Fri Jul 24 05:19:14 2015 UTC ()
- fix sc_ev_missing_ticks over-counting.
- don't use 64bit division, because it has expensive cost on gcc/arm
  whether it is a constant or not.

'delta' is usually taken a value around sc_autoinc depending on timing
of read. therefore 'delta / sc->sc_autoinc' would be count too much.


(ryo)
diff -r1.12 -r1.13 src/sys/arch/arm/cortex/a9tmr.c

cvs diff -r1.12 -r1.13 src/sys/arch/arm/cortex/a9tmr.c (switch to unified diff)

--- src/sys/arch/arm/cortex/a9tmr.c 2015/03/04 23:18:21 1.12
+++ src/sys/arch/arm/cortex/a9tmr.c 2015/07/24 05:19:13 1.13
@@ -1,369 +1,371 @@ @@ -1,369 +1,371 @@
1/* $NetBSD: a9tmr.c,v 1.12 2015/03/04 23:18:21 jmcneill Exp $ */ 1/* $NetBSD: a9tmr.c,v 1.13 2015/07/24 05:19:13 ryo Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 2012 The NetBSD Foundation, Inc. 4 * Copyright (c) 2012 The NetBSD Foundation, Inc.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * This code is derived from software contributed to The NetBSD Foundation 7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas 8 * by Matt Thomas
9 * 9 *
10 * Redistribution and use in source and binary forms, with or without 10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions 11 * modification, are permitted provided that the following conditions
12 * are met: 12 * are met:
13 * 1. Redistributions of source code must retain the above copyright 13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer. 14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright 15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the 16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution. 17 * documentation and/or other materials provided with the distribution.
18 * 18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE. 29 * POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31 31
32#include <sys/cdefs.h> 32#include <sys/cdefs.h>
33__KERNEL_RCSID(0, "$NetBSD: a9tmr.c,v 1.12 2015/03/04 23:18:21 jmcneill Exp $"); 33__KERNEL_RCSID(0, "$NetBSD: a9tmr.c,v 1.13 2015/07/24 05:19:13 ryo Exp $");
34 34
35#include <sys/param.h> 35#include <sys/param.h>
36#include <sys/bus.h> 36#include <sys/bus.h>
37#include <sys/device.h> 37#include <sys/device.h>
38#include <sys/intr.h> 38#include <sys/intr.h>
39#include <sys/kernel.h> 39#include <sys/kernel.h>
40#include <sys/proc.h> 40#include <sys/proc.h>
41#include <sys/systm.h> 41#include <sys/systm.h>
42#include <sys/timetc.h> 42#include <sys/timetc.h>
43#include <sys/xcall.h> 43#include <sys/xcall.h>
44 44
45#include <prop/proplib.h> 45#include <prop/proplib.h>
46 46
47#include <arm/cortex/a9tmr_reg.h> 47#include <arm/cortex/a9tmr_reg.h>
48#include <arm/cortex/a9tmr_var.h> 48#include <arm/cortex/a9tmr_var.h>
49 49
50#include <arm/cortex/mpcore_var.h> 50#include <arm/cortex/mpcore_var.h>
51 51
52static int a9tmr_match(device_t, cfdata_t, void *); 52static int a9tmr_match(device_t, cfdata_t, void *);
53static void a9tmr_attach(device_t, device_t, void *); 53static void a9tmr_attach(device_t, device_t, void *);
54 54
55static int clockhandler(void *); 55static int clockhandler(void *);
56 56
57static u_int a9tmr_get_timecount(struct timecounter *); 57static u_int a9tmr_get_timecount(struct timecounter *);
58 58
59static struct a9tmr_softc a9tmr_sc; 59static struct a9tmr_softc a9tmr_sc;
60 60
61static struct timecounter a9tmr_timecounter = { 61static struct timecounter a9tmr_timecounter = {
62 .tc_get_timecount = a9tmr_get_timecount, 62 .tc_get_timecount = a9tmr_get_timecount,
