Wed Jan 20 22:12:22 2016 UTC ()
Give proper prototype to ip_output.


(riastradh)
diff -r1.247 -r1.248 src/sys/netinet/ip_output.c
diff -r1.109 -r1.110 src/sys/netinet/ip_var.h

cvs diff -r1.247 -r1.248 src/sys/netinet/ip_output.c (switch to unified diff)

--- src/sys/netinet/ip_output.c 2015/09/02 11:35:11 1.247
+++ src/sys/netinet/ip_output.c 2016/01/20 22:12:22 1.248
@@ -1,1373 +1,1362 @@ @@ -1,1373 +1,1362 @@
1/* $NetBSD: ip_output.c,v 1.247 2015/09/02 11:35:11 ozaki-r Exp $ */ 1/* $NetBSD: ip_output.c,v 1.248 2016/01/20 22:12:22 riastradh Exp $ */
2 2
3/* 3/*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions 8 * modification, are permitted provided that the following conditions
9 * are met: 9 * are met:
10 * 1. Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer. 11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright 12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the 13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution. 14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors 15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software 16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission. 17 * without specific prior written permission.
18 * 18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE. 29 * SUCH DAMAGE.
30 */ 30 */
31 31
32/*- 32/*-
33 * Copyright (c) 1998 The NetBSD Foundation, Inc. 33 * Copyright (c) 1998 The NetBSD Foundation, Inc.
34 * All rights reserved. 34 * All rights reserved.
35 * 35 *
36 * This code is derived from software contributed to The NetBSD Foundation 36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Public Access Networks Corporation ("Panix"). It was developed under 37 * by Public Access Networks Corporation ("Panix"). It was developed under
38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon. 38 * contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
39 * 39 *
40 * Redistribution and use in source and binary forms, with or without 40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions 41 * modification, are permitted provided that the following conditions
42 * are met: 42 * are met:
43 * 1. Redistributions of source code must retain the above copyright 43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer. 44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright 45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the 46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution. 47 * documentation and/or other materials provided with the distribution.
48 * 48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE. 59 * POSSIBILITY OF SUCH DAMAGE.
60 */ 60 */
61 61
62/* 62/*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993 63 * Copyright (c) 1982, 1986, 1988, 1990, 1993
64 * The Regents of the University of California. All rights reserved. 64 * The Regents of the University of California. All rights reserved.
65 * 65 *
66 * Redistribution and use in source and binary forms, with or without 66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions 67 * modification, are permitted provided that the following conditions
68 * are met: 68 * are met:
69 * 1. Redistributions of source code must retain the above copyright 69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer. 70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright 71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the 72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution. 73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors 74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software 75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission. 76 * without specific prior written permission.
77 * 77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE. 88 * SUCH DAMAGE.
89 * 89 *
90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 90 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
91 */ 91 */
92 92
93#include <sys/cdefs.h> 93#include <sys/cdefs.h>
94__KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.247 2015/09/02 11:35:11 ozaki-r Exp $"); 94__KERNEL_RCSID(0, "$NetBSD: ip_output.c,v 1.248 2016/01/20 22:12:22 riastradh Exp $");
95 95
96#ifdef _KERNEL_OPT 96#ifdef _KERNEL_OPT
97#include "opt_inet.h" 97#include "opt_inet.h"
98#include "opt_ipsec.h" 98#include "opt_ipsec.h"
99#include "opt_mrouting.h" 99#include "opt_mrouting.h"
100#include "opt_net_mpsafe.h" 100#include "opt_net_mpsafe.h"
