 1.5 2013/06/12 00:59:50 matt Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 2012 The NetBSD Foundation, Inc. 4 * Copyright (c) 2012 The NetBSD Foundation, Inc.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * This code is derived from software contributed to The NetBSD Foundation 7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas 8 * by Matt Thomas
9 * 9 *
10 * Redistribution and use in source and binary forms, with or without 10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions 11 * modification, are permitted provided that the following conditions
12 * are met: 12 * are met:
13 * 1. Redistributions of source code must retain the above copyright 13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer. 14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright 15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the 16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution. 17 * documentation and/or other materials provided with the distribution.
18 * 18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE. 29 * POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31 31
32#include <sys/cdefs.h> 32#include <sys/cdefs.h>
33__KERNEL_RCSID(0, "$NetBSD: a9tmr.c,v 1.4 2012/11/29 17:36:56 matt Exp $"); 33__KERNEL_RCSID(0, "$NetBSD: a9tmr.c,v 1.5 2013/06/12 00:59:50 matt Exp $");
34 34
35#include <sys/param.h> 35#include <sys/param.h>
36#include <sys/bus.h> 36#include <sys/bus.h>
37#include <sys/device.h> 37#include <sys/device.h>
38#include <sys/intr.h> 38#include <sys/intr.h>
39#include <sys/kernel.h> 39#include <sys/kernel.h>
40#include <sys/proc.h> 40#include <sys/proc.h>
41#include <sys/systm.h> 41#include <sys/systm.h>
42#include <sys/timetc.h> 42#include <sys/timetc.h>
43 43
44#include <prop/proplib.h> 44#include <prop/proplib.h>
45 45
46#include <arm/cortex/a9tmr_reg.h> 46#include <arm/cortex/a9tmr_reg.h>
47#include <arm/cortex/a9tmr_var.h> 47#include <arm/cortex/a9tmr_var.h>
48 48
49#include <arm/cortex/mpcore_var.h> 49#include <arm/cortex/mpcore_var.h>
50 50
51static int a9tmr_match(device_t, cfdata_t, void *); 51static int a9tmr_match(device_t, cfdata_t, void *);
52static void a9tmr_attach(device_t, device_t, void *); 52static void a9tmr_attach(device_t, device_t, void *);
53 53
54static int clockhandler(void *); 54static int clockhandler(void *);
55 55
56static u_int a9tmr_get_timecount(struct timecounter *); 56static u_int a9tmr_get_timecount(struct timecounter *);
57 57
58static struct a9tmr_softc a9tmr_sc; 58static struct a9tmr_softc a9tmr_sc;
59 59
60static struct timecounter a9tmr_timecounter = { 60static struct timecounter a9tmr_timecounter = {
61 .tc_get_timecount = a9tmr_get_timecount, 61 .tc_get_timecount = a9tmr_get_timecount,
62 .tc_poll_pps = 0, 62 .tc_poll_pps = 0,
63 .tc_counter_mask = ~0u, 63 .tc_counter_mask = ~0u,
64 .tc_frequency = 0, /* set by cpu_initclocks() */ 64 .tc_frequency = 0, /* set by cpu_initclocks() */
65 .tc_name = NULL, /* set by attach */ 65 .tc_name = NULL, /* set by attach */