63 .tc_poll_pps = 0, 63 .tc_poll_pps = 0,
64 .tc_counter_mask = ~0u, 64 .tc_counter_mask = ~0u,
65 .tc_frequency = 0, /* set by cpu_initclocks() */ 65 .tc_frequency = 0, /* set by cpu_initclocks() */
66 .tc_name = NULL, /* set by attach */ 66 .tc_name = NULL, /* set by attach */
67 .tc_quality = 500, 67 .tc_quality = 500,
68 .tc_priv = &a9tmr_sc, 68 .tc_priv = &a9tmr_sc,
69 .tc_next = NULL, 69 .tc_next = NULL,
70}; 70};
71 71
72CFATTACH_DECL_NEW(a9tmr, 0, a9tmr_match, a9tmr_attach, NULL, NULL); 72CFATTACH_DECL_NEW(a9tmr, 0, a9tmr_match, a9tmr_attach, NULL, NULL);
73 73
74static inline uint32_t 74static inline uint32_t
75a9tmr_global_read(struct a9tmr_softc *sc, bus_size_t o) 75a9tmr_global_read(struct a9tmr_softc *sc, bus_size_t o)
76{ 76{
77 return bus_space_read_4(sc->sc_memt, sc->sc_global_memh, o); 77 return bus_space_read_4(sc->sc_memt, sc->sc_global_memh, o);
78} 78}
79 79
80static inline void 80static inline void
81a9tmr_global_write(struct a9tmr_softc *sc, bus_size_t o, uint32_t v) 81a9tmr_global_write(struct a9tmr_softc *sc, bus_size_t o, uint32_t v)
82{ 82{
83 bus_space_write_4(sc->sc_memt, sc->sc_global_memh, o, v); 83 bus_space_write_4(sc->sc_memt, sc->sc_global_memh, o, v);
84} 84}
85 85
86 86
87/* ARGSUSED */ 87/* ARGSUSED */
88static int 88static int
89a9tmr_match(device_t parent, cfdata_t cf, void *aux) 89a9tmr_match(device_t parent, cfdata_t cf, void *aux)
90{ 90{
91 struct mpcore_attach_args * const mpcaa = aux; 91 struct mpcore_attach_args * const mpcaa = aux;
92 92
93 if (a9tmr_sc.sc_dev != NULL) 93 if (a9tmr_sc.sc_dev != NULL)
94 return 0; 94 return 0;
95 95
96 if ((armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK) != 0) 96 if ((armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK) != 0)
97 return 0; 97 return 0;
98 98
99 if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid) && 99 if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid) &&
100 !CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid)) 100 !CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid))
101 return 0; 101 return 0;
102 102
103 if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0) 103 if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0)
104 return 0; 104 return 0;
105 105
106 /* 106 /*
107 * This isn't present on UP A9s (since CBAR isn't present). 107 * This isn't present on UP A9s (since CBAR isn't present).
108 */ 108 */
109 uint32_t mpidr = armreg_mpidr_read(); 109 uint32_t mpidr = armreg_mpidr_read();
110 if (mpidr == 0 || (mpidr & MPIDR_U)) 110 if (mpidr == 0 || (mpidr & MPIDR_U))
111 return 0; 111 return 0;
112 112
113 return 1; 113 return 1;
114} 114}
115 115
116static void 116static void
117a9tmr_attach(device_t parent, device_t self, void *aux) 117a9tmr_attach(device_t parent, device_t self, void *aux)
118{ 118{
119 struct a9tmr_softc *sc = &a9tmr_sc; 119 struct a9tmr_softc *sc = &a9tmr_sc;
120 struct mpcore_attach_args * const mpcaa = aux; 120 struct mpcore_attach_args * const mpcaa = aux;
121 prop_dictionary_t dict = device_properties(self); 121 prop_dictionary_t dict = device_properties(self);
122 char freqbuf[sizeof("XXX SHz")]; 122 char freqbuf[sizeof("XXX SHz")];
123 const char *cpu_type; 123 const char *cpu_type;
124 124
125 /* 125 /*
126 * This runs at the ARM PERIPHCLOCK which should be 1/2 of the CPU clock. 126 * This runs at the ARM PERIPHCLOCK which should be 1/2 of the CPU clock.
127 * The MD code should have setup our frequency for us. 127 * The MD code should have setup our frequency for us.