101#include "opt_mpls.h" 101#include "opt_mpls.h"
102#endif 102#endif
103 103
104#include <sys/param.h> 104#include <sys/param.h>
105#include <sys/kmem.h> 105#include <sys/kmem.h>
106#include <sys/mbuf.h> 106#include <sys/mbuf.h>
107#include <sys/protosw.h> 107#include <sys/protosw.h>
108#include <sys/socket.h> 108#include <sys/socket.h>
109#include <sys/socketvar.h> 109#include <sys/socketvar.h>
110#include <sys/kauth.h> 110#include <sys/kauth.h>
111#ifdef IPSEC 111#ifdef IPSEC
112#include <sys/domain.h> 112#include <sys/domain.h>
113#endif 113#endif
114#include <sys/systm.h> 114#include <sys/systm.h>
115 115
116#include <net/if.h> 116#include <net/if.h>
117#include <net/if_types.h> 117#include <net/if_types.h>
118#include <net/route.h> 118#include <net/route.h>
119#include <net/pfil.h> 119#include <net/pfil.h>
120 120
121#include <netinet/in.h> 121#include <netinet/in.h>
122#include <netinet/in_systm.h> 122#include <netinet/in_systm.h>
123#include <netinet/ip.h> 123#include <netinet/ip.h>
124#include <netinet/in_pcb.h> 124#include <netinet/in_pcb.h>
125#include <netinet/in_var.h> 125#include <netinet/in_var.h>
126#include <netinet/ip_var.h> 126#include <netinet/ip_var.h>
127#include <netinet/ip_private.h> 127#include <netinet/ip_private.h>
128#include <netinet/in_offload.h> 128#include <netinet/in_offload.h>
129#include <netinet/portalgo.h> 129#include <netinet/portalgo.h>
130#include <netinet/udp.h> 130#include <netinet/udp.h>
131 131
132#ifdef INET6 132#ifdef INET6
133#include <netinet6/ip6_var.h> 133#include <netinet6/ip6_var.h>
134#endif 134#endif
135 135
136#ifdef MROUTING 136#ifdef MROUTING
137#include <netinet/ip_mroute.h> 137#include <netinet/ip_mroute.h>
138#endif 138#endif
139 139
140#ifdef IPSEC 140#ifdef IPSEC
141#include <netipsec/ipsec.h> 141#include <netipsec/ipsec.h>
142#include <netipsec/key.h> 142#include <netipsec/key.h>
143#endif 143#endif
144 144
145#ifdef MPLS 145#ifdef MPLS
146#include <netmpls/mpls.h> 146#include <netmpls/mpls.h>
147#include <netmpls/mpls_var.h> 147#include <netmpls/mpls_var.h>
148#endif 148#endif
149 149
150static int ip_pcbopts(struct inpcb *, const struct sockopt *); 150static int ip_pcbopts(struct inpcb *, const struct sockopt *);
151static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *); 151static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
152static struct ifnet *ip_multicast_if(struct in_addr *, int *); 152static struct ifnet *ip_multicast_if(struct in_addr *, int *);
153static void ip_mloopback(struct ifnet *, struct mbuf *, 153static void ip_mloopback(struct ifnet *, struct mbuf *,
154 const struct sockaddr_in *); 154 const struct sockaddr_in *);
155 155
156extern pfil_head_t *inet_pfil_hook; /* XXX */ 156extern pfil_head_t *inet_pfil_hook; /* XXX */
157 157
158int ip_do_loopback_cksum = 0; 158int ip_do_loopback_cksum = 0;
159 159
160static bool 160static bool
161ip_hresolv_needed(const struct ifnet * const ifp) 161ip_hresolv_needed(const struct ifnet * const ifp)
162{ 162{
163 switch (ifp->if_type) { 163 switch (ifp->if_type) {
164 case IFT_ARCNET: 164 case IFT_ARCNET:
165 case IFT_ATM: 165 case IFT_ATM:
166 case IFT_ECONET: 166 case IFT_ECONET:
167 case IFT_ETHER: 167 case IFT_ETHER:
168 case IFT_FDDI: 168 case IFT_FDDI:
169 case IFT_HIPPI: 169 case IFT_HIPPI:
170 case IFT_IEEE1394: 170 case IFT_IEEE1394:
171 case IFT_ISO88025: 171 case IFT_ISO88025:
172 case IFT_SLIP: 172 case IFT_SLIP:
173 return true; 173 return true;
174 default: 174 default:
175 return false; 175 return false;
176 } 176 }
177} 177}
178 178
179static int 179static int
180klock_if_output(struct ifnet * const ifp, struct mbuf * const m, 180klock_if_output(struct ifnet * const ifp, struct mbuf * const m,
181 const struct sockaddr * const dst, struct rtentry *rt) 181 const struct sockaddr * const dst, struct rtentry *rt)
182{ 182{
183 int error; 183 int error;
184 184
185#ifndef NET_MPSAFE 185#ifndef NET_MPSAFE
186 KERNEL_LOCK(1, NULL); 186 KERNEL_LOCK(1, NULL);
187#endif 187#endif
188 188
189 error = (*ifp->if_output)(ifp, m, dst, rt); 189 error = (*ifp->if_output)(ifp, m, dst, rt);
190 190
191#ifndef NET_MPSAFE 191#ifndef NET_MPSAFE
192 KERNEL_UNLOCK_ONE(NULL); 192 KERNEL_UNLOCK_ONE(NULL);
193#endif 193#endif
194 194
195 return error; 195 return error;
196} 196}
197 197
198/* 198/*
199 * Send an IP packet to a host. 199 * Send an IP packet to a host.