66 .tc_quality = 500, 66 .tc_quality = 500,
67 .tc_priv = &a9tmr_sc, 67 .tc_priv = &a9tmr_sc,
68 .tc_next = NULL, 68 .tc_next = NULL,
69}; 69};
70 70
71CFATTACH_DECL_NEW(a9tmr, 0, a9tmr_match, a9tmr_attach, NULL, NULL); 71CFATTACH_DECL_NEW(a9tmr, 0, a9tmr_match, a9tmr_attach, NULL, NULL);
72 72
73static inline uint32_t 73static inline uint32_t
74a9tmr_global_read(struct a9tmr_softc *sc, bus_size_t o) 74a9tmr_global_read(struct a9tmr_softc *sc, bus_size_t o)
75{ 75{
76 return bus_space_read_4(sc->sc_memt, sc->sc_global_memh, o); 76 return bus_space_read_4(sc->sc_memt, sc->sc_global_memh, o);
77} 77}
78 78
79static inline void 79static inline void
80a9tmr_global_write(struct a9tmr_softc *sc, bus_size_t o, uint32_t v) 80a9tmr_global_write(struct a9tmr_softc *sc, bus_size_t o, uint32_t v)
81{ 81{
82 bus_space_write_4(sc->sc_memt, sc->sc_global_memh, o, v); 82 bus_space_write_4(sc->sc_memt, sc->sc_global_memh, o, v);
83} 83}
84 84
85 85
86/* ARGSUSED */ 86/* ARGSUSED */
87static int 87static int
88a9tmr_match(device_t parent, cfdata_t cf, void *aux) 88a9tmr_match(device_t parent, cfdata_t cf, void *aux)
89{ 89{
90 struct mpcore_attach_args * const mpcaa = aux; 90 struct mpcore_attach_args * const mpcaa = aux;
91 91
92 if (a9tmr_sc.sc_dev != NULL) 92 if (a9tmr_sc.sc_dev != NULL)
93 return 0; 93 return 0;
94 94
 95 if ((armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK) != 0)
 96 return 0;
 97
95 if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid)) 98 if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid))
96 return 0; 99 return 0;
97 100
98 if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0) 101 if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0)
99 return 0; 102 return 0;
100 103
101 /* 104 /*
102 * This isn't present on UP A9s (since CBAR isn't present). 105 * This isn't present on UP A9s (since CBAR isn't present).
103 */ 106 */
104 uint32_t mpidr = armreg_mpidr_read(); 107 uint32_t mpidr = armreg_mpidr_read();
105 if (mpidr == 0 || (mpidr & MPIDR_U)) 108 if (mpidr == 0 || (mpidr & MPIDR_U))
106 return 0; 109 return 0;
107 110
108 return 1; 111 return 1;
109} 112}
110 113
111static void 114static void
112a9tmr_attach(device_t parent, device_t self, void *aux) 115a9tmr_attach(device_t parent, device_t self, void *aux)
113{ 116{
114 struct a9tmr_softc *sc = &a9tmr_sc; 117 struct a9tmr_softc *sc = &a9tmr_sc;
115 struct mpcore_attach_args * const mpcaa = aux; 118 struct mpcore_attach_args * const mpcaa = aux;
116 prop_dictionary_t dict = device_properties(self); 119 prop_dictionary_t dict = device_properties(self);
117 char freqbuf[sizeof("XXX SHz")]; 120 char freqbuf[sizeof("XXX SHz")];
118 121
119 /* 122 /*
120 * This runs at the ARM PERIPHCLOCK which should be 1/2 of the CPU clock. 123 * This runs at the ARM PERIPHCLOCK which should be 1/2 of the CPU clock.
121 * The MD code should have setup our frequency for us. 124 * The MD code should have setup our frequency for us.