128 */ 128 */
129 prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq); 129 prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq);
130 130
131 humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000); 131 humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000);
132 132
133 aprint_naive("\n"); 133 aprint_naive("\n");
134 if (CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid)) { 134 if (CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid)) {
135 cpu_type = "A5"; 135 cpu_type = "A5";
136 } else { 136 } else {
137 cpu_type = "A9"; 137 cpu_type = "A9";
138 } 138 }
139 aprint_normal(": %s Global 64-bit Timer (%s)\n", cpu_type, freqbuf); 139 aprint_normal(": %s Global 64-bit Timer (%s)\n", cpu_type, freqbuf);
140 140
141 self->dv_private = sc; 141 self->dv_private = sc;
142 sc->sc_dev = self; 142 sc->sc_dev = self;
143 sc->sc_memt = mpcaa->mpcaa_memt; 143 sc->sc_memt = mpcaa->mpcaa_memt;
144 sc->sc_memh = mpcaa->mpcaa_memh; 144 sc->sc_memh = mpcaa->mpcaa_memh;
145 145
146 evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL, 146 evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL,
147 device_xname(self), "missing interrupts"); 147 device_xname(self), "missing interrupts");
148 148
149 bus_space_subregion(sc->sc_memt, sc->sc_memh,  149 bus_space_subregion(sc->sc_memt, sc->sc_memh,
150 TMR_GLOBAL_BASE, TMR_GLOBAL_SIZE, &sc->sc_global_memh); 150 TMR_GLOBAL_BASE, TMR_GLOBAL_SIZE, &sc->sc_global_memh);
151 bus_space_subregion(sc->sc_memt, sc->sc_memh,  151 bus_space_subregion(sc->sc_memt, sc->sc_memh,
152 TMR_PRIVATE_BASE, TMR_PRIVATE_SIZE, &sc->sc_private_memh); 152 TMR_PRIVATE_BASE, TMR_PRIVATE_SIZE, &sc->sc_private_memh);
153 bus_space_subregion(sc->sc_memt, sc->sc_memh,  153 bus_space_subregion(sc->sc_memt, sc->sc_memh,
154 TMR_WDOG_BASE, TMR_WDOG_SIZE, &sc->sc_wdog_memh); 154 TMR_WDOG_BASE, TMR_WDOG_SIZE, &sc->sc_wdog_memh);
155 155
156 sc->sc_global_ih = intr_establish(IRQ_A9TMR_PPI_GTIMER, IPL_CLOCK, 156 sc->sc_global_ih = intr_establish(IRQ_A9TMR_PPI_GTIMER, IPL_CLOCK,
157 IST_EDGE | IST_MPSAFE, clockhandler, NULL); 157 IST_EDGE | IST_MPSAFE, clockhandler, NULL);
158 if (sc->sc_global_ih == NULL) 158 if (sc->sc_global_ih == NULL)
159 panic("%s: unable to register timer interrupt", __func__); 159 panic("%s: unable to register timer interrupt", __func__);
160 aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n", 160 aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n",
161 IRQ_A9TMR_PPI_GTIMER); 161 IRQ_A9TMR_PPI_GTIMER);
162} 162}
163 163
164static inline uint64_t 164static inline uint64_t
165a9tmr_gettime(struct a9tmr_softc *sc) 165a9tmr_gettime(struct a9tmr_softc *sc)
166{ 166{
167 uint32_t lo, hi; 167 uint32_t lo, hi;
168 168
169 do { 169 do {
170 hi = a9tmr_global_read(sc, TMR_GBL_CTR_U); 170 hi = a9tmr_global_read(sc, TMR_GBL_CTR_U);
171 lo = a9tmr_global_read(sc, TMR_GBL_CTR_L); 171 lo = a9tmr_global_read(sc, TMR_GBL_CTR_L);
172 } while (hi != a9tmr_global_read(sc, TMR_GBL_CTR_U)); 172 } while (hi != a9tmr_global_read(sc, TMR_GBL_CTR_U));
173 173
174 return ((uint64_t)hi << 32) | lo; 174 return ((uint64_t)hi << 32) | lo;
175} 175}
176 176
177void 177void
178a9tmr_init_cpu_clock(struct cpu_info *ci) 178a9tmr_init_cpu_clock(struct cpu_info *ci)
179{ 179{
180 struct a9tmr_softc * const sc = &a9tmr_sc; 180 struct a9tmr_softc * const sc = &a9tmr_sc;
181 uint64_t now = a9tmr_gettime(sc); 181 uint64_t now = a9tmr_gettime(sc);
182 182
183 KASSERT(ci == curcpu()); 183 KASSERT(ci == curcpu());
184 184
185 ci->ci_lastintr = now; 185 ci->ci_lastintr = now;
186 186
187 a9tmr_global_write(sc, TMR_GBL_AUTOINC, sc->sc_autoinc); 187 a9tmr_global_write(sc, TMR_GBL_AUTOINC, sc->sc_autoinc);
188 188
189 /* 189 /*
190 * To update the compare register we have to disable comparisions first. 190 * To update the compare register we have to disable comparisions first.