200 * 200 *
201 * If necessary, resolve the arbitrary IP route, rt0, to an IP host route before 201 * If necessary, resolve the arbitrary IP route, rt0, to an IP host route before
202 * calling ifp's output routine. 202 * calling ifp's output routine.
203 */ 203 */
204int 204int
205ip_hresolv_output(struct ifnet * const ifp0, struct mbuf * const m, 205ip_hresolv_output(struct ifnet * const ifp0, struct mbuf * const m,
206 const struct sockaddr * const dst, struct rtentry *rt00) 206 const struct sockaddr * const dst, struct rtentry *rt00)
207{ 207{
208 int error = 0; 208 int error = 0;
209 struct ifnet *ifp = ifp0; 209 struct ifnet *ifp = ifp0;
210 struct rtentry *rt, *rt0, *gwrt; 210 struct rtentry *rt, *rt0, *gwrt;
211 211
212#define RTFREE_IF_NEEDED(_rt) \ 212#define RTFREE_IF_NEEDED(_rt) \
213 if ((_rt) != NULL && (_rt) != rt00) \ 213 if ((_rt) != NULL && (_rt) != rt00) \
214 rtfree((_rt)); 214 rtfree((_rt));
215 215
216 rt0 = rt00; 216 rt0 = rt00;
217retry: 217retry:
218 if (!ip_hresolv_needed(ifp)) { 218 if (!ip_hresolv_needed(ifp)) {
219 rt = rt0; 219 rt = rt0;
220 goto out; 220 goto out;
221 } 221 }
222 222
223 if (rt0 == NULL) { 223 if (rt0 == NULL) {
224 rt = NULL; 224 rt = NULL;
225 goto out; 225 goto out;
226 } 226 }
227 227
228 rt = rt0; 228 rt = rt0;
229 229
230 /* 230 /*
231 * The following block is highly questionable. How did we get here 231 * The following block is highly questionable. How did we get here
232 * with a !RTF_UP route? Does rtalloc1() always return an RTF_UP 232 * with a !RTF_UP route? Does rtalloc1() always return an RTF_UP
233 * route? 233 * route?