122 */ 125 */
123 prop_number_t pn = prop_dictionary_get(dict, "frequency"); 126 prop_number_t pn = prop_dictionary_get(dict, "frequency");
124 KASSERT(pn != NULL); 127 KASSERT(pn != NULL);
125 sc->sc_freq = prop_number_unsigned_integer_value(pn); 128 sc->sc_freq = prop_number_unsigned_integer_value(pn);
126 129
127 humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000); 130 humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000);
128 131
129 aprint_naive("\n"); 132 aprint_naive("\n");
130 aprint_normal(": A9 Global 64-bit Timer (%s)\n", freqbuf); 133 aprint_normal(": A9 Global 64-bit Timer (%s)\n", freqbuf);
131 134
132 self->dv_private = sc; 135 self->dv_private = sc;
133 sc->sc_dev = self; 136 sc->sc_dev = self;
134 sc->sc_memt = mpcaa->mpcaa_memt; 137 sc->sc_memt = mpcaa->mpcaa_memt;
135 sc->sc_memh = mpcaa->mpcaa_memh; 138 sc->sc_memh = mpcaa->mpcaa_memh;
136 139
137 evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL, 140 evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL,
138 device_xname(self), "missing interrupts"); 141 device_xname(self), "missing interrupts");
139 142
140 bus_space_subregion(sc->sc_memt, sc->sc_memh,  143 bus_space_subregion(sc->sc_memt, sc->sc_memh,
141 TMR_GLOBAL_BASE, TMR_GLOBAL_BASE, &sc->sc_global_memh); 144 TMR_GLOBAL_BASE, TMR_GLOBAL_BASE, &sc->sc_global_memh);
142 bus_space_subregion(sc->sc_memt, sc->sc_memh,  145 bus_space_subregion(sc->sc_memt, sc->sc_memh,
143 TMR_PRIVATE_BASE, TMR_PRIVATE_SIZE, &sc->sc_private_memh); 146 TMR_PRIVATE_BASE, TMR_PRIVATE_SIZE, &sc->sc_private_memh);
144 bus_space_subregion(sc->sc_memt, sc->sc_memh,  147 bus_space_subregion(sc->sc_memt, sc->sc_memh,
145 TMR_WDOG_BASE, TMR_WDOG_SIZE, &sc->sc_wdog_memh); 148 TMR_WDOG_BASE, TMR_WDOG_SIZE, &sc->sc_wdog_memh);
146 149
147 sc->sc_global_ih = intr_establish(IRQ_A9TMR_PPI_GTIMER, IPL_CLOCK, 150 sc->sc_global_ih = intr_establish(IRQ_A9TMR_PPI_GTIMER, IPL_CLOCK,
148 IST_EDGE, clockhandler, NULL); 151 IST_EDGE, clockhandler, NULL);
149 if (sc->sc_global_ih == NULL) 152 if (sc->sc_global_ih == NULL)
150 panic("%s: unable to register timer interrupt", __func__); 153 panic("%s: unable to register timer interrupt", __func__);
151 aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n", 154 aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n",
152 IRQ_A9TMR_PPI_GTIMER); 155 IRQ_A9TMR_PPI_GTIMER);
153} 156}
154 157
155static inline uint64_t 158static inline uint64_t
156a9tmr_gettime(struct a9tmr_softc *sc) 159a9tmr_gettime(struct a9tmr_softc *sc)
157{ 160{
158 uint32_t lo, hi; 161 uint32_t lo, hi;
159 162
160 do { 163 do {
161 hi = a9tmr_global_read(sc, TMR_GBL_CTR_U); 164 hi = a9tmr_global_read(sc, TMR_GBL_CTR_U);
162 lo = a9tmr_global_read(sc, TMR_GBL_CTR_L); 165 lo = a9tmr_global_read(sc, TMR_GBL_CTR_L);
163 } while (hi != a9tmr_global_read(sc, TMR_GBL_CTR_U)); 166 } while (hi != a9tmr_global_read(sc, TMR_GBL_CTR_U));
164 167
165 return ((uint64_t)hi << 32) | lo; 168 return ((uint64_t)hi << 32) | lo;
166} 169}
167 170
168void 171void
169a9tmr_init_cpu_clock(struct cpu_info *ci) 172a9tmr_init_cpu_clock(struct cpu_info *ci)
170{ 173{
171 struct a9tmr_softc * const sc = &a9tmr_sc; 174 struct a9tmr_softc * const sc = &a9tmr_sc;
172 uint64_t now = a9tmr_gettime(sc); 175 uint64_t now = a9tmr_gettime(sc);
173 176
174 KASSERT(ci == curcpu()); 177 KASSERT(ci == curcpu());
175 178
176 ci->ci_lastintr = now; 179 ci->ci_lastintr = now;
177 180
178 a9tmr_global_write(sc, TMR_GBL_AUTOINC, sc->sc_autoinc); 181 a9tmr_global_write(sc, TMR_GBL_AUTOINC, sc->sc_autoinc);
179 182
180 /* 183 /*
181 * To update the compare register we have to disable comparisions first. 184 * To update the compare register we have to disable comparisions first.
