Sat Apr 11 00:23:31 2015 UTC ()
Disable another xuio branch.


(riastradh)
diff -r1.4 -r1.5 src/external/cddl/osnet/dist/uts/common/fs/zfs/dmu.c

cvs diff -r1.4 -r1.5 src/external/cddl/osnet/dist/uts/common/fs/zfs/dmu.c (switch to unified diff)

--- src/external/cddl/osnet/dist/uts/common/fs/zfs/dmu.c 2015/03/19 17:16:22 1.4
+++ src/external/cddl/osnet/dist/uts/common/fs/zfs/dmu.c 2015/04/11 00:23:31 1.5
@@ -1,1540 +1,1542 @@ @@ -1,1540 +1,1542 @@
1/* 1/*
2 * CDDL HEADER START 2 * CDDL HEADER START
3 * 3 *
4 * The contents of this file are subject to the terms of the 4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License"). 5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License. 6 * You may not use this file except in compliance with the License.
7 * 7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing. 9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions 10 * See the License for the specific language governing permissions
11 * and limitations under the License. 11 * and limitations under the License.
12 * 12 *
13 * When distributing Covered Code, include this CDDL HEADER in each 13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the 15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner] 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 * 18 *
19 * CDDL HEADER END 19 * CDDL HEADER END
20 */ 20 */
21/* 21/*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms. 23 * Use is subject to license terms.
24 */ 24 */
25 25
26#include <sys/dmu.h> 26#include <sys/dmu.h>
27#include <sys/dmu_impl.h> 27#include <sys/dmu_impl.h>
28#include <sys/dmu_tx.h> 28#include <sys/dmu_tx.h>
29#include <sys/dbuf.h> 29#include <sys/dbuf.h>
30#include <sys/dnode.h> 30#include <sys/dnode.h>
31#include <sys/zfs_context.h> 31#include <sys/zfs_context.h>
32#include <sys/dmu_objset.h> 32#include <sys/dmu_objset.h>
33#include <sys/dmu_traverse.h> 33#include <sys/dmu_traverse.h>
34#include <sys/dsl_dataset.h> 34#include <sys/dsl_dataset.h>
35#include <sys/dsl_dir.h> 35#include <sys/dsl_dir.h>
36#include <sys/dsl_pool.h> 36#include <sys/dsl_pool.h>
37#include <sys/dsl_synctask.h> 37#include <sys/dsl_synctask.h>
38#include <sys/dsl_prop.h> 38#include <sys/dsl_prop.h>
39#include <sys/dmu_zfetch.h> 39#include <sys/dmu_zfetch.h>
40#include <sys/zfs_ioctl.h> 40#include <sys/zfs_ioctl.h>
41#include <sys/zap.h> 41#include <sys/zap.h>
42#include <sys/zio_checksum.h> 42#include <sys/zio_checksum.h>
43#ifdef _KERNEL 43#ifdef _KERNEL
44#include <sys/vmsystm.h> 44#include <sys/vmsystm.h>
45#include <sys/zfs_znode.h> 45#include <sys/zfs_znode.h>
46#endif 46#endif
47 47
48const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 48const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
49 { byteswap_uint8_array, TRUE, "unallocated" }, 49 { byteswap_uint8_array, TRUE, "unallocated" },
50 { zap_byteswap, TRUE, "object directory" }, 50 { zap_byteswap, TRUE, "object directory" },
51 { byteswap_uint64_array, TRUE, "object array" }, 51 { byteswap_uint64_array, TRUE, "object array" },
52 { byteswap_uint8_array, TRUE, "packed nvlist" }, 52 { byteswap_uint8_array, TRUE, "packed nvlist" },
53 { byteswap_uint64_array, TRUE, "packed nvlist size" }, 53 { byteswap_uint64_array, TRUE, "packed nvlist size" },
54 { byteswap_uint64_array, TRUE, "bplist" }, 54 { byteswap_uint64_array, TRUE, "bplist" },
55 { byteswap_uint64_array, TRUE, "bplist header" }, 55 { byteswap_uint64_array, TRUE, "bplist header" },
56 { byteswap_uint64_array, TRUE, "SPA space map header" }, 56 { byteswap_uint64_array, TRUE, "SPA space map header" },
57 { byteswap_uint64_array, TRUE, "SPA space map" }, 57 { byteswap_uint64_array, TRUE, "SPA space map" },
58 { byteswap_uint64_array, TRUE, "ZIL intent log" }, 58 { byteswap_uint64_array, TRUE, "ZIL intent log" },
59 { dnode_buf_byteswap, TRUE, "DMU dnode" }, 59 { dnode_buf_byteswap, TRUE, "DMU dnode" },
60 { dmu_objset_byteswap, TRUE, "DMU objset" }, 60 { dmu_objset_byteswap, TRUE, "DMU objset" },
61 { byteswap_uint64_array, TRUE, "DSL directory" }, 61 { byteswap_uint64_array, TRUE, "DSL directory" },
62 { zap_byteswap, TRUE, "DSL directory child map"}, 62 { zap_byteswap, TRUE, "DSL directory child map"},
63 { zap_byteswap, TRUE, "DSL dataset snap map" }, 63 { zap_byteswap, TRUE, "DSL dataset snap map" },
64 { zap_byteswap, TRUE, "DSL props" }, 64 { zap_byteswap, TRUE, "DSL props" },
65 { byteswap_uint64_array, TRUE, "DSL dataset" }, 65 { byteswap_uint64_array, TRUE, "DSL dataset" },
66 { zfs_znode_byteswap, TRUE, "ZFS znode" }, 66 { zfs_znode_byteswap, TRUE, "ZFS znode" },
67 { zfs_oldacl_byteswap, TRUE, "ZFS V0 ACL" }, 67 { zfs_oldacl_byteswap, TRUE, "ZFS V0 ACL" },
68 { byteswap_uint8_array, FALSE, "ZFS plain file" }, 68 { byteswap_uint8_array, FALSE, "ZFS plain file" },
69 { zap_byteswap, TRUE, "ZFS directory" }, 69 { zap_byteswap, TRUE, "ZFS directory" },
70 { zap_byteswap, TRUE, "ZFS master node" }, 70 { zap_byteswap, TRUE, "ZFS master node" },
71 { zap_byteswap, TRUE, "ZFS delete queue" }, 71 { zap_byteswap, TRUE, "ZFS delete queue" },
72 { byteswap_uint8_array, FALSE, "zvol object" }, 72 { byteswap_uint8_array, FALSE, "zvol object" },
73 { zap_byteswap, TRUE, "zvol prop" }, 73 { zap_byteswap, TRUE, "zvol prop" },
74 { byteswap_uint8_array, FALSE, "other uint8[]" }, 74 { byteswap_uint8_array, FALSE, "other uint8[]" },
75 { byteswap_uint64_array, FALSE, "other uint64[]" }, 75 { byteswap_uint64_array, FALSE, "other uint64[]" },
76 { zap_byteswap, TRUE, "other ZAP" }, 76 { zap_byteswap, TRUE, "other ZAP" },
77 { zap_byteswap, TRUE, "persistent error log" }, 77 { zap_byteswap, TRUE, "persistent error log" },
78 { byteswap_uint8_array, TRUE, "SPA history" }, 78 { byteswap_uint8_array, TRUE, "SPA history" },
79 { byteswap_uint64_array, TRUE, "SPA history offsets" }, 79 { byteswap_uint64_array, TRUE, "SPA history offsets" },
80 { zap_byteswap, TRUE, "Pool properties" }, 80 { zap_byteswap, TRUE, "Pool properties" },
81 { zap_byteswap, TRUE, "DSL permissions" }, 81 { zap_byteswap, TRUE, "DSL permissions" },
82 { zfs_acl_byteswap, TRUE, "ZFS ACL" }, 82 { zfs_acl_byteswap, TRUE, "ZFS ACL" },
83 { byteswap_uint8_array, TRUE, "ZFS SYSACL" }, 83 { byteswap_uint8_array, TRUE, "ZFS SYSACL" },
84 { byteswap_uint8_array, TRUE, "FUID table" }, 84 { byteswap_uint8_array, TRUE, "FUID table" },
85 { byteswap_uint64_array, TRUE, "FUID table size" }, 85 { byteswap_uint64_array, TRUE, "FUID table size" },
86 { zap_byteswap, TRUE, "DSL dataset next clones"}, 86 { zap_byteswap, TRUE, "DSL dataset next clones"},
87 { zap_byteswap, TRUE, "scrub work queue" }, 87 { zap_byteswap, TRUE, "scrub work queue" },
88 { zap_byteswap, TRUE, "ZFS user/group used" }, 88 { zap_byteswap, TRUE, "ZFS user/group used" },
89 { zap_byteswap, TRUE, "ZFS user/group quota" }, 89 { zap_byteswap, TRUE, "ZFS user/group quota" },
90 { zap_byteswap, TRUE, "snapshot refcount tags"}, 90 { zap_byteswap, TRUE, "snapshot refcount tags"},
91 { zap_byteswap, TRUE, "DDT ZAP algorithm" }, 91 { zap_byteswap, TRUE, "DDT ZAP algorithm" },
92 { zap_byteswap, TRUE, "DDT statistics" }, 92 { zap_byteswap, TRUE, "DDT statistics" },
93}; 93};
94 94
95int 95int
96dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 96dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
97 void *tag, dmu_buf_t **dbp) 97 void *tag, dmu_buf_t **dbp)
98{ 98{
99 dnode_t *dn; 99 dnode_t *dn;
100 uint64_t blkid; 100 uint64_t blkid;
101 dmu_buf_impl_t *db; 101 dmu_buf_impl_t *db;
102 int err; 102 int err;
103 103
104 err = dnode_hold(os, object, FTAG, &dn); 104 err = dnode_hold(os, object, FTAG, &dn);
105 if (err) 105 if (err)
106 return (err); 106 return (err);
107 blkid = dbuf_whichblock(dn, offset); 107 blkid = dbuf_whichblock(dn, offset);
108 rw_enter(&dn->dn_struct_rwlock, RW_READER); 108 rw_enter(&dn->dn_struct_rwlock, RW_READER);
109 db = dbuf_hold(dn, blkid, tag); 109 db = dbuf_hold(dn, blkid, tag);
110 rw_exit(&dn->dn_struct_rwlock); 110 rw_exit(&dn->dn_struct_rwlock);
111 if (db == NULL) { 111 if (db == NULL) {
112 err = EIO; 112 err = EIO;
113 } else { 113 } else {
114 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 114 err = dbuf_read(db, NULL, DB_RF_CANFAIL);
115 if (err) { 115 if (err) {
116 dbuf_rele(db, tag); 116 dbuf_rele(db, tag);
117 db = NULL; 117 db = NULL;
118 } 118 }
119 } 119 }
120 120
121 dnode_rele(dn, FTAG); 121 dnode_rele(dn, FTAG);
122 *dbp = &db->db; 122 *dbp = &db->db;
123 return (err); 123 return (err);
124} 124}
125 125
126int 126int
127dmu_bonus_max(void) 127dmu_bonus_max(void)
128{ 128{
129 return (DN_MAX_BONUSLEN); 129 return (DN_MAX_BONUSLEN);
130} 130}
131 131
132int 132int
133dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx) 133dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx)
134{ 134{
135 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 135 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
136 136
137 if (dn->dn_bonus != (dmu_buf_impl_t *)db) 137 if (dn->dn_bonus != (dmu_buf_impl_t *)db)
138 return (EINVAL); 138 return (EINVAL);
139 if (newsize < 0 || newsize > db->db_size) 139 if (newsize < 0 || newsize > db->db_size)
140 return (EINVAL); 140 return (EINVAL);
141 dnode_setbonuslen(dn, newsize, tx); 141 dnode_setbonuslen(dn, newsize, tx);
142 return (0); 142 return (0);
143} 143}
144 144
145/* 145/*
146 * returns ENOENT, EIO, or 0. 146 * returns ENOENT, EIO, or 0.