191 */ 191 */
192 uint32_t ctl = a9tmr_global_read(sc, TMR_GBL_CTL); 192 uint32_t ctl = a9tmr_global_read(sc, TMR_GBL_CTL);
193 if (ctl & TMR_GBL_CTL_CMP_ENABLE) { 193 if (ctl & TMR_GBL_CTL_CMP_ENABLE) {
194 a9tmr_global_write(sc, TMR_GBL_CTL, ctl & ~TMR_GBL_CTL_CMP_ENABLE); 194 a9tmr_global_write(sc, TMR_GBL_CTL, ctl & ~TMR_GBL_CTL_CMP_ENABLE);
195 } 195 }
196 196
197 /* 197 /*
198 * Schedule the next interrupt. 198 * Schedule the next interrupt.
199 */ 199 */
200 now += sc->sc_autoinc; 200 now += sc->sc_autoinc;
201 a9tmr_global_write(sc, TMR_GBL_CMP_L, (uint32_t) now); 201 a9tmr_global_write(sc, TMR_GBL_CMP_L, (uint32_t) now);
202 a9tmr_global_write(sc, TMR_GBL_CMP_H, (uint32_t) (now >> 32)); 202 a9tmr_global_write(sc, TMR_GBL_CMP_H, (uint32_t) (now >> 32));
203 203
204 /* 204 /*
205 * Re-enable the comparator and now enable interrupts. 205 * Re-enable the comparator and now enable interrupts.
206 */ 206 */
207 a9tmr_global_write(sc, TMR_GBL_INT, 1); /* clear interrupt pending */ 207 a9tmr_global_write(sc, TMR_GBL_INT, 1); /* clear interrupt pending */
208 ctl |= TMR_GBL_CTL_CMP_ENABLE | TMR_GBL_CTL_INT_ENABLE | TMR_GBL_CTL_AUTO_INC | TMR_CTL_ENABLE; 208 ctl |= TMR_GBL_CTL_CMP_ENABLE | TMR_GBL_CTL_INT_ENABLE | TMR_GBL_CTL_AUTO_INC | TMR_CTL_ENABLE;
209 a9tmr_global_write(sc, TMR_GBL_CTL, ctl); 209 a9tmr_global_write(sc, TMR_GBL_CTL, ctl);
210#if 0 210#if 0
211 printf("%s: %s: ctl %#x autoinc %u cmp %#x%08x now %#"PRIx64"\n", 211 printf("%s: %s: ctl %#x autoinc %u cmp %#x%08x now %#"PRIx64"\n",
212 __func__, ci->ci_data.cpu_name, 212 __func__, ci->ci_data.cpu_name,
213 a9tmr_global_read(sc, TMR_GBL_CTL), 213 a9tmr_global_read(sc, TMR_GBL_CTL),
214 a9tmr_global_read(sc, TMR_GBL_AUTOINC), 214 a9tmr_global_read(sc, TMR_GBL_AUTOINC),
215 a9tmr_global_read(sc, TMR_GBL_CMP_H), 215 a9tmr_global_read(sc, TMR_GBL_CMP_H),
216 a9tmr_global_read(sc, TMR_GBL_CMP_L), 216 a9tmr_global_read(sc, TMR_GBL_CMP_L),
217 a9tmr_gettime(sc)); 217 a9tmr_gettime(sc));
218 218
219 int s = splsched(); 219 int s = splsched();
220 uint64_t when = now; 220 uint64_t when = now;
221 u_int n = 0; 221 u_int n = 0;
222 while ((now = a9tmr_gettime(sc)) < when) { 222 while ((now = a9tmr_gettime(sc)) < when) {
223 /* spin */ 223 /* spin */
224 n++; 224 n++;
225 KASSERTMSG(n <= sc->sc_autoinc, 225 KASSERTMSG(n <= sc->sc_autoinc,
226 "spun %u times but only %"PRIu64" has passed", 226 "spun %u times but only %"PRIu64" has passed",
227 n, when - now); 227 n, when - now);
228 } 228 }
229 printf("%s: %s: status %#x cmp %#x%08x now %#"PRIx64"\n", 229 printf("%s: %s: status %#x cmp %#x%08x now %#"PRIx64"\n",
230 __func__, ci->ci_data.cpu_name, 230 __func__, ci->ci_data.cpu_name,
231 a9tmr_global_read(sc, TMR_GBL_INT), 231 a9tmr_global_read(sc, TMR_GBL_INT),
232 a9tmr_global_read(sc, TMR_GBL_CMP_H), 232 a9tmr_global_read(sc, TMR_GBL_CMP_H),