182 */ 185 */
183 uint32_t ctl = a9tmr_global_read(sc, TMR_GBL_CTL); 186 uint32_t ctl = a9tmr_global_read(sc, TMR_GBL_CTL);
184 if (ctl & TMR_GBL_CTL_CMP_ENABLE) { 187 if (ctl & TMR_GBL_CTL_CMP_ENABLE) {
185 a9tmr_global_write(sc, TMR_GBL_CTL, ctl & ~TMR_GBL_CTL_CMP_ENABLE); 188 a9tmr_global_write(sc, TMR_GBL_CTL, ctl & ~TMR_GBL_CTL_CMP_ENABLE);
186 } 189 }
187 190
188 /* 191 /*
189 * Schedule the next interrupt. 192 * Schedule the next interrupt.
190 */ 193 */
191 now += sc->sc_autoinc; 194 now += sc->sc_autoinc;
192 a9tmr_global_write(sc, TMR_GBL_CMP_L, (uint32_t) now); 195 a9tmr_global_write(sc, TMR_GBL_CMP_L, (uint32_t) now);
193 a9tmr_global_write(sc, TMR_GBL_CMP_H, (uint32_t) (now >> 32)); 196 a9tmr_global_write(sc, TMR_GBL_CMP_H, (uint32_t) (now >> 32));
194 197
195 /* 198 /*
196 * Re-enable the comparator and now enable interrupts. 199 * Re-enable the comparator and now enable interrupts.
197 */ 200 */
198 a9tmr_global_write(sc, TMR_GBL_INT, 1); /* clear interrupt pending */ 201 a9tmr_global_write(sc, TMR_GBL_INT, 1); /* clear interrupt pending */
199 ctl |= TMR_GBL_CTL_CMP_ENABLE | TMR_GBL_CTL_INT_ENABLE | TMR_GBL_CTL_AUTO_INC | TMR_CTL_ENABLE; 202 ctl |= TMR_GBL_CTL_CMP_ENABLE | TMR_GBL_CTL_INT_ENABLE | TMR_GBL_CTL_AUTO_INC | TMR_CTL_ENABLE;
200 a9tmr_global_write(sc, TMR_GBL_CTL, ctl); 203 a9tmr_global_write(sc, TMR_GBL_CTL, ctl);
201#if 0 204#if 0
202 printf("%s: %s: ctl %#x autoinc %u cmp %#x%08x now %#"PRIx64"\n", 205 printf("%s: %s: ctl %#x autoinc %u cmp %#x%08x now %#"PRIx64"\n",
203 __func__, ci->ci_data.cpu_name, 206 __func__, ci->ci_data.cpu_name,
204 a9tmr_global_read(sc, TMR_GBL_CTL), 207 a9tmr_global_read(sc, TMR_GBL_CTL),
205 a9tmr_global_read(sc, TMR_GBL_AUTOINC), 208 a9tmr_global_read(sc, TMR_GBL_AUTOINC),
206 a9tmr_global_read(sc, TMR_GBL_CMP_H), 209 a9tmr_global_read(sc, TMR_GBL_CMP_H),
207 a9tmr_global_read(sc, TMR_GBL_CMP_L), 210 a9tmr_global_read(sc, TMR_GBL_CMP_L),
208 a9tmr_gettime(sc)); 211 a9tmr_gettime(sc));
209 212
210 int s = splsched(); 213 int s = splsched();
211 uint64_t when = now; 214 uint64_t when = now;
212 u_int n = 0; 215 u_int n = 0;
213 while ((now = a9tmr_gettime(sc)) < when) { 216 while ((now = a9tmr_gettime(sc)) < when) {
214 /* spin */ 217 /* spin */
215 n++; 218 n++;
216 KASSERTMSG(n <= sc->sc_autoinc, 219 KASSERTMSG(n <= sc->sc_autoinc,
217 "spun %u times but only %"PRIu64" has passed", 220 "spun %u times but only %"PRIu64" has passed",
218 n, when - now); 221 n, when - now);
219 } 222 }
220 printf("%s: %s: status %#x cmp %#x%08x now %#"PRIx64"\n", 223 printf("%s: %s: status %#x cmp %#x%08x now %#"PRIx64"\n",
221 __func__, ci->ci_data.cpu_name, 224 __func__, ci->ci_data.cpu_name,