147 */ 147 */
148int 148int
149dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 149dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
150{ 150{
151 dnode_t *dn; 151 dnode_t *dn;
152 dmu_buf_impl_t *db; 152 dmu_buf_impl_t *db;
153 int error; 153 int error;
154 154
155 error = dnode_hold(os, object, FTAG, &dn); 155 error = dnode_hold(os, object, FTAG, &dn);
156 if (error) 156 if (error)
157 return (error); 157 return (error);
158 158
159 rw_enter(&dn->dn_struct_rwlock, RW_READER); 159 rw_enter(&dn->dn_struct_rwlock, RW_READER);
160 if (dn->dn_bonus == NULL) { 160 if (dn->dn_bonus == NULL) {
161 rw_exit(&dn->dn_struct_rwlock); 161 rw_exit(&dn->dn_struct_rwlock);
162 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 162 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
163 if (dn->dn_bonus == NULL) 163 if (dn->dn_bonus == NULL)
164 dbuf_create_bonus(dn); 164 dbuf_create_bonus(dn);
165 } 165 }
166 db = dn->dn_bonus; 166 db = dn->dn_bonus;
167 rw_exit(&dn->dn_struct_rwlock); 167 rw_exit(&dn->dn_struct_rwlock);
168 168
169 /* as long as the bonus buf is held, the dnode will be held */ 169 /* as long as the bonus buf is held, the dnode will be held */
170 if (refcount_add(&db->db_holds, tag) == 1) 170 if (refcount_add(&db->db_holds, tag) == 1)
171 VERIFY(dnode_add_ref(dn, db)); 171 VERIFY(dnode_add_ref(dn, db));
172 172
173 dnode_rele(dn, FTAG); 173 dnode_rele(dn, FTAG);
174 174
175 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED)); 175 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED));
176 176
177 *dbp = &db->db; 177 *dbp = &db->db;
178 return (0); 178 return (0);
179} 179}
180 180
181/* 181/*
182 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 182 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
183 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 183 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
184 * and can induce severe lock contention when writing to several files 184 * and can induce severe lock contention when writing to several files
185 * whose dnodes are in the same block. 185 * whose dnodes are in the same block.
186 */ 186 */
187static int 187static int
188dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 188dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
189 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 189 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
190{ 190{
191 dsl_pool_t *dp = NULL; 191 dsl_pool_t *dp = NULL;
192 dmu_buf_t **dbp; 192 dmu_buf_t **dbp;
193 uint64_t blkid, nblks, i; 193 uint64_t blkid, nblks, i;
194 uint32_t dbuf_flags; 194 uint32_t dbuf_flags;
195 int err; 195 int err;
196 zio_t *zio; 196 zio_t *zio;
197 hrtime_t start; 197 hrtime_t start;
198 198
199 ASSERT(length <= DMU_MAX_ACCESS); 199 ASSERT(length <= DMU_MAX_ACCESS);
200 200
201 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 201 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
202 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 202 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
203 dbuf_flags |= DB_RF_NOPREFETCH; 203 dbuf_flags |= DB_RF_NOPREFETCH;
204 204
205 rw_enter(&dn->dn_struct_rwlock, RW_READER); 205 rw_enter(&dn->dn_struct_rwlock, RW_READER);
206 if (dn->dn_datablkshift) { 206 if (dn->dn_datablkshift) {
207 int blkshift = dn->dn_datablkshift; 207 int blkshift = dn->dn_datablkshift;
208 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 208 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
209 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 209 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
210 } else { 210 } else {
211 if (offset + length > dn->dn_datablksz) { 211 if (offset + length > dn->dn_datablksz) {
212 zfs_panic_recover("zfs: accessing past end of object " 212 zfs_panic_recover("zfs: accessing past end of object "
213 "%llx/%llx (size=%u access=%llu+%llu)", 213 "%llx/%llx (size=%u access=%llu+%llu)",
214 (longlong_t)dn->dn_objset-> 214 (longlong_t)dn->dn_objset->
215 os_dsl_dataset->ds_object, 215 os_dsl_dataset->ds_object,
216 (longlong_t)dn->dn_object, dn->dn_datablksz, 216 (longlong_t)dn->dn_object, dn->dn_datablksz,
217 (longlong_t)offset, (longlong_t)length); 217 (longlong_t)offset, (longlong_t)length);
218 rw_exit(&dn->dn_struct_rwlock); 218 rw_exit(&dn->dn_struct_rwlock);
219 return (EIO); 219 return (EIO);
220 } 220 }
221 nblks = 1; 221 nblks = 1;
222 } 222 }
223 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 223 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
224 224
225 if (dn->dn_objset->os_dsl_dataset) 225 if (dn->dn_objset->os_dsl_dataset)
226 dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool; 226 dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool;
227 if (dp && dsl_pool_sync_context(dp)) 227 if (dp && dsl_pool_sync_context(dp))
228 start = gethrtime(); 228 start = gethrtime();
229 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 229 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
230 blkid = dbuf_whichblock(dn, offset); 230 blkid = dbuf_whichblock(dn, offset);
231 for (i = 0; i < nblks; i++) { 231 for (i = 0; i < nblks; i++) {
232 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 232 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
233 if (db == NULL) { 233 if (db == NULL) {
234 rw_exit(&dn->dn_struct_rwlock); 234 rw_exit(&dn->dn_struct_rwlock);
235 dmu_buf_rele_array(dbp, nblks, tag); 235 dmu_buf_rele_array(dbp, nblks, tag);
236 zio_nowait(zio); 236 zio_nowait(zio);
237 return (EIO); 237 return (EIO);
238 } 238 }
239 /* initiate async i/o */ 239 /* initiate async i/o */
240 if (read) { 240 if (read) {
241 (void) dbuf_read(db, zio, dbuf_flags); 241 (void) dbuf_read(db, zio, dbuf_flags);
242 } 242 }
243 dbp[i] = &db->db; 243 dbp[i] = &db->db;
244 } 244 }
245 rw_exit(&dn->dn_struct_rwlock); 245 rw_exit(&dn->dn_struct_rwlock);
246 246
247 /* wait for async i/o */ 247 /* wait for async i/o */
248 err = zio_wait(zio); 248 err = zio_wait(zio);
249 /* track read overhead when we are in sync context */ 249 /* track read overhead when we are in sync context */
250 if (dp && dsl_pool_sync_context(dp)) 250 if (dp && dsl_pool_sync_context(dp))
251 dp->dp_read_overhead += gethrtime() - start; 251 dp->dp_read_overhead += gethrtime() - start;
252 if (err) { 252 if (err) {
253 dmu_buf_rele_array(dbp, nblks, tag); 253 dmu_buf_rele_array(dbp, nblks, tag);
254 return (err); 254 return (err);
255 } 255 }
256 256
257 /* wait for other io to complete */ 257 /* wait for other io to complete */
258 if (read) { 258 if (read) {
259 for (i = 0; i < nblks; i++) { 259 for (i = 0; i < nblks; i++) {
260 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 260 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
261 mutex_enter(&db->db_mtx); 261 mutex_enter(&db->db_mtx);
262 while (db->db_state == DB_READ || 262 while (db->db_state == DB_READ ||
263 db->db_state == DB_FILL) 263 db->db_state == DB_FILL)
264 cv_wait(&db->db_changed, &db->db_mtx); 264 cv_wait(&db->db_changed, &db->db_mtx);
265 if (db->db_state == DB_UNCACHED) 265 if (db->db_state == DB_UNCACHED)
266 err = EIO; 266 err = EIO;
267 mutex_exit(&db->db_mtx); 267 mutex_exit(&db->db_mtx);
268 if (err) { 268 if (err) {
269 dmu_buf_rele_array(dbp, nblks, tag); 269 dmu_buf_rele_array(dbp, nblks, tag);
270 return (err); 270 return (err);
271 } 271 }
272 } 272 }
273 } 273 }
274 274
275 *numbufsp = nblks; 275 *numbufsp = nblks;
276 *dbpp = dbp; 276 *dbpp = dbp;
277 return (0); 277 return (0);
278} 278}
279 279
280static int 280static int
281dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 281dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
282 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 282 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
283{ 283{
284 dnode_t *dn; 284 dnode_t *dn;
285 int err; 285 int err;
286 286
287 err = dnode_hold(os, object, FTAG, &dn); 287 err = dnode_hold(os, object, FTAG, &dn);
288 if (err) 288 if (err)
289 return (err); 289 return (err);
290 290
291 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 291 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
292 numbufsp, dbpp, DMU_READ_PREFETCH); 292 numbufsp, dbpp, DMU_READ_PREFETCH);
293 293
294 dnode_rele(dn, FTAG); 294 dnode_rele(dn, FTAG);
295 295
296 return (err); 296 return (err);
297} 297}
298 298
299int 299int
300dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 300dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
301 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 301 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
302{ 302{
303 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 303 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
304 int err; 304 int err;
305 305
306 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 306 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
307 numbufsp, dbpp, DMU_READ_PREFETCH); 307 numbufsp, dbpp, DMU_READ_PREFETCH);
308 308
309 return (err); 309 return (err);
310} 310}
311 311
312void 312void
313dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 313dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
314{ 314{
315 int i; 315 int i;
316 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 316 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
317 317
318 if (numbufs == 0) 318 if (numbufs == 0)
319 return; 319 return;
320 320
321 for (i = 0; i < numbufs; i++) { 321 for (i = 0; i < numbufs; i++) {
322 if (dbp[i]) 322 if (dbp[i])
323 dbuf_rele(dbp[i], tag); 323 dbuf_rele(dbp[i], tag);
324 } 324 }
325 325
326 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 326 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
327} 327}
328 328
329void 329void
330dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 330dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
331{ 331{
332 dnode_t *dn; 332 dnode_t *dn;
333 uint64_t blkid; 333 uint64_t blkid;
334 int nblks, i, err; 334 int nblks, i, err;
335 335
336 if (zfs_prefetch_disable) 336 if (zfs_prefetch_disable)
337 return; 337 return;
338 338
339 if (len == 0) { /* they're interested in the bonus buffer */ 339 if (len == 0) { /* they're interested in the bonus buffer */
340 dn = os->os_meta_dnode; 340 dn = os->os_meta_dnode;
341 341
342 if (object == 0 || object >= DN_MAX_OBJECT) 342 if (object == 0 || object >= DN_MAX_OBJECT)
343 return; 343 return;
344 344
345 rw_enter(&dn->dn_struct_rwlock, RW_READER); 345 rw_enter(&dn->dn_struct_rwlock, RW_READER);
346 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 346 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
347 dbuf_prefetch(dn, blkid); 347 dbuf_prefetch(dn, blkid);
348 rw_exit(&dn->dn_struct_rwlock); 348 rw_exit(&dn->dn_struct_rwlock);
349 return; 349 return;
350 } 350 }
351 351
352 /* 352 /*
353 * XXX - Note, if the dnode for the requested object is not 353 * XXX - Note, if the dnode for the requested object is not
354 * already cached, we will do a *synchronous* read in the 354 * already cached, we will do a *synchronous* read in the
355 * dnode_hold() call. The same is true for any indirects. 355 * dnode_hold() call. The same is true for any indirects.