234 */ 234 */
235 if ((rt->rt_flags & RTF_UP) == 0) { 235 if ((rt->rt_flags & RTF_UP) == 0) {
236 rt = rtalloc1(dst, 1); 236 rt = rtalloc1(dst, 1);
237 if (rt == NULL) { 237 if (rt == NULL) {
238 error = EHOSTUNREACH; 238 error = EHOSTUNREACH;
239 goto bad; 239 goto bad;
240 } 240 }
241 rt0 = rt; 241 rt0 = rt;
242 if (rt->rt_ifp != ifp) { 242 if (rt->rt_ifp != ifp) {
243 ifp = rt->rt_ifp; 243 ifp = rt->rt_ifp;
244 goto retry; 244 goto retry;
245 } 245 }
246 } 246 }
247 247
248 if ((rt->rt_flags & RTF_GATEWAY) == 0) 248 if ((rt->rt_flags & RTF_GATEWAY) == 0)
249 goto out; 249 goto out;
250 250
251 gwrt = rt_get_gwroute(rt); 251 gwrt = rt_get_gwroute(rt);
252 RTFREE_IF_NEEDED(rt); 252 RTFREE_IF_NEEDED(rt);
253 rt = gwrt; 253 rt = gwrt;
254 if (rt == NULL || (rt->rt_flags & RTF_UP) == 0) { 254 if (rt == NULL || (rt->rt_flags & RTF_UP) == 0) {
255 if (rt != NULL) { 255 if (rt != NULL) {
256 RTFREE_IF_NEEDED(rt); 256 RTFREE_IF_NEEDED(rt);
257 rt = rt0; 257 rt = rt0;
258 } 258 }
259 if (rt == NULL) { 259 if (rt == NULL) {
260 error = EHOSTUNREACH; 260 error = EHOSTUNREACH;
261 goto bad; 261 goto bad;
262 } 262 }
263 gwrt = rtalloc1(rt->rt_gateway, 1); 263 gwrt = rtalloc1(rt->rt_gateway, 1);
264 rt_set_gwroute(rt, gwrt); 264 rt_set_gwroute(rt, gwrt);
265 RTFREE_IF_NEEDED(rt); 265 RTFREE_IF_NEEDED(rt);
266 rt = gwrt; 266 rt = gwrt;
267 if (rt == NULL) { 267 if (rt == NULL) {
268 error = EHOSTUNREACH; 268 error = EHOSTUNREACH;
269 goto bad; 269 goto bad;
270 } 270 }
271 /* the "G" test below also prevents rt == rt0 */ 271 /* the "G" test below also prevents rt == rt0 */
272 if ((rt->rt_flags & RTF_GATEWAY) != 0 || rt->rt_ifp != ifp) { 272 if ((rt->rt_flags & RTF_GATEWAY) != 0 || rt->rt_ifp != ifp) {
273 if (rt0->rt_gwroute != NULL) 273 if (rt0->rt_gwroute != NULL)
274 rtfree(rt0->rt_gwroute); 274 rtfree(rt0->rt_gwroute);
275 rt0->rt_gwroute = NULL; 275 rt0->rt_gwroute = NULL;
276 error = EHOSTUNREACH; 276 error = EHOSTUNREACH;
277 goto bad; 277 goto bad;
278 } 278 }
279 } 279 }
280 if ((rt->rt_flags & RTF_REJECT) != 0) { 280 if ((rt->rt_flags & RTF_REJECT) != 0) {
281 if (rt->rt_rmx.rmx_expire == 0 || 281 if (rt->rt_rmx.rmx_expire == 0 ||
282 time_uptime < rt->rt_rmx.rmx_expire) { 282 time_uptime < rt->rt_rmx.rmx_expire) {
283 error = (rt == rt0) ? EHOSTDOWN : EHOSTUNREACH; 283 error = (rt == rt0) ? EHOSTDOWN : EHOSTUNREACH;
284 goto bad; 284 goto bad;
285 } 285 }
286 } 286 }
287 287
288out: 288out:
289#ifdef MPLS 289#ifdef MPLS
290 if (rt0 != NULL && rt_gettag(rt0) != NULL && 290 if (rt0 != NULL && rt_gettag(rt0) != NULL &&
291 rt_gettag(rt0)->sa_family == AF_MPLS && 291 rt_gettag(rt0)->sa_family == AF_MPLS &&
292 (m->m_flags & (M_MCAST | M_BCAST)) == 0 && 292 (m->m_flags & (M_MCAST | M_BCAST)) == 0 &&
293 ifp->if_type == IFT_ETHER) { 293 ifp->if_type == IFT_ETHER) {
294 union mpls_shim msh; 294 union mpls_shim msh;
295 msh.s_addr = MPLS_GETSADDR(rt0); 295 msh.s_addr = MPLS_GETSADDR(rt0);
296 if (msh.shim.label != MPLS_LABEL_IMPLNULL) { 296 if (msh.shim.label != MPLS_LABEL_IMPLNULL) {
297 struct m_tag *mtag; 297 struct m_tag *mtag;
298 /* 298 /*
299 * XXX tentative solution to tell ether_output 299 * XXX tentative solution to tell ether_output
300 * it's MPLS. Need some more efficient solution. 300 * it's MPLS. Need some more efficient solution.