233 a9tmr_global_read(sc, TMR_GBL_CMP_L), 233 a9tmr_global_read(sc, TMR_GBL_CMP_L),
234 a9tmr_gettime(sc)); 234 a9tmr_gettime(sc));
235 splx(s); 235 splx(s);
236#elif 0 236#elif 0
237 delay(1000000 / hz + 1000);  237 delay(1000000 / hz + 1000);
238#endif 238#endif
239} 239}
240 240
241void 241void
242cpu_initclocks(void) 242cpu_initclocks(void)
243{ 243{
244 struct a9tmr_softc * const sc = &a9tmr_sc; 244 struct a9tmr_softc * const sc = &a9tmr_sc;
245  245
246 KASSERT(sc->sc_dev != NULL); 246 KASSERT(sc->sc_dev != NULL);
247 KASSERT(sc->sc_freq != 0); 247 KASSERT(sc->sc_freq != 0);
248 248
249 sc->sc_autoinc = sc->sc_freq / hz; 249 sc->sc_autoinc = sc->sc_freq / hz;
250 250
251 a9tmr_init_cpu_clock(curcpu()); 251 a9tmr_init_cpu_clock(curcpu());
252 252
253 a9tmr_timecounter.tc_name = device_xname(sc->sc_dev); 253 a9tmr_timecounter.tc_name = device_xname(sc->sc_dev);
254 a9tmr_timecounter.tc_frequency = sc->sc_freq; 254 a9tmr_timecounter.tc_frequency = sc->sc_freq;
255 255
256 tc_init(&a9tmr_timecounter); 256 tc_init(&a9tmr_timecounter);
257} 257}
258 258
259static void 259static void
260a9tmr_update_freq_cb(void *arg1, void *arg2) 260a9tmr_update_freq_cb(void *arg1, void *arg2)
261{ 261{
262 a9tmr_init_cpu_clock(curcpu()); 262 a9tmr_init_cpu_clock(curcpu());
263} 263}
264 264
265void 265void
266a9tmr_update_freq(uint32_t freq) 266a9tmr_update_freq(uint32_t freq)
267{ 267{
268 struct a9tmr_softc * const sc = &a9tmr_sc; 268 struct a9tmr_softc * const sc = &a9tmr_sc;
269 uint64_t xc; 269 uint64_t xc;
270 270
271 KASSERT(sc->sc_dev != NULL); 271 KASSERT(sc->sc_dev != NULL);
272 KASSERT(freq != 0); 272 KASSERT(freq != 0);
273 273
274 tc_detach(&a9tmr_timecounter); 274 tc_detach(&a9tmr_timecounter);
275 275
276 sc->sc_freq = freq; 276 sc->sc_freq = freq;
277 sc->sc_autoinc = sc->sc_freq / hz; 277 sc->sc_autoinc = sc->sc_freq / hz;
278 278
279 xc = xc_broadcast(0, a9tmr_update_freq_cb, NULL, NULL); 279 xc = xc_broadcast(0, a9tmr_update_freq_cb, NULL, NULL);
280 xc_wait(xc); 280 xc_wait(xc);
281 281
282 a9tmr_timecounter.tc_frequency = sc->sc_freq; 282 a9tmr_timecounter.tc_frequency = sc->sc_freq;
283 tc_init(&a9tmr_timecounter); 283 tc_init(&a9tmr_timecounter);
284} 284}
285 285
286void 286void
287a9tmr_delay(unsigned int n) 287a9tmr_delay(unsigned int n)
288{ 288{
289 struct a9tmr_softc * const sc = &a9tmr_sc; 289 struct a9tmr_softc * const sc = &a9tmr_sc;
290 290
291 KASSERT(sc != NULL); 291 KASSERT(sc != NULL);
292 292
293 uint32_t freq = sc->sc_freq ? sc->sc_freq : curcpu()->ci_data.cpu_cc_freq / 2; 293 uint32_t freq = sc->sc_freq ? sc->sc_freq : curcpu()->ci_data.cpu_cc_freq / 2;
294 KASSERT(freq != 0); 294 KASSERT(freq != 0);
295 295
296 /* 296 /*
297 * not quite divide by 1000000 but close enough 297 * not quite divide by 1000000 but close enough
298 * (higher by 1.3% which means we wait 1.3% longer). 298 * (higher by 1.3% which means we wait 1.3% longer).