356 */ 356 */
357 err = dnode_hold(os, object, FTAG, &dn); 357 err = dnode_hold(os, object, FTAG, &dn);
358 if (err != 0) 358 if (err != 0)
359 return; 359 return;
360 360
361 rw_enter(&dn->dn_struct_rwlock, RW_READER); 361 rw_enter(&dn->dn_struct_rwlock, RW_READER);
362 if (dn->dn_datablkshift) { 362 if (dn->dn_datablkshift) {
363 int blkshift = dn->dn_datablkshift; 363 int blkshift = dn->dn_datablkshift;
364 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 364 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) -
365 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 365 P2ALIGN(offset, 1<<blkshift)) >> blkshift;
366 } else { 366 } else {
367 nblks = (offset < dn->dn_datablksz); 367 nblks = (offset < dn->dn_datablksz);
368 } 368 }
369 369
370 if (nblks != 0) { 370 if (nblks != 0) {
371 blkid = dbuf_whichblock(dn, offset); 371 blkid = dbuf_whichblock(dn, offset);
372 for (i = 0; i < nblks; i++) 372 for (i = 0; i < nblks; i++)
373 dbuf_prefetch(dn, blkid+i); 373 dbuf_prefetch(dn, blkid+i);
374 } 374 }
375 375
376 rw_exit(&dn->dn_struct_rwlock); 376 rw_exit(&dn->dn_struct_rwlock);
377 377
378 dnode_rele(dn, FTAG); 378 dnode_rele(dn, FTAG);
379} 379}
380 380
381/* 381/*
382 * Get the next "chunk" of file data to free. We traverse the file from 382 * Get the next "chunk" of file data to free. We traverse the file from
383 * the end so that the file gets shorter over time (if we crashes in the 383 * the end so that the file gets shorter over time (if we crashes in the
384 * middle, this will leave us in a better state). We find allocated file 384 * middle, this will leave us in a better state). We find allocated file
385 * data by simply searching the allocated level 1 indirects. 385 * data by simply searching the allocated level 1 indirects.
386 */ 386 */
387static int 387static int
388get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit) 388get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit)
389{ 389{
390 uint64_t len = *start - limit; 390 uint64_t len = *start - limit;
391 uint64_t blkcnt = 0; 391 uint64_t blkcnt = 0;
392 uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1)); 392 uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1));
393 uint64_t iblkrange = 393 uint64_t iblkrange =
394 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 394 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
395 395
396 ASSERT(limit <= *start); 396 ASSERT(limit <= *start);
397 397
398 if (len <= iblkrange * maxblks) { 398 if (len <= iblkrange * maxblks) {
399 *start = limit; 399 *start = limit;
400 return (0); 400 return (0);
401 } 401 }
402 ASSERT(ISP2(iblkrange)); 402 ASSERT(ISP2(iblkrange));
403 403
404 while (*start > limit && blkcnt < maxblks) { 404 while (*start > limit && blkcnt < maxblks) {
405 int err; 405 int err;
406 406
407 /* find next allocated L1 indirect */ 407 /* find next allocated L1 indirect */
408 err = dnode_next_offset(dn, 408 err = dnode_next_offset(dn,
409 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 409 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
410 410
411 /* if there are no more, then we are done */ 411 /* if there are no more, then we are done */
412 if (err == ESRCH) { 412 if (err == ESRCH) {
413 *start = limit; 413 *start = limit;
414 return (0); 414 return (0);
415 } else if (err) { 415 } else if (err) {
416 return (err); 416 return (err);
417 } 417 }
418 blkcnt += 1; 418 blkcnt += 1;
419 419
420 /* reset offset to end of "next" block back */ 420 /* reset offset to end of "next" block back */
421 *start = P2ALIGN(*start, iblkrange); 421 *start = P2ALIGN(*start, iblkrange);
422 if (*start <= limit) 422 if (*start <= limit)
423 *start = limit; 423 *start = limit;
424 else 424 else
425 *start -= 1; 425 *start -= 1;
426 } 426 }
427 return (0); 427 return (0);
428} 428}
429 429
430static int 430static int
431dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 431dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
432 uint64_t length, boolean_t free_dnode) 432 uint64_t length, boolean_t free_dnode)
433{ 433{
434 dmu_tx_t *tx; 434 dmu_tx_t *tx;
435 uint64_t object_size, start, end, len; 435 uint64_t object_size, start, end, len;
436 boolean_t trunc = (length == DMU_OBJECT_END); 436 boolean_t trunc = (length == DMU_OBJECT_END);
437 int align, err; 437 int align, err;
438 438
439 align = 1 << dn->dn_datablkshift; 439 align = 1 << dn->dn_datablkshift;
440 ASSERT(align > 0); 440 ASSERT(align > 0);
441 object_size = align == 1 ? dn->dn_datablksz : 441 object_size = align == 1 ? dn->dn_datablksz :
442 (dn->dn_maxblkid + 1) << dn->dn_datablkshift; 442 (dn->dn_maxblkid + 1) << dn->dn_datablkshift;
443 443
444 end = offset + length; 444 end = offset + length;
445 if (trunc || end > object_size) 445 if (trunc || end > object_size)
446 end = object_size; 446 end = object_size;
447 if (end <= offset) 447 if (end <= offset)
448 return (0); 448 return (0);
449 length = end - offset; 449 length = end - offset;
450 450
451 while (length) { 451 while (length) {
452 start = end; 452 start = end;
453 /* assert(offset <= start) */ 453 /* assert(offset <= start) */
454 err = get_next_chunk(dn, &start, offset); 454 err = get_next_chunk(dn, &start, offset);
455 if (err) 455 if (err)
456 return (err); 456 return (err);
457 len = trunc ? DMU_OBJECT_END : end - start; 457 len = trunc ? DMU_OBJECT_END : end - start;
458 458
459 tx = dmu_tx_create(os); 459 tx = dmu_tx_create(os);
460 dmu_tx_hold_free(tx, dn->dn_object, start, len); 460 dmu_tx_hold_free(tx, dn->dn_object, start, len);
461 err = dmu_tx_assign(tx, TXG_WAIT); 461 err = dmu_tx_assign(tx, TXG_WAIT);
462 if (err) { 462 if (err) {
463 dmu_tx_abort(tx); 463 dmu_tx_abort(tx);
464 return (err); 464 return (err);
465 } 465 }
466 466
467 dnode_free_range(dn, start, trunc ? -1 : len, tx); 467 dnode_free_range(dn, start, trunc ? -1 : len, tx);
468 468
469 if (start == 0 && free_dnode) { 469 if (start == 0 && free_dnode) {
470 ASSERT(trunc); 470 ASSERT(trunc);
471 dnode_free(dn, tx); 471 dnode_free(dn, tx);
472 } 472 }
473 473
474 length -= end - start; 474 length -= end - start;
475 475
476 dmu_tx_commit(tx); 476 dmu_tx_commit(tx);
477 end = start; 477 end = start;
478 } 478 }
479 return (0); 479 return (0);
480} 480}
481 481
482int 482int
483dmu_free_long_range(objset_t *os, uint64_t object, 483dmu_free_long_range(objset_t *os, uint64_t object,
484 uint64_t offset, uint64_t length) 484 uint64_t offset, uint64_t length)
485{ 485{
486 dnode_t *dn; 486 dnode_t *dn;
487 int err; 487 int err;
488 488
489 err = dnode_hold(os, object, FTAG, &dn); 489 err = dnode_hold(os, object, FTAG, &dn);
490 if (err != 0) 490 if (err != 0)
491 return (err); 491 return (err);
492 err = dmu_free_long_range_impl(os, dn, offset, length, FALSE); 492 err = dmu_free_long_range_impl(os, dn, offset, length, FALSE);
493 dnode_rele(dn, FTAG); 493 dnode_rele(dn, FTAG);
494 return (err); 494 return (err);
495} 495}
496 496
497int 497int
498dmu_free_object(objset_t *os, uint64_t object) 498dmu_free_object(objset_t *os, uint64_t object)
499{ 499{
500 dnode_t *dn; 500 dnode_t *dn;
501 dmu_tx_t *tx; 501 dmu_tx_t *tx;
502 int err; 502 int err;
503 503
504 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 504 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED,
505 FTAG, &dn); 505 FTAG, &dn);
506 if (err != 0) 506 if (err != 0)
507 return (err); 507 return (err);
508 if (dn->dn_nlevels == 1) { 508 if (dn->dn_nlevels == 1) {
509 tx = dmu_tx_create(os); 509 tx = dmu_tx_create(os);
510 dmu_tx_hold_bonus(tx, object); 510 dmu_tx_hold_bonus(tx, object);
511 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END); 511 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END);
512 err = dmu_tx_assign(tx, TXG_WAIT); 512 err = dmu_tx_assign(tx, TXG_WAIT);
513 if (err == 0) { 513 if (err == 0) {
514 dnode_free_range(dn, 0, DMU_OBJECT_END, tx); 514 dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
515 dnode_free(dn, tx); 515 dnode_free(dn, tx);
516 dmu_tx_commit(tx); 516 dmu_tx_commit(tx);
517 } else { 517 } else {
518 dmu_tx_abort(tx); 518 dmu_tx_abort(tx);
519 } 519 }
520 } else { 520 } else {
521 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE); 521 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE);
522 } 522 }
523 dnode_rele(dn, FTAG); 523 dnode_rele(dn, FTAG);
524 return (err); 524 return (err);
525} 525}
526 526
527int 527int
528dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 528dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
529 uint64_t size, dmu_tx_t *tx) 529 uint64_t size, dmu_tx_t *tx)
530{ 530{
531 dnode_t *dn; 531 dnode_t *dn;
532 int err = dnode_hold(os, object, FTAG, &dn); 532 int err = dnode_hold(os, object, FTAG, &dn);
533 if (err) 533 if (err)
534 return (err); 534 return (err);
535 ASSERT(offset < UINT64_MAX); 535 ASSERT(offset < UINT64_MAX);
536 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 536 ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
537 dnode_free_range(dn, offset, size, tx); 537 dnode_free_range(dn, offset, size, tx);
538 dnode_rele(dn, FTAG); 538 dnode_rele(dn, FTAG);
539 return (0); 539 return (0);
540} 540}
541 541
542int 542int
543dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 543dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
544 void *buf, uint32_t flags) 544 void *buf, uint32_t flags)
545{ 545{
546 dnode_t *dn; 546 dnode_t *dn;
547 dmu_buf_t **dbp; 547 dmu_buf_t **dbp;
548 int numbufs, err; 548 int numbufs, err;
549 549
550 err = dnode_hold(os, object, FTAG, &dn); 550 err = dnode_hold(os, object, FTAG, &dn);
551 if (err) 551 if (err)
552 return (err); 552 return (err);
553 553
554 /* 554 /*
555 * Deal with odd block sizes, where there can't be data past the first 555 * Deal with odd block sizes, where there can't be data past the first
556 * block. If we ever do the tail block optimization, we will need to 556 * block. If we ever do the tail block optimization, we will need to
557 * handle that here as well. 557 * handle that here as well.