301 */ 301 */
302 mtag = m_tag_get(PACKET_TAG_MPLS, 302 mtag = m_tag_get(PACKET_TAG_MPLS,
303 sizeof(int) /* dummy */, 303 sizeof(int) /* dummy */,
304 M_NOWAIT); 304 M_NOWAIT);
305 if (mtag == NULL) { 305 if (mtag == NULL) {
306 error = ENOMEM; 306 error = ENOMEM;
307 goto bad; 307 goto bad;
308 } 308 }
309 m_tag_prepend(m, mtag); 309 m_tag_prepend(m, mtag);
310 } 310 }
311 } 311 }
312#endif 312#endif
313 313
314 error = klock_if_output(ifp, m, dst, rt); 314 error = klock_if_output(ifp, m, dst, rt);
315 goto exit; 315 goto exit;
316 316
317bad: 317bad:
318 if (m != NULL) 318 if (m != NULL)
319 m_freem(m); 319 m_freem(m);
320exit: 320exit:
321 RTFREE_IF_NEEDED(rt); 321 RTFREE_IF_NEEDED(rt);
322 322
323 return error; 323 return error;
324 324
325#undef RTFREE_IF_NEEDED 325#undef RTFREE_IF_NEEDED
326} 326}
327 327
328/* 328/*
329 * IP output. The packet in mbuf chain m contains a skeletal IP 329 * IP output. The packet in mbuf chain m contains a skeletal IP
330 * header (with len, off, ttl, proto, tos, src, dst). 330 * header (with len, off, ttl, proto, tos, src, dst).
331 * The mbuf chain containing the packet will be freed. 331 * The mbuf chain containing the packet will be freed.
332 * The mbuf opt, if present, will not be freed. 332 * The mbuf opt, if present, will not be freed.
333 */ 333 */
334int 334int
335ip_output(struct mbuf *m0, ...) 335ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
 336 struct ip_moptions *imo, struct socket *so)
336{ 337{
337 struct rtentry *rt; 338 struct rtentry *rt;
338 struct ip *ip; 339 struct ip *ip;
339 struct ifnet *ifp; 340 struct ifnet *ifp;
340 struct mbuf *m = m0; 341 struct mbuf *m = m0;
341 int hlen = sizeof (struct ip); 342 int hlen = sizeof (struct ip);
342 int len, error = 0; 343 int len, error = 0;
343 struct route iproute; 344 struct route iproute;
344 const struct sockaddr_in *dst; 345 const struct sockaddr_in *dst;
345 struct in_ifaddr *ia; 346 struct in_ifaddr *ia;
346 int isbroadcast; 347 int isbroadcast;
347 struct mbuf *opt; 348 int sw_csum;
348 struct route *ro; 
349 int flags, sw_csum; 
350 u_long mtu; 349 u_long mtu;
351 struct ip_moptions *imo; 
352 struct socket *so; 
353 va_list ap; 
354#ifdef IPSEC 350#ifdef IPSEC
355 struct secpolicy *sp = NULL; 351 struct secpolicy *sp = NULL;
356#endif 352#endif
357 bool natt_frag = false; 353 bool natt_frag = false;
358 bool rtmtu_nolock; 354 bool rtmtu_nolock;
359 union { 355 union {
360 struct sockaddr dst; 356 struct sockaddr dst;
361 struct sockaddr_in dst4; 357 struct sockaddr_in dst4;
362 } u; 358 } u;
363 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed 359 struct sockaddr *rdst = &u.dst; /* real IP destination, as opposed
364 * to the nexthop 360 * to the nexthop
365 */ 361 */
366 362
367 len = 0; 363 len = 0;
368 va_start(ap, m0); 
369 opt = va_arg(ap, struct mbuf *); 
370 ro = va_arg(ap, struct route *); 
371 flags = va_arg(ap, int); 
372 imo = va_arg(ap, struct ip_moptions *); 