299 */ 299 */
300 const uint64_t incr_per_us = (freq >> 20) + (freq >> 24); 300 const uint64_t incr_per_us = (freq >> 20) + (freq >> 24);
301 301
302 const uint64_t delta = n * incr_per_us; 302 const uint64_t delta = n * incr_per_us;
303 const uint64_t base = a9tmr_gettime(sc); 303 const uint64_t base = a9tmr_gettime(sc);
304 const uint64_t finish = base + delta; 304 const uint64_t finish = base + delta;
305 305
306 while (a9tmr_gettime(sc) < finish) { 306 while (a9tmr_gettime(sc) < finish) {
307 /* spin */ 307 /* spin */
308 } 308 }
309} 309}
310 310
311/* 311/*
312 * clockhandler: 312 * clockhandler:
313 * 313 *
314 * Handle the hardclock interrupt. 314 * Handle the hardclock interrupt.
315 */ 315 */
316static int 316static int
317clockhandler(void *arg) 317clockhandler(void *arg)
318{ 318{
319 struct clockframe * const cf = arg; 319 struct clockframe * const cf = arg;
320 struct a9tmr_softc * const sc = &a9tmr_sc; 320 struct a9tmr_softc * const sc = &a9tmr_sc;
321 struct cpu_info * const ci = curcpu(); 321 struct cpu_info * const ci = curcpu();
322  322
323 const uint64_t now = a9tmr_gettime(sc); 323 const uint64_t now = a9tmr_gettime(sc);
324 uint64_t delta = now - ci->ci_lastintr; 324 uint64_t delta = now - ci->ci_lastintr;
325 325
326 a9tmr_global_write(sc, TMR_GBL_INT, 1); // Ack the interrupt 326 a9tmr_global_write(sc, TMR_GBL_INT, 1); // Ack the interrupt
327 327
328#if 0 328#if 0
329 printf("%s(%p): %s: now %#"PRIx64" delta %"PRIu64"\n",  329 printf("%s(%p): %s: now %#"PRIx64" delta %"PRIu64"\n",
330 __func__, cf, ci->ci_data.cpu_name, now, delta); 330 __func__, cf, ci->ci_data.cpu_name, now, delta);
331#endif 331#endif
332 KASSERTMSG(delta > sc->sc_autoinc / 100, 332 KASSERTMSG(delta > sc->sc_autoinc / 64,
333 "%s: interrupting too quickly (delta=%"PRIu64")", 333 "%s: interrupting too quickly (delta=%"PRIu64")",
334 ci->ci_data.cpu_name, delta); 334 ci->ci_data.cpu_name, delta);
335 335
336 ci->ci_lastintr = now; 336 ci->ci_lastintr = now;
337 337
338 hardclock(cf); 338 hardclock(cf);
339 339
 340 if (delta > sc->sc_autoinc) {
 341 u_int ticks = hz;
 342 for (delta -= sc->sc_autoinc;
 343 delta >= sc->sc_autoinc && ticks > 0;
 344 delta -= sc->sc_autoinc, ticks--) {
340#if 0 345#if 0
341 /* 346 /*
342 * Try to make up up to a seconds amount of missed clock interrupts 347 * Try to make up up to a seconds amount of
343 */ 348 * missed clock interrupts
344 u_int ticks = hz; 349 */
345 for (delta -= sc->sc_autoinc; 350 hardclock(cf);
346 ticks > 0 && delta >= sc->sc_autoinc; 
347 delta -= sc->sc_autoinc, ticks--) { 
348 hardclock(cf); 
349 } 
350#else 351#else
351 if (delta > sc->sc_autoinc) 352 sc->sc_ev_missing_ticks.ev_count++;
352 sc->sc_ev_missing_ticks.ev_count += delta / sc->sc_autoinc; 
353#endif 353#endif
 354 }
 355 }
354 356
355 return 1; 357 return 1;
356} 358}
357 359
358void 360void
359setstatclockrate(int newhz) 361setstatclockrate(int newhz)
360{ 362{
361} 363}
362 364
363static u_int 365static u_int
364a9tmr_get_timecount(struct timecounter *tc) 366a9tmr_get_timecount(struct timecounter *tc)
365{ 367{
366 struct a9tmr_softc * const sc = tc->tc_priv; 368 struct a9tmr_softc * const sc = tc->tc_priv;
367 369
368 return (u_int) (a9tmr_gettime(sc)); 370 return (u_int) (a9tmr_gettime(sc));
369} 371}