558 */ 558 */
559 if (dn->dn_maxblkid == 0) { 559 if (dn->dn_maxblkid == 0) {
560 int newsz = offset > dn->dn_datablksz ? 0 : 560 int newsz = offset > dn->dn_datablksz ? 0 :
561 MIN(size, dn->dn_datablksz - offset); 561 MIN(size, dn->dn_datablksz - offset);
562 bzero((char *)buf + newsz, size - newsz); 562 bzero((char *)buf + newsz, size - newsz);
563 size = newsz; 563 size = newsz;
564 } 564 }
565 565
566 while (size > 0) { 566 while (size > 0) {
567 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 567 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
568 int i; 568 int i;
569 569
570 /* 570 /*
571 * NB: we could do this block-at-a-time, but it's nice 571 * NB: we could do this block-at-a-time, but it's nice
572 * to be reading in parallel. 572 * to be reading in parallel.
573 */ 573 */
574 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 574 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
575 TRUE, FTAG, &numbufs, &dbp, flags); 575 TRUE, FTAG, &numbufs, &dbp, flags);
576 if (err) 576 if (err)
577 break; 577 break;
578 578
579 for (i = 0; i < numbufs; i++) { 579 for (i = 0; i < numbufs; i++) {
580 int tocpy; 580 int tocpy;
581 int bufoff; 581 int bufoff;
582 dmu_buf_t *db = dbp[i]; 582 dmu_buf_t *db = dbp[i];
583 583
584 ASSERT(size > 0); 584 ASSERT(size > 0);
585 585
586 bufoff = offset - db->db_offset; 586 bufoff = offset - db->db_offset;
587 tocpy = (int)MIN(db->db_size - bufoff, size); 587 tocpy = (int)MIN(db->db_size - bufoff, size);
588 588
589 bcopy((char *)db->db_data + bufoff, buf, tocpy); 589 bcopy((char *)db->db_data + bufoff, buf, tocpy);
590 590
591 offset += tocpy; 591 offset += tocpy;
592 size -= tocpy; 592 size -= tocpy;
593 buf = (char *)buf + tocpy; 593 buf = (char *)buf + tocpy;
594 } 594 }
595 dmu_buf_rele_array(dbp, numbufs, FTAG); 595 dmu_buf_rele_array(dbp, numbufs, FTAG);
596 } 596 }
597 dnode_rele(dn, FTAG); 597 dnode_rele(dn, FTAG);
598 return (err); 598 return (err);
599} 599}
600 600
601void 601void
602dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 602dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
603 const void *buf, dmu_tx_t *tx) 603 const void *buf, dmu_tx_t *tx)
604{ 604{
605 dmu_buf_t **dbp; 605 dmu_buf_t **dbp;
606 int numbufs, i; 606 int numbufs, i;
607 607
608 if (size == 0) 608 if (size == 0)
609 return; 609 return;
610 610
611 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 611 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
612 FALSE, FTAG, &numbufs, &dbp)); 612 FALSE, FTAG, &numbufs, &dbp));
613 613
614 for (i = 0; i < numbufs; i++) { 614 for (i = 0; i < numbufs; i++) {
615 int tocpy; 615 int tocpy;
616 int bufoff; 616 int bufoff;
617 dmu_buf_t *db = dbp[i]; 617 dmu_buf_t *db = dbp[i];
618 618
619 ASSERT(size > 0); 619 ASSERT(size > 0);
620 620
621 bufoff = offset - db->db_offset; 621 bufoff = offset - db->db_offset;
622 tocpy = (int)MIN(db->db_size - bufoff, size); 622 tocpy = (int)MIN(db->db_size - bufoff, size);
623 623
624 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 624 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
625 625
626 if (tocpy == db->db_size) 626 if (tocpy == db->db_size)
627 dmu_buf_will_fill(db, tx); 627 dmu_buf_will_fill(db, tx);
628 else 628 else
629 dmu_buf_will_dirty(db, tx); 629 dmu_buf_will_dirty(db, tx);
630 630
631 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 631 bcopy(buf, (char *)db->db_data + bufoff, tocpy);
632 632
633 if (tocpy == db->db_size) 633 if (tocpy == db->db_size)
634 dmu_buf_fill_done(db, tx); 634 dmu_buf_fill_done(db, tx);
635 635
636 offset += tocpy; 636 offset += tocpy;
637 size -= tocpy; 637 size -= tocpy;
638 buf = (char *)buf + tocpy; 638 buf = (char *)buf + tocpy;
639 } 639 }
640 dmu_buf_rele_array(dbp, numbufs, FTAG); 640 dmu_buf_rele_array(dbp, numbufs, FTAG);
641} 641}
642 642
643void 643void
644dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 644dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
645 dmu_tx_t *tx) 645 dmu_tx_t *tx)
646{ 646{
647 dmu_buf_t **dbp; 647 dmu_buf_t **dbp;
648 int numbufs, i; 648 int numbufs, i;
649 649
650 if (size == 0) 650 if (size == 0)
651 return; 651 return;
652 652
653 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 653 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
654 FALSE, FTAG, &numbufs, &dbp)); 654 FALSE, FTAG, &numbufs, &dbp));
655 655
656 for (i = 0; i < numbufs; i++) { 656 for (i = 0; i < numbufs; i++) {
657 dmu_buf_t *db = dbp[i]; 657 dmu_buf_t *db = dbp[i];
658 658
659 dmu_buf_will_not_fill(db, tx); 659 dmu_buf_will_not_fill(db, tx);
660 } 660 }
661 dmu_buf_rele_array(dbp, numbufs, FTAG); 661 dmu_buf_rele_array(dbp, numbufs, FTAG);
662} 662}
663 663
664/* 664/*
665 * DMU support for xuio 665 * DMU support for xuio
666 */ 666 */
667kstat_t *xuio_ksp = NULL; 667kstat_t *xuio_ksp = NULL;
668 668
669int 669int
670dmu_xuio_init(xuio_t *xuio, int nblk) 670dmu_xuio_init(xuio_t *xuio, int nblk)
671{ 671{
672 dmu_xuio_t *priv; 672 dmu_xuio_t *priv;
673 uio_t *uio = &xuio->xu_uio; 673 uio_t *uio = &xuio->xu_uio;
674 674
675 uio->uio_iovcnt = nblk; 675 uio->uio_iovcnt = nblk;
676 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 676 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
677 677
678 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 678 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
679 priv->cnt = nblk; 679 priv->cnt = nblk;
680 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 680 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
681 priv->iovp = uio->uio_iov; 681 priv->iovp = uio->uio_iov;
682 XUIO_XUZC_PRIV(xuio) = priv; 682 XUIO_XUZC_PRIV(xuio) = priv;
683 683
684#ifdef PORT_SOLARIS 684#ifdef PORT_SOLARIS
685 if (XUIO_XUZC_RW(xuio) == UIO_READ) 685 if (XUIO_XUZC_RW(xuio) == UIO_READ)
686 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 686 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
687 else 687 else
688 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 688 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
689#endif 689#endif
690 690
691 return (0); 691 return (0);
692} 692}
693 693
694void 694void
695dmu_xuio_fini(xuio_t *xuio) 695dmu_xuio_fini(xuio_t *xuio)
696{ 696{
697 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 697 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
698 int nblk = priv->cnt; 698 int nblk = priv->cnt;
699 699
700 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 700 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
701 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 701 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
702 kmem_free(priv, sizeof (dmu_xuio_t)); 702 kmem_free(priv, sizeof (dmu_xuio_t));
703 703
704#ifdef PORT_SOLARIS 704#ifdef PORT_SOLARIS
705 if (XUIO_XUZC_RW(xuio) == UIO_READ) 705 if (XUIO_XUZC_RW(xuio) == UIO_READ)
706 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 706 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
707 else 707 else
708 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 708 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
709#endif 709#endif
710} 710}
711 711
712/* 712/*
713 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 713 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
714 * and increase priv->next by 1. 714 * and increase priv->next by 1.
715 */ 715 */
716int 716int
717dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 717dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
718{ 718{
719 struct iovec *iov; 719 struct iovec *iov;
720 uio_t *uio = &xuio->xu_uio; 720 uio_t *uio = &xuio->xu_uio;
721 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 721 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
722 int i = priv->next++; 722 int i = priv->next++;
723 723
724 ASSERT(i < priv->cnt); 724 ASSERT(i < priv->cnt);
725 ASSERT(off + n <= arc_buf_size(abuf)); 725 ASSERT(off + n <= arc_buf_size(abuf));
726 iov = uio->uio_iov + i; 726 iov = uio->uio_iov + i;
727 iov->iov_base = (char *)abuf->b_data + off; 727 iov->iov_base = (char *)abuf->b_data + off;
728 iov->iov_len = n; 728 iov->iov_len = n;
729 priv->bufs[i] = abuf; 729 priv->bufs[i] = abuf;
730 return (0); 730 return (0);
731} 731}
732 732
733int 733int
734dmu_xuio_cnt(xuio_t *xuio) 734dmu_xuio_cnt(xuio_t *xuio)
735{ 735{
736 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 736 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
737 return (priv->cnt); 737 return (priv->cnt);
738} 738}
739 739
740arc_buf_t * 740arc_buf_t *
741dmu_xuio_arcbuf(xuio_t *xuio, int i) 741dmu_xuio_arcbuf(xuio_t *xuio, int i)
742{ 742{
743 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 743 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
744 744
745 ASSERT(i < priv->cnt); 745 ASSERT(i < priv->cnt);
746 return (priv->bufs[i]); 746 return (priv->bufs[i]);
747} 747}
748 748
749void 749void
750dmu_xuio_clear(xuio_t *xuio, int i) 750dmu_xuio_clear(xuio_t *xuio, int i)
751{ 751{
752 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 752 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
753 753
754 ASSERT(i < priv->cnt); 754 ASSERT(i < priv->cnt);
755 priv->bufs[i] = NULL; 755 priv->bufs[i] = NULL;
756} 756}
757 757
758#ifdef PORT_SOLARIS 758#ifdef PORT_SOLARIS
759static void 759static void
760xuio_stat_init(void) 760xuio_stat_init(void)
761{ 761{
762 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 762 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
763 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 763 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
764 KSTAT_FLAG_VIRTUAL); 764 KSTAT_FLAG_VIRTUAL);
765 if (xuio_ksp != NULL) { 765 if (xuio_ksp != NULL) {
766 xuio_ksp->ks_data = &xuio_stats; 766 xuio_ksp->ks_data = &xuio_stats;
767 kstat_install(xuio_ksp); 767 kstat_install(xuio_ksp);
768 } 768 }
769} 769}
770 770
771static void 771static void
772xuio_stat_fini(void) 772xuio_stat_fini(void)
773{ 773{
774 if (xuio_ksp != NULL) { 774 if (xuio_ksp != NULL) {
775 kstat_delete(xuio_ksp); 775 kstat_delete(xuio_ksp);
776 xuio_ksp = NULL; 776 xuio_ksp = NULL;
777 } 777 }
778} 778}
779#endif 779#endif
780 780
781void 781void
782xuio_stat_wbuf_copied() 782xuio_stat_wbuf_copied()
783{ 783{
784 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 784 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
785} 785}
786 786
787void 787void
788xuio_stat_wbuf_nocopy() 788xuio_stat_wbuf_nocopy()
789{ 789{
790 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 790 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
791} 791}
792 792
793#ifdef _KERNEL 793#ifdef _KERNEL
794int 794int
795dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 795dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
796{ 796{
797 dmu_buf_t **dbp; 797 dmu_buf_t **dbp;
798 int numbufs, i, err; 798 int numbufs, i, err;
799 xuio_t *xuio = NULL; 799 xuio_t *xuio = NULL;
800 800
801 /* 801 /*
802 * NB: we could do this block-at-a-time, but it's nice 802 * NB: we could do this block-at-a-time, but it's nice
803 * to be reading in parallel. 803 * to be reading in parallel.