222 a9tmr_global_read(sc, TMR_GBL_INT), 225 a9tmr_global_read(sc, TMR_GBL_INT),
223 a9tmr_global_read(sc, TMR_GBL_CMP_H), 226 a9tmr_global_read(sc, TMR_GBL_CMP_H),
224 a9tmr_global_read(sc, TMR_GBL_CMP_L), 227 a9tmr_global_read(sc, TMR_GBL_CMP_L),
225 a9tmr_gettime(sc)); 228 a9tmr_gettime(sc));
226 splx(s); 229 splx(s);
227#elif 0 230#elif 0
228 delay(1000000 / hz + 1000);  231 delay(1000000 / hz + 1000);
229#endif 232#endif
230} 233}
231 234
232void 235void
233cpu_initclocks(void) 236cpu_initclocks(void)
234{ 237{
235 struct a9tmr_softc * const sc = &a9tmr_sc; 238 struct a9tmr_softc * const sc = &a9tmr_sc;
236  239
237 KASSERT(sc->sc_dev != NULL); 240 KASSERT(sc->sc_dev != NULL);
238 KASSERT(sc->sc_freq != 0); 241 KASSERT(sc->sc_freq != 0);
239 242
240 sc->sc_autoinc = sc->sc_freq / hz; 243 sc->sc_autoinc = sc->sc_freq / hz;
241 244
242 a9tmr_init_cpu_clock(curcpu()); 245 a9tmr_init_cpu_clock(curcpu());
243 246
244 a9tmr_timecounter.tc_name = device_xname(sc->sc_dev); 247 a9tmr_timecounter.tc_name = device_xname(sc->sc_dev);
245 a9tmr_timecounter.tc_frequency = sc->sc_freq; 248 a9tmr_timecounter.tc_frequency = sc->sc_freq;
246 249
247 tc_init(&a9tmr_timecounter); 250 tc_init(&a9tmr_timecounter);
248} 251}
249 252
250void 253void
251a9tmr_delay(unsigned int n) 254a9tmr_delay(unsigned int n)
252{ 255{
253 struct a9tmr_softc * const sc = &a9tmr_sc; 256 struct a9tmr_softc * const sc = &a9tmr_sc;
254 257
255 KASSERT(sc != NULL); 258 KASSERT(sc != NULL);
256 259
257 uint32_t freq = sc->sc_freq ? sc->sc_freq : curcpu()->ci_data.cpu_cc_freq / 2; 260 uint32_t freq = sc->sc_freq ? sc->sc_freq : curcpu()->ci_data.cpu_cc_freq / 2;
258 KASSERT(freq != 0); 261 KASSERT(freq != 0);
259 262
260 /* 263 /*
261 * not quite divide by 1000000 but close enough 264 * not quite divide by 1000000 but close enough
262 * (higher by 1.3% which means we wait 1.3% longer). 265 * (higher by 1.3% which means we wait 1.3% longer).
263 */ 266 */
264 const uint64_t incr_per_us = (freq >> 20) + (freq >> 24); 267 const uint64_t incr_per_us = (freq >> 20) + (freq >> 24);
265 268
266 const uint64_t delta = n * incr_per_us; 269 const uint64_t delta = n * incr_per_us;
267 const uint64_t base = a9tmr_gettime(sc); 270 const uint64_t base = a9tmr_gettime(sc);
268 const uint64_t finish = base + delta; 271 const uint64_t finish = base + delta;
269 272
270 while (a9tmr_gettime(sc) < finish) { 273 while (a9tmr_gettime(sc) < finish) {
271 /* spin */ 274 /* spin */
272 } 275 }
273} 276}
274 277
275/* 278/*
276 * clockhandler: 279 * clockhandler:
277 * 280 *
278 * Handle the hardclock interrupt. 281 * Handle the hardclock interrupt.