804 */ 804 */
805 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 805 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
806 &numbufs, &dbp); 806 &numbufs, &dbp);
807 if (err) 807 if (err)
808 return (err); 808 return (err);
809 809
 810#ifndef __NetBSD__ /* XXX xuio */
810 if (uio->uio_extflg == UIO_XUIO) 811 if (uio->uio_extflg == UIO_XUIO)
811 xuio = (xuio_t *)uio; 812 xuio = (xuio_t *)uio;
 813#endif
812 814
813 for (i = 0; i < numbufs; i++) { 815 for (i = 0; i < numbufs; i++) {
814 int tocpy; 816 int tocpy;
815 int bufoff; 817 int bufoff;
816 dmu_buf_t *db = dbp[i]; 818 dmu_buf_t *db = dbp[i];
817 819
818 ASSERT(size > 0); 820 ASSERT(size > 0);
819 821
820 bufoff = uio->uio_loffset - db->db_offset; 822 bufoff = uio->uio_loffset - db->db_offset;
821 tocpy = (int)MIN(db->db_size - bufoff, size); 823 tocpy = (int)MIN(db->db_size - bufoff, size);
822 824
823 if (xuio) { 825 if (xuio) {
824 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 826 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
825 arc_buf_t *dbuf_abuf = dbi->db_buf; 827 arc_buf_t *dbuf_abuf = dbi->db_buf;
826 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 828 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
827 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 829 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
828 if (!err) { 830 if (!err) {
829 uio->uio_resid -= tocpy; 831 uio->uio_resid -= tocpy;
830 uio->uio_loffset += tocpy; 832 uio->uio_loffset += tocpy;
831 } 833 }
832 834
833 if (abuf == dbuf_abuf) 835 if (abuf == dbuf_abuf)
834 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 836 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
835 else 837 else
836 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 838 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
837 } else { 839 } else {
838 err = uiomove((char *)db->db_data + bufoff, tocpy, 840 err = uiomove((char *)db->db_data + bufoff, tocpy,
839 UIO_READ, uio); 841 UIO_READ, uio);
840 } 842 }
841 if (err) 843 if (err)
842 break; 844 break;
843 845
844 size -= tocpy; 846 size -= tocpy;
845 } 847 }
846 dmu_buf_rele_array(dbp, numbufs, FTAG); 848 dmu_buf_rele_array(dbp, numbufs, FTAG);
847 849
848 return (err); 850 return (err);
849} 851}
850 852
851int 853int
852dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 854dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
853 dmu_tx_t *tx) 855 dmu_tx_t *tx)
854{ 856{
855 dmu_buf_t **dbp; 857 dmu_buf_t **dbp;
856 int numbufs, i; 858 int numbufs, i;
857 int err = 0; 859 int err = 0;
858 860
859 if (size == 0) 861 if (size == 0)
860 return (0); 862 return (0);
861 863
862 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, 864 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size,
863 FALSE, FTAG, &numbufs, &dbp); 865 FALSE, FTAG, &numbufs, &dbp);
864 if (err) 866 if (err)
865 return (err); 867 return (err);
866 868
867 for (i = 0; i < numbufs; i++) { 869 for (i = 0; i < numbufs; i++) {
868 int tocpy; 870 int tocpy;
869 int bufoff; 871 int bufoff;
870 dmu_buf_t *db = dbp[i]; 872 dmu_buf_t *db = dbp[i];
871 873
872 ASSERT(size > 0); 874 ASSERT(size > 0);
873 875
874 bufoff = uio->uio_loffset - db->db_offset; 876 bufoff = uio->uio_loffset - db->db_offset;
875 tocpy = (int)MIN(db->db_size - bufoff, size); 877 tocpy = (int)MIN(db->db_size - bufoff, size);
876 878
877 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 879 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
878 880
879 if (tocpy == db->db_size) 881 if (tocpy == db->db_size)
880 dmu_buf_will_fill(db, tx); 882 dmu_buf_will_fill(db, tx);
881 else 883 else
882 dmu_buf_will_dirty(db, tx); 884 dmu_buf_will_dirty(db, tx);
883 885
884 /* 886 /*
885 * XXX uiomove could block forever (eg. nfs-backed 887 * XXX uiomove could block forever (eg. nfs-backed
886 * pages). There needs to be a uiolockdown() function 888 * pages). There needs to be a uiolockdown() function
887 * to lock the pages in memory, so that uiomove won't 889 * to lock the pages in memory, so that uiomove won't
888 * block. 890 * block.
889 */ 891 */
890 err = uiomove((char *)db->db_data + bufoff, tocpy, 892 err = uiomove((char *)db->db_data + bufoff, tocpy,
891 UIO_WRITE, uio); 893 UIO_WRITE, uio);
892 894
893 if (tocpy == db->db_size) 895 if (tocpy == db->db_size)
894 dmu_buf_fill_done(db, tx); 896 dmu_buf_fill_done(db, tx);
895 897
896 if (err) 898 if (err)
897 break; 899 break;
898 900
899 size -= tocpy; 901 size -= tocpy;
900 } 902 }
901 dmu_buf_rele_array(dbp, numbufs, FTAG); 903 dmu_buf_rele_array(dbp, numbufs, FTAG);
902 return (err); 904 return (err);
903} 905}
904 906
905#ifndef __NetBSD__ 907#ifndef __NetBSD__
906int 908int
907dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 909dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
908 page_t *pp, dmu_tx_t *tx) 910 page_t *pp, dmu_tx_t *tx)
909{ 911{
910 dmu_buf_t **dbp; 912 dmu_buf_t **dbp;
911 int numbufs, i; 913 int numbufs, i;
912 int err; 914 int err;
913 915
914 if (size == 0) 916 if (size == 0)
915 return (0); 917 return (0);
916 918
917 err = dmu_buf_hold_array(os, object, offset, size, 919 err = dmu_buf_hold_array(os, object, offset, size,
918 FALSE, FTAG, &numbufs, &dbp); 920 FALSE, FTAG, &numbufs, &dbp);
919 if (err) 921 if (err)
920 return (err); 922 return (err);
921 923
922 for (i = 0; i < numbufs; i++) { 924 for (i = 0; i < numbufs; i++) {
923 int tocpy, copied, thiscpy; 925 int tocpy, copied, thiscpy;
924 int bufoff; 926 int bufoff;
925 dmu_buf_t *db = dbp[i]; 927 dmu_buf_t *db = dbp[i];
926 caddr_t va; 928 caddr_t va;
927 929
928 ASSERT(size > 0); 930 ASSERT(size > 0);
929 ASSERT3U(db->db_size, >=, PAGESIZE); 931 ASSERT3U(db->db_size, >=, PAGESIZE);
930 932
931 bufoff = offset - db->db_offset; 933 bufoff = offset - db->db_offset;
932 tocpy = (int)MIN(db->db_size - bufoff, size); 934 tocpy = (int)MIN(db->db_size - bufoff, size);
933 935
934 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 936 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
935 937
936 if (tocpy == db->db_size) 938 if (tocpy == db->db_size)
937 dmu_buf_will_fill(db, tx); 939 dmu_buf_will_fill(db, tx);
938 else 940 else
939 dmu_buf_will_dirty(db, tx); 941 dmu_buf_will_dirty(db, tx);
940 942
941 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 943 for (copied = 0; copied < tocpy; copied += PAGESIZE) {
942 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 944 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
943 thiscpy = MIN(PAGESIZE, tocpy - copied); 945 thiscpy = MIN(PAGESIZE, tocpy - copied);
944 va = zfs_map_page(pp, S_READ); 946 va = zfs_map_page(pp, S_READ);
945 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 947 bcopy(va, (char *)db->db_data + bufoff, thiscpy);
946 zfs_unmap_page(pp, va); 948 zfs_unmap_page(pp, va);
947 pp = pp->p_next; 949 pp = pp->p_next;
948 bufoff += PAGESIZE; 950 bufoff += PAGESIZE;
949 } 951 }
950 952
951 if (tocpy == db->db_size) 953 if (tocpy == db->db_size)
952 dmu_buf_fill_done(db, tx); 954 dmu_buf_fill_done(db, tx);
953 955
954 offset += tocpy; 956 offset += tocpy;
955 size -= tocpy; 957 size -= tocpy;
956 } 958 }
957 dmu_buf_rele_array(dbp, numbufs, FTAG); 959 dmu_buf_rele_array(dbp, numbufs, FTAG);
958 return (err); 960 return (err);
959} 961}
960#endif /* __NetBSD__ */ 962#endif /* __NetBSD__ */
961#endif 963#endif
962 964
963/* 965/*
964 * Allocate a loaned anonymous arc buffer. 966 * Allocate a loaned anonymous arc buffer.
965 */ 967 */
966arc_buf_t * 968arc_buf_t *
967dmu_request_arcbuf(dmu_buf_t *handle, int size) 969dmu_request_arcbuf(dmu_buf_t *handle, int size)
968{ 970{
969 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; 971 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode;
970 972
971 return (arc_loan_buf(dn->dn_objset->os_spa, size)); 973 return (arc_loan_buf(dn->dn_objset->os_spa, size));
972} 974}
973 975
974/* 976/*
975 * Free a loaned arc buffer. 977 * Free a loaned arc buffer.