279 */ 282 */
280static int 283static int
281clockhandler(void *arg) 284clockhandler(void *arg)
282{ 285{
283 struct clockframe * const cf = arg; 286 struct clockframe * const cf = arg;
284 struct a9tmr_softc * const sc = &a9tmr_sc; 287 struct a9tmr_softc * const sc = &a9tmr_sc;
285 struct cpu_info * const ci = curcpu(); 288 struct cpu_info * const ci = curcpu();
286  289
287 const uint64_t now = a9tmr_gettime(sc); 290 const uint64_t now = a9tmr_gettime(sc);
288 uint64_t delta = now - ci->ci_lastintr; 291 uint64_t delta = now - ci->ci_lastintr;
289 292
290 a9tmr_global_write(sc, TMR_GBL_INT, 1); // Ack the interrupt 293 a9tmr_global_write(sc, TMR_GBL_INT, 1); // Ack the interrupt
291 294
292#if 0 295#if 0
293 printf("%s(%p): %s: now %#"PRIx64" delta %"PRIu64"\n",  296 printf("%s(%p): %s: now %#"PRIx64" delta %"PRIu64"\n",
294 __func__, cf, ci->ci_data.cpu_name, now, delta); 297 __func__, cf, ci->ci_data.cpu_name, now, delta);
295#endif 298#endif
296 KASSERTMSG(delta > sc->sc_autoinc / 100, 299 KASSERTMSG(delta > sc->sc_autoinc / 100,
297 "%s: interrupting too quickly (delta=%"PRIu64")", 300 "%s: interrupting too quickly (delta=%"PRIu64")",
298 ci->ci_data.cpu_name, delta); 301 ci->ci_data.cpu_name, delta);
299 302
300 ci->ci_lastintr = now; 303 ci->ci_lastintr = now;
301 304
302 hardclock(cf); 305 hardclock(cf);
303 306
304#if 0 307#if 0
305 /* 308 /*
306 * Try to make up up to a seconds amount of missed clock interrupts 309 * Try to make up up to a seconds amount of missed clock interrupts
307 */ 310 */
308 u_int ticks = hz; 311 u_int ticks = hz;
309 for (delta -= sc->sc_autoinc; 312 for (delta -= sc->sc_autoinc;
310 ticks > 0 && delta >= sc->sc_autoinc; 313 ticks > 0 && delta >= sc->sc_autoinc;
311 delta -= sc->sc_autoinc, ticks--) { 314 delta -= sc->sc_autoinc, ticks--) {
312 hardclock(cf); 315 hardclock(cf);
313 } 316 }
314#else 317#else
315 if (delta > sc->sc_autoinc) 318 if (delta > sc->sc_autoinc)
316 sc->sc_ev_missing_ticks.ev_count += delta / sc->sc_autoinc; 319 sc->sc_ev_missing_ticks.ev_count += delta / sc->sc_autoinc;
317#endif 320#endif
318 321
319 return 1; 322 return 1;
320} 323}
321 324
322void 325void
323setstatclockrate(int newhz) 326setstatclockrate(int newhz)
324{ 327{
325} 328}
326 329
327static u_int 330static u_int
328a9tmr_get_timecount(struct timecounter *tc) 331a9tmr_get_timecount(struct timecounter *tc)
329{ 332{
330 struct a9tmr_softc * const sc = tc->tc_priv; 333 struct a9tmr_softc * const sc = tc->tc_priv;
331 334
332 return (u_int) (a9tmr_gettime(sc)); 335 return (u_int) (a9tmr_gettime(sc));
333} 336}