976 */ 978 */
977void 979void
978dmu_return_arcbuf(arc_buf_t *buf) 980dmu_return_arcbuf(arc_buf_t *buf)
979{ 981{
980 arc_return_buf(buf, FTAG); 982 arc_return_buf(buf, FTAG);
981 VERIFY(arc_buf_remove_ref(buf, FTAG) == 1); 983 VERIFY(arc_buf_remove_ref(buf, FTAG) == 1);
982} 984}
983 985
984/* 986/*
985 * When possible directly assign passed loaned arc buffer to a dbuf. 987 * When possible directly assign passed loaned arc buffer to a dbuf.
986 * If this is not possible copy the contents of passed arc buf via 988 * If this is not possible copy the contents of passed arc buf via
987 * dmu_write(). 989 * dmu_write().
988 */ 990 */
989void 991void
990dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 992dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
991 dmu_tx_t *tx) 993 dmu_tx_t *tx)
992{ 994{
993 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; 995 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode;
994 dmu_buf_impl_t *db; 996 dmu_buf_impl_t *db;
995 uint32_t blksz = (uint32_t)arc_buf_size(buf); 997 uint32_t blksz = (uint32_t)arc_buf_size(buf);
996 uint64_t blkid; 998 uint64_t blkid;
997 999
998 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1000 rw_enter(&dn->dn_struct_rwlock, RW_READER);
999 blkid = dbuf_whichblock(dn, offset); 1001 blkid = dbuf_whichblock(dn, offset);
1000 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1002 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1001 rw_exit(&dn->dn_struct_rwlock); 1003 rw_exit(&dn->dn_struct_rwlock);
1002 1004
1003 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1005 if (offset == db->db.db_offset && blksz == db->db.db_size) {
1004 dbuf_assign_arcbuf(db, buf, tx); 1006 dbuf_assign_arcbuf(db, buf, tx);
1005 dbuf_rele(db, FTAG); 1007 dbuf_rele(db, FTAG);
1006 } else { 1008 } else {
1007 dbuf_rele(db, FTAG); 1009 dbuf_rele(db, FTAG);
1008 dmu_write(dn->dn_objset, dn->dn_object, offset, blksz, 1010 dmu_write(dn->dn_objset, dn->dn_object, offset, blksz,
1009 buf->b_data, tx); 1011 buf->b_data, tx);
1010 dmu_return_arcbuf(buf); 1012 dmu_return_arcbuf(buf);
1011 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1013 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1012 } 1014 }
1013} 1015}
1014 1016
1015typedef struct { 1017typedef struct {
1016 dbuf_dirty_record_t *dsa_dr; 1018 dbuf_dirty_record_t *dsa_dr;
1017 dmu_sync_cb_t *dsa_done; 1019 dmu_sync_cb_t *dsa_done;
1018 zgd_t *dsa_zgd; 1020 zgd_t *dsa_zgd;
1019 dmu_tx_t *dsa_tx; 1021 dmu_tx_t *dsa_tx;
1020} dmu_sync_arg_t; 1022} dmu_sync_arg_t;
1021 1023
1022/* ARGSUSED */ 1024/* ARGSUSED */
1023static void 1025static void
1024dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1026dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1025{ 1027{
1026 dmu_sync_arg_t *dsa = varg; 1028 dmu_sync_arg_t *dsa = varg;
1027 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1029 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1028 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1030 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
1029 blkptr_t *bp = zio->io_bp; 1031 blkptr_t *bp = zio->io_bp;
1030 1032
1031 if (zio->io_error == 0) { 1033 if (zio->io_error == 0) {
1032 if (BP_IS_HOLE(bp)) { 1034 if (BP_IS_HOLE(bp)) {
1033 /* 1035 /*
1034 * A block of zeros may compress to a hole, but the 1036 * A block of zeros may compress to a hole, but the
1035 * block size still needs to be known for replay. 1037 * block size still needs to be known for replay.
1036 */ 1038 */
1037 BP_SET_LSIZE(bp, db->db_size); 1039 BP_SET_LSIZE(bp, db->db_size);
1038 } else { 1040 } else {
1039 ASSERT(BP_GET_TYPE(bp) == dn->dn_type); 1041 ASSERT(BP_GET_TYPE(bp) == dn->dn_type);
1040 ASSERT(BP_GET_LEVEL(bp) == 0); 1042 ASSERT(BP_GET_LEVEL(bp) == 0);
1041 bp->blk_fill = 1; 1043 bp->blk_fill = 1;
1042 } 1044 }
1043 } 1045 }
1044} 1046}
1045 1047
1046static void 1048static void
1047dmu_sync_late_arrival_ready(zio_t *zio) 1049dmu_sync_late_arrival_ready(zio_t *zio)
1048{ 1050{
1049 dmu_sync_ready(zio, NULL, zio->io_private); 1051 dmu_sync_ready(zio, NULL, zio->io_private);
1050} 1052}
1051 1053
1052/* ARGSUSED */ 1054/* ARGSUSED */
1053static void 1055static void
1054dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1056dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1055{ 1057{
1056 dmu_sync_arg_t *dsa = varg; 1058 dmu_sync_arg_t *dsa = varg;
1057 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1059 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1058 dmu_buf_impl_t *db = dr->dr_dbuf; 1060 dmu_buf_impl_t *db = dr->dr_dbuf;
1059 1061
1060 mutex_enter(&db->db_mtx); 1062 mutex_enter(&db->db_mtx);
1061 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1063 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1062 if (zio->io_error == 0) { 1064 if (zio->io_error == 0) {
1063 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1065 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1064 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1066 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1065 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1067 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1066 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1068 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1067 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1069 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1068 } else { 1070 } else {
1069 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1071 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1070 } 1072 }
1071 cv_broadcast(&db->db_changed); 1073 cv_broadcast(&db->db_changed);
1072 mutex_exit(&db->db_mtx); 1074 mutex_exit(&db->db_mtx);
1073 1075
1074 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1076 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1075 1077
1076 kmem_free(dsa, sizeof (*dsa)); 1078 kmem_free(dsa, sizeof (*dsa));
1077} 1079}
1078 1080
1079static void 1081static void
1080dmu_sync_late_arrival_done(zio_t *zio) 1082dmu_sync_late_arrival_done(zio_t *zio)
1081{ 1083{
1082 blkptr_t *bp = zio->io_bp; 1084 blkptr_t *bp = zio->io_bp;
1083 dmu_sync_arg_t *dsa = zio->io_private; 1085 dmu_sync_arg_t *dsa = zio->io_private;
1084 1086
1085 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1087 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1086 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1088 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1087 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1089 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1088 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1090 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1089 } 1091 }
1090 1092
1091 dmu_tx_commit(dsa->dsa_tx); 1093 dmu_tx_commit(dsa->dsa_tx);
1092 1094
1093 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1095 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1094 1096
1095 kmem_free(dsa, sizeof (*dsa)); 1097 kmem_free(dsa, sizeof (*dsa));
1096} 1098}
1097 1099
1098static int 1100static int
1099dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1101dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1100 zio_prop_t *zp, zbookmark_t *zb) 1102 zio_prop_t *zp, zbookmark_t *zb)
1101{ 1103{
1102 dmu_sync_arg_t *dsa; 1104 dmu_sync_arg_t *dsa;
1103 dmu_tx_t *tx; 1105 dmu_tx_t *tx;
1104 1106
1105 tx = dmu_tx_create(os); 1107 tx = dmu_tx_create(os);
1106 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1108 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1107 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1109 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1108 dmu_tx_abort(tx); 1110 dmu_tx_abort(tx);
1109 return (EIO); /* Make zl_get_data do txg_waited_synced() */ 1111 return (EIO); /* Make zl_get_data do txg_waited_synced() */
1110 } 1112 }
1111 1113
1112 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1114 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1113 dsa->dsa_dr = NULL; 1115 dsa->dsa_dr = NULL;
1114 dsa->dsa_done = done; 1116 dsa->dsa_done = done;
1115 dsa->dsa_zgd = zgd; 1117 dsa->dsa_zgd = zgd;
1116 dsa->dsa_tx = tx; 1118 dsa->dsa_tx = tx;
1117 1119
1118 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1120 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1119 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1121 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1120 dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa, 1122 dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa,
1121 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1123 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1122 1124
1123 return (0); 1125 return (0);
1124} 1126}
1125 1127
1126/* 1128/*
1127 * Intent log support: sync the block associated with db to disk. 1129 * Intent log support: sync the block associated with db to disk.
1128 * N.B. and XXX: the caller is responsible for making sure that the 1130 * N.B. and XXX: the caller is responsible for making sure that the
1129 * data isn't changing while dmu_sync() is writing it. 1131 * data isn't changing while dmu_sync() is writing it.
1130 * 1132 *
1131 * Return values: 1133 * Return values:
1132 * 1134 *
1133 * EEXIST: this txg has already been synced, so there's nothing to to. 1135 * EEXIST: this txg has already been synced, so there's nothing to to.
1134 * The caller should not log the write. 1136 * The caller should not log the write.
1135 * 1137 *
1136 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1138 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1137 * The caller should not log the write. 1139 * The caller should not log the write.
1138 * 1140 *
1139 * EALREADY: this block is already in the process of being synced. 1141 * EALREADY: this block is already in the process of being synced.
1140 * The caller should track its progress (somehow). 1142 * The caller should track its progress (somehow).
1141 * 1143 *
1142 * EIO: could not do the I/O. 1144 * EIO: could not do the I/O.
1143 * The caller should do a txg_wait_synced(). 1145 * The caller should do a txg_wait_synced().
1144 * 1146 *
1145 * 0: the I/O has been initiated. 1147 * 0: the I/O has been initiated.
1146 * The caller should log this blkptr in the done callback. 1148 * The caller should log this blkptr in the done callback.
1147 * It is possible that the I/O will fail, in which case 1149 * It is possible that the I/O will fail, in which case
1148 * the error will be reported to the done callback and 1150 * the error will be reported to the done callback and
1149 * propagated to pio from zio_done(). 1151 * propagated to pio from zio_done().
1150 */ 1152 */
1151int 1153int
1152dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1154dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1153{ 1155{
1154 blkptr_t *bp = zgd->zgd_bp; 1156 blkptr_t *bp = zgd->zgd_bp;
1155 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1157 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1156 objset_t *os = db->db_objset; 1158 objset_t *os = db->db_objset;
1157 dsl_dataset_t *ds = os->os_dsl_dataset; 1159 dsl_dataset_t *ds = os->os_dsl_dataset;
1158 dbuf_dirty_record_t *dr; 1160 dbuf_dirty_record_t *dr;
1159 dmu_sync_arg_t *dsa; 1161 dmu_sync_arg_t *dsa;
1160 zbookmark_t zb; 1162 zbookmark_t zb;
1161 zio_prop_t zp; 1163 zio_prop_t zp;
1162 1164
1163 ASSERT(pio != NULL); 1165 ASSERT(pio != NULL);
1164 ASSERT(BP_IS_HOLE(bp)); 1166 ASSERT(BP_IS_HOLE(bp));
1165 ASSERT(txg != 0); 1167 ASSERT(txg != 0);
1166 1168
1167 SET_BOOKMARK(&zb, ds->ds_object, 1169 SET_BOOKMARK(&zb, ds->ds_object,
1168 db->db.db_object, db->db_level, db->db_blkid); 1170 db->db.db_object, db->db_level, db->db_blkid);
1169 1171
1170 dmu_write_policy(os, db->db_dnode, db->db_level, WP_DMU_SYNC, &zp); 1172 dmu_write_policy(os, db->db_dnode, db->db_level, WP_DMU_SYNC, &zp);
1171 1173
1172 /* 1174 /*
1173 * If we're frozen (running ziltest), we always need to generate a bp. 1175 * If we're frozen (running ziltest), we always need to generate a bp.
1174 */ 1176 */
1175 if (txg > spa_freeze_txg(os->os_spa)) 1177 if (txg > spa_freeze_txg(os->os_spa))
1176 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1178 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1177 1179
1178 /* 1180 /*
1179 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1181 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1180 * and us. If we determine that this txg is not yet syncing, 1182 * and us. If we determine that this txg is not yet syncing,
1181 * but it begins to sync a moment later, that's OK because the 1183 * but it begins to sync a moment later, that's OK because the
1182 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1184 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1183 */ 1185 */
1184 mutex_enter(&db->db_mtx); 1186 mutex_enter(&db->db_mtx);
1185 1187
1186 if (txg <= spa_last_synced_txg(os->os_spa)) { 1188 if (txg <= spa_last_synced_txg(os->os_spa)) {
1187 /* 1189 /*
1188 * This txg has already synced. There's nothing to do. 1190 * This txg has already synced. There's nothing to do.
1189 */ 1191 */
1190 mutex_exit(&db->db_mtx); 1192 mutex_exit(&db->db_mtx);
1191 return (EEXIST); 1193 return (EEXIST);
1192 } 1194 }
1193 1195
1194 if (txg <= spa_syncing_txg(os->os_spa)) { 1196 if (txg <= spa_syncing_txg(os->os_spa)) {
1195 /* 1197 /*
1196 * This txg is currently syncing, so we can't mess with 1198 * This txg is currently syncing, so we can't mess with
1197 * the dirty record anymore; just write a new log block. 1199 * the dirty record anymore; just write a new log block.
1198 */ 1200 */
1199 mutex_exit(&db->db_mtx); 1201 mutex_exit(&db->db_mtx);
1200 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1202 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1201 } 1203 }
1202 1204
1203 dr = db->db_last_dirty; 1205 dr = db->db_last_dirty;
1204 while (dr && dr->dr_txg != txg) 1206 while (dr && dr->dr_txg != txg)
1205 dr = dr->dr_next; 1207 dr = dr->dr_next;
1206 1208
1207 if (dr == NULL) { 1209 if (dr == NULL) {
1208 /* 1210 /*
1209 * There's no dr for this dbuf, so it must have been freed. 1211 * There's no dr for this dbuf, so it must have been freed.
1210 * There's no need to log writes to freed blocks, so we're done. 1212 * There's no need to log writes to freed blocks, so we're done.
1211 */ 1213 */
1212 mutex_exit(&db->db_mtx); 1214 mutex_exit(&db->db_mtx);
1213 return (ENOENT); 1215 return (ENOENT);
1214 } 1216 }
1215 1217
1216 ASSERT(dr->dr_txg == txg); 1218 ASSERT(dr->dr_txg == txg);
1217 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1219 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1218 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1220 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1219 /* 1221 /*
1220 * We have already issued a sync write for this buffer, 1222 * We have already issued a sync write for this buffer,
1221 * or this buffer has already been synced. It could not 1223 * or this buffer has already been synced. It could not
1222 * have been dirtied since, or we would have cleared the state. 1224 * have been dirtied since, or we would have cleared the state.
1223 */ 1225 */
1224 mutex_exit(&db->db_mtx); 1226 mutex_exit(&db->db_mtx);
1225 return (EALREADY); 1227 return (EALREADY);
1226 } 1228 }
1227 1229
1228 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1230 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1229 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1231 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1230 mutex_exit(&db->db_mtx); 1232 mutex_exit(&db->db_mtx);
1231 1233
1232 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1234 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1233 dsa->dsa_dr = dr; 1235 dsa->dsa_dr = dr;
1234 dsa->dsa_done = done; 1236 dsa->dsa_done = done;
1235 dsa->dsa_zgd = zgd; 1237 dsa->dsa_zgd = zgd;
1236 dsa->dsa_tx = NULL; 1238 dsa->dsa_tx = NULL;
1237 1239
1238 zio_nowait(arc_write(pio, os->os_spa, txg, 1240 zio_nowait(arc_write(pio, os->os_spa, txg,
1239 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp, 1241 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp,
1240 dmu_sync_ready, dmu_sync_done, dsa, 1242 dmu_sync_ready, dmu_sync_done, dsa,
1241 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1243 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
1242 1244
1243 return (0); 1245 return (0);
1244} 1246}
1245 1247
1246int 1248int
1247dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1249dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1248 dmu_tx_t *tx) 1250 dmu_tx_t *tx)
1249{ 1251{
1250 dnode_t *dn; 1252 dnode_t *dn;
1251 int err; 1253 int err;
1252 1254
1253 err = dnode_hold(os, object, FTAG, &dn); 1255 err = dnode_hold(os, object, FTAG, &dn);
1254 if (err) 1256 if (err)
1255 return (err); 1257 return (err);
1256 err = dnode_set_blksz(dn, size, ibs, tx); 1258 err = dnode_set_blksz(dn, size, ibs, tx);
1257 dnode_rele(dn, FTAG); 1259 dnode_rele(dn, FTAG);
1258 return (err); 1260 return (err);
1259} 1261}
1260 1262
1261void 1263void
1262dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1264dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1263 dmu_tx_t *tx) 1265 dmu_tx_t *tx)
1264{ 1266{
1265 dnode_t *dn; 1267 dnode_t *dn;
1266 1268
1267 /* XXX assumes dnode_hold will not get an i/o error */ 1269 /* XXX assumes dnode_hold will not get an i/o error */
1268 (void) dnode_hold(os, object, FTAG, &dn); 1270 (void) dnode_hold(os, object, FTAG, &dn);
1269 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1271 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1270 dn->dn_checksum = checksum; 1272 dn->dn_checksum = checksum;
1271 dnode_setdirty(dn, tx); 1273 dnode_setdirty(dn, tx);
1272 dnode_rele(dn, FTAG); 1274 dnode_rele(dn, FTAG);
1273} 1275}
1274 1276
1275void 1277void
1276dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1278dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1277 dmu_tx_t *tx) 1279 dmu_tx_t *tx)
1278{ 1280{
1279 dnode_t *dn; 1281 dnode_t *dn;
1280 1282
1281 /* XXX assumes dnode_hold will not get an i/o error */ 1283 /* XXX assumes dnode_hold will not get an i/o error */
1282 (void) dnode_hold(os, object, FTAG, &dn); 1284 (void) dnode_hold(os, object, FTAG, &dn);
1283 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1285 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1284 dn->dn_compress = compress; 1286 dn->dn_compress = compress;
1285 dnode_setdirty(dn, tx); 1287 dnode_setdirty(dn, tx);
1286 dnode_rele(dn, FTAG); 1288 dnode_rele(dn, FTAG);
1287} 1289}
1288 1290
1289int zfs_mdcomp_disable = 0; 1291int zfs_mdcomp_disable = 0;
1290 1292
1291void 1293void
1292dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1294dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1293{ 1295{
1294 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1296 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1295 boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata); 1297 boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata);
1296 enum zio_checksum checksum = os->os_checksum; 1298 enum zio_checksum checksum = os->os_checksum;
1297 enum zio_compress compress = os->os_compress; 1299 enum zio_compress compress = os->os_compress;
1298 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1300 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1299 boolean_t dedup; 1301 boolean_t dedup;
1300 boolean_t dedup_verify = os->os_dedup_verify; 1302 boolean_t dedup_verify = os->os_dedup_verify;
1301 int copies = os->os_copies; 1303 int copies = os->os_copies;
1302 1304
1303 /* 1305 /*
1304 * Determine checksum setting. 1306 * Determine checksum setting.
1305 */ 1307 */
1306 if (ismd) { 1308 if (ismd) {
1307 /* 1309 /*
1308 * Metadata always gets checksummed. If the data 1310 * Metadata always gets checksummed. If the data
1309 * checksum is multi-bit correctable, and it's not a 1311 * checksum is multi-bit correctable, and it's not a
1310 * ZBT-style checksum, then it's suitable for metadata 1312 * ZBT-style checksum, then it's suitable for metadata
1311 * as well. Otherwise, the metadata checksum defaults 1313 * as well. Otherwise, the metadata checksum defaults
1312 * to fletcher4. 1314 * to fletcher4.
1313 */ 1315 */
1314 if (zio_checksum_table[checksum].ci_correctable < 1 || 1316 if (zio_checksum_table[checksum].ci_correctable < 1 ||
1315 zio_checksum_table[checksum].ci_eck) 1317 zio_checksum_table[checksum].ci_eck)
1316 checksum = ZIO_CHECKSUM_FLETCHER_4; 1318 checksum = ZIO_CHECKSUM_FLETCHER_4;
1317 } else { 1319 } else {
1318 checksum = zio_checksum_select(dn->dn_checksum, checksum); 1320 checksum = zio_checksum_select(dn->dn_checksum, checksum);
1319 } 1321 }
1320 1322
1321 /* 1323 /*
1322 * Determine compression setting. 1324 * Determine compression setting.
1323 */ 1325 */
1324 if (ismd) { 1326 if (ismd) {
1325 /* 1327 /*
1326 * XXX -- we should design a compression algorithm 1328 * XXX -- we should design a compression algorithm
1327 * that specializes in arrays of bps. 1329 * that specializes in arrays of bps.
1328 */ 1330 */
1329 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 1331 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY :
1330 ZIO_COMPRESS_LZJB; 1332 ZIO_COMPRESS_LZJB;
1331 } else { 1333 } else {
1332 compress = zio_compress_select(dn->dn_compress, compress); 1334 compress = zio_compress_select(dn->dn_compress, compress);
1333 } 1335 }
1334 1336
1335 /* 1337 /*
1336 * Determine dedup setting. If we are in dmu_sync(), we won't 1338 * Determine dedup setting. If we are in dmu_sync(), we won't
1337 * actually dedup now because that's all done in syncing context; 1339 * actually dedup now because that's all done in syncing context;
1338 * but we do want to use the dedup checkum. If the checksum is not 1340 * but we do want to use the dedup checkum. If the checksum is not
1339 * strong enough to ensure unique signatures, force dedup_verify. 1341 * strong enough to ensure unique signatures, force dedup_verify.
1340 */ 1342 */
1341 dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF); 1343 dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF);
1342 if (dedup) { 1344 if (dedup) {
1343 checksum = dedup_checksum; 1345 checksum = dedup_checksum;
1344 if (!zio_checksum_table[checksum].ci_dedup) 1346 if (!zio_checksum_table[checksum].ci_dedup)
1345 dedup_verify = 1; 1347 dedup_verify = 1;
1346 } 1348 }
1347 1349
1348 if (wp & WP_DMU_SYNC) 1350 if (wp & WP_DMU_SYNC)
1349 dedup = 0; 1351 dedup = 0;
1350 1352
1351 if (wp & WP_NOFILL) { 1353 if (wp & WP_NOFILL) {
1352 ASSERT(!ismd && level == 0); 1354 ASSERT(!ismd && level == 0);
1353 checksum = ZIO_CHECKSUM_OFF; 1355 checksum = ZIO_CHECKSUM_OFF;
1354 compress = ZIO_COMPRESS_OFF; 1356 compress = ZIO_COMPRESS_OFF;
1355 dedup = B_FALSE; 1357 dedup = B_FALSE;
1356 } 1358 }
1357 1359
1358 zp->zp_checksum = checksum; 1360 zp->zp_checksum = checksum;
1359 zp->zp_compress = compress; 1361 zp->zp_compress = compress;
1360 zp->zp_type = type; 1362 zp->zp_type = type;
1361 zp->zp_level = level; 1363 zp->zp_level = level;
1362 zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa)); 1364 zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa));
1363 zp->zp_dedup = dedup; 1365 zp->zp_dedup = dedup;
1364 zp->zp_dedup_verify = dedup && dedup_verify; 1366 zp->zp_dedup_verify = dedup && dedup_verify;
1365} 1367}
1366 1368
1367int 1369int
1368dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1370dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1369{ 1371{
1370 dnode_t *dn; 1372 dnode_t *dn;
1371 int i, err; 1373 int i, err;
1372 1374
1373 err = dnode_hold(os, object, FTAG, &dn); 1375 err = dnode_hold(os, object, FTAG, &dn);
1374 if (err) 1376 if (err)
1375 return (err); 1377 return (err);
1376 /* 1378 /*
1377 * Sync any current changes before 1379 * Sync any current changes before
1378 * we go trundling through the block pointers. 1380 * we go trundling through the block pointers.
1379 */ 1381 */
1380 for (i = 0; i < TXG_SIZE; i++) { 1382 for (i = 0; i < TXG_SIZE; i++) {
1381 if (list_link_active(&dn->dn_dirty_link[i])) 1383 if (list_link_active(&dn->dn_dirty_link[i]))
1382 break; 1384 break;
1383 } 1385 }
1384 if (i != TXG_SIZE) { 1386 if (i != TXG_SIZE) {
1385 dnode_rele(dn, FTAG); 1387 dnode_rele(dn, FTAG);
1386 txg_wait_synced(dmu_objset_pool(os), 0); 1388 txg_wait_synced(dmu_objset_pool(os), 0);
1387 err = dnode_hold(os, object, FTAG, &dn); 1389 err = dnode_hold(os, object, FTAG, &dn);
1388 if (err) 1390 if (err)
1389 return (err); 1391 return (err);
1390 } 1392 }
1391 1393
1392 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1394 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1393 dnode_rele(dn, FTAG); 1395 dnode_rele(dn, FTAG);
1394 1396
1395 return (err); 1397 return (err);
1396} 1398}
1397 1399
1398void 1400void
1399dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1401dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1400{ 1402{
1401 dnode_phys_t *dnp; 1403 dnode_phys_t *dnp;
1402 1404
1403 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1405 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1404 mutex_enter(&dn->dn_mtx); 1406 mutex_enter(&dn->dn_mtx);
1405 1407
1406 dnp = dn->dn_phys; 1408 dnp = dn->dn_phys;
1407 1409
1408 doi->doi_data_block_size = dn->dn_datablksz; 1410 doi->doi_data_block_size = dn->dn_datablksz;
1409 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1411 doi->doi_metadata_block_size = dn->dn_indblkshift ?
1410 1ULL << dn->dn_indblkshift : 0; 1412 1ULL << dn->dn_indblkshift : 0;
1411 doi->doi_type = dn->dn_type; 1413 doi->doi_type = dn->dn_type;
1412 doi->doi_bonus_type = dn->dn_bonustype; 1414 doi->doi_bonus_type = dn->dn_bonustype;
1413 doi->doi_bonus_size = dn->dn_bonuslen; 1415 doi->doi_bonus_size = dn->dn_bonuslen;
1414 doi->doi_indirection = dn->dn_nlevels; 1416 doi->doi_indirection = dn->dn_nlevels;
1415 doi->doi_checksum = dn->dn_checksum; 1417 doi->doi_checksum = dn->dn_checksum;
1416 doi->doi_compress = dn->dn_compress; 1418 doi->doi_compress = dn->dn_compress;
1417 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1419 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1418 doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz; 1420 doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz;
1419 doi->doi_fill_count = 0; 1421 doi->doi_fill_count = 0;
1420 for (int i = 0; i < dnp->dn_nblkptr; i++) 1422 for (int i = 0; i < dnp->dn_nblkptr; i++)
1421 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1423 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1422 1424
1423 mutex_exit(&dn->dn_mtx); 1425 mutex_exit(&dn->dn_mtx);
1424 rw_exit(&dn->dn_struct_rwlock); 1426 rw_exit(&dn->dn_struct_rwlock);
1425} 1427}
1426 1428
1427/* 1429/*
1428 * Get information on a DMU object. 1430 * Get information on a DMU object.
1429 * If doi is NULL, just indicates whether the object exists. 1431 * If doi is NULL, just indicates whether the object exists.
1430 */ 1432 */
1431int 1433int
1432dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1434dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1433{ 1435{
1434 dnode_t *dn; 1436 dnode_t *dn;
1435 int err = dnode_hold(os, object, FTAG, &dn); 1437 int err = dnode_hold(os, object, FTAG, &dn);
1436 1438
1437 if (err) 1439 if (err)
1438 return (err); 1440 return (err);
1439 1441
1440 if (doi != NULL) 1442 if (doi != NULL)
1441 dmu_object_info_from_dnode(dn, doi); 1443 dmu_object_info_from_dnode(dn, doi);
1442 1444
1443 dnode_rele(dn, FTAG); 1445 dnode_rele(dn, FTAG);
1444 return (0); 1446 return (0);
1445} 1447}
1446 1448
1447/* 1449/*
1448 * As above, but faster; can be used when you have a held dbuf in hand. 1450 * As above, but faster; can be used when you have a held dbuf in hand.
1449 */ 1451 */
1450void 1452void
1451dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi) 1453dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi)
1452{ 1454{
1453 dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi); 1455 dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi);
1454} 1456}
1455 1457
1456/* 1458/*
1457 * Faster still when you only care about the size. 1459 * Faster still when you only care about the size.
1458 * This is specifically optimized for zfs_getattr(). 1460 * This is specifically optimized for zfs_getattr().
1459 */ 1461 */
1460void 1462void
1461dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512) 1463dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512)
1462{ 1464{
1463 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1465 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode;
1464 1466
1465 *blksize = dn->dn_datablksz; 1467 *blksize = dn->dn_datablksz;
1466 /* add 1 for dnode space */ 1468 /* add 1 for dnode space */
1467 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1469 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1468 SPA_MINBLOCKSHIFT) + 1; 1470 SPA_MINBLOCKSHIFT) + 1;
1469} 1471}
1470 1472
1471void 1473void
1472byteswap_uint64_array(void *vbuf, size_t size) 1474byteswap_uint64_array(void *vbuf, size_t size)
1473{ 1475{
1474 uint64_t *buf = vbuf; 1476 uint64_t *buf = vbuf;
1475 size_t count = size >> 3; 1477 size_t count = size >> 3;
1476 int i; 1478 int i;
1477 1479
1478 ASSERT((size & 7) == 0); 1480 ASSERT((size & 7) == 0);
1479 1481
1480 for (i = 0; i < count; i++) 1482 for (i = 0; i < count; i++)
1481 buf[i] = BSWAP_64(buf[i]); 1483 buf[i] = BSWAP_64(buf[i]);
1482} 1484}
1483 1485
1484void 1486void
1485byteswap_uint32_array(void *vbuf, size_t size) 1487byteswap_uint32_array(void *vbuf, size_t size)
1486{ 1488{
1487 uint32_t *buf = vbuf; 1489 uint32_t *buf = vbuf;
1488 size_t count = size >> 2; 1490 size_t count = size >> 2;
1489 int i; 1491 int i;
1490 1492
1491 ASSERT((size & 3) == 0); 1493 ASSERT((size & 3) == 0);
1492 1494
1493 for (i = 0; i < count; i++) 1495 for (i = 0; i < count; i++)
1494 buf[i] = BSWAP_32(buf[i]); 1496 buf[i] = BSWAP_32(buf[i]);
1495} 1497}
1496 1498
1497void 1499void
1498byteswap_uint16_array(void *vbuf, size_t size) 1500byteswap_uint16_array(void *vbuf, size_t size)
1499{ 1501{
1500 uint16_t *buf = vbuf; 1502 uint16_t *buf = vbuf;
1501 size_t count = size >> 1; 1503 size_t count = size >> 1;
1502 int i; 1504 int i;
1503 1505
1504 ASSERT((size & 1) == 0); 1506 ASSERT((size & 1) == 0);
1505 1507
1506 for (i = 0; i < count; i++) 1508 for (i = 0; i < count; i++)
1507 buf[i] = BSWAP_16(buf[i]); 1509 buf[i] = BSWAP_16(buf[i]);
1508} 1510}
1509 1511
1510/* ARGSUSED */ 1512/* ARGSUSED */
1511void 1513void
1512byteswap_uint8_array(void *vbuf, size_t size) 1514byteswap_uint8_array(void *vbuf, size_t size)
1513{ 1515{
1514} 1516}
1515 1517
1516void 1518void
1517dmu_init(void) 1519dmu_init(void)
1518{ 1520{
1519 dbuf_init(); 1521 dbuf_init();
1520 dnode_init(); 1522 dnode_init();
1521 zfetch_init(); 1523 zfetch_init();
1522 arc_init(); 1524 arc_init();
1523 l2arc_init(); 1525 l2arc_init();
1524#ifdef PORT_SOLARIS  1526#ifdef PORT_SOLARIS
1525 xuio_stat_init(); 1527 xuio_stat_init();
1526#endif  1528#endif
1527} 1529}
1528 1530
1529void 1531void
1530dmu_fini(void) 1532dmu_fini(void)
1531{ 1533{
1532 arc_fini(); 1534 arc_fini();
1533 zfetch_fini(); 1535 zfetch_fini();
1534 dnode_fini(); 1536 dnode_fini();
1535 dbuf_fini(); 1537 dbuf_fini();
1536 l2arc_fini(); 1538 l2arc_fini();
1537#ifdef PORT_SOLARIS 1539#ifdef PORT_SOLARIS
1538 xuio_stat_fini(); 1540 xuio_stat_fini();
1539#endif  1541#endif
1540} 1542}