373 so = va_arg(ap, struct socket *); 
374 va_end(ap); 
375 364
376 MCLAIM(m, &ip_tx_mowner); 365 MCLAIM(m, &ip_tx_mowner);
377 366
378 KASSERT((m->m_flags & M_PKTHDR) != 0); 367 KASSERT((m->m_flags & M_PKTHDR) != 0);
379 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0); 368 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0);
380 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 369 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) !=
381 (M_CSUM_TCPv4|M_CSUM_UDPv4)); 370 (M_CSUM_TCPv4|M_CSUM_UDPv4));
382 371
383 if (opt) { 372 if (opt) {
384 m = ip_insertoptions(m, opt, &len); 373 m = ip_insertoptions(m, opt, &len);
385 if (len >= sizeof(struct ip)) 374 if (len >= sizeof(struct ip))
386 hlen = len; 375 hlen = len;
387 } 376 }
388 ip = mtod(m, struct ip *); 377 ip = mtod(m, struct ip *);
389 378
390 /* 379 /*
391 * Fill in IP header. 380 * Fill in IP header.
392 */ 381 */
393 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) { 382 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
394 ip->ip_v = IPVERSION; 383 ip->ip_v = IPVERSION;
395 ip->ip_off = htons(0); 384 ip->ip_off = htons(0);
396 /* ip->ip_id filled in after we find out source ia */ 385 /* ip->ip_id filled in after we find out source ia */
397 ip->ip_hl = hlen >> 2; 386 ip->ip_hl = hlen >> 2;
398 IP_STATINC(IP_STAT_LOCALOUT); 387 IP_STATINC(IP_STAT_LOCALOUT);
399 } else { 388 } else {
400 hlen = ip->ip_hl << 2; 389 hlen = ip->ip_hl << 2;
401 } 390 }
402 391
403 /* 392 /*
404 * Route packet. 393 * Route packet.
405 */ 394 */
406 if (ro == NULL) { 395 if (ro == NULL) {
407 memset(&iproute, 0, sizeof(iproute)); 396 memset(&iproute, 0, sizeof(iproute));
408 ro = &iproute; 397 ro = &iproute;
409 } 398 }
410 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0); 399 sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
411 dst = satocsin(rtcache_getdst(ro)); 400 dst = satocsin(rtcache_getdst(ro));
412 401
413 /* 402 /*
414 * If there is a cached route, check that it is to the same 403 * If there is a cached route, check that it is to the same
415 * destination and is still up. If not, free it and try again. 404 * destination and is still up. If not, free it and try again.
416 * The address family should also be checked in case of sharing 405 * The address family should also be checked in case of sharing
417 * the cache with IPv6. 406 * the cache with IPv6.
418 */ 407 */
419 if (dst && (dst->sin_family != AF_INET || 408 if (dst && (dst->sin_family != AF_INET ||
420 !in_hosteq(dst->sin_addr, ip->ip_dst))) 409 !in_hosteq(dst->sin_addr, ip->ip_dst)))
421 rtcache_free(ro); 410 rtcache_free(ro);
422 411
423 if ((rt = rtcache_validate(ro)) == NULL && 412 if ((rt = rtcache_validate(ro)) == NULL &&
424 (rt = rtcache_update(ro, 1)) == NULL) { 413 (rt = rtcache_update(ro, 1)) == NULL) {
425 dst = &u.dst4; 414 dst = &u.dst4;
426 error = rtcache_setdst(ro, &u.dst); 415 error = rtcache_setdst(ro, &u.dst);
427 if (error != 0) 416 if (error != 0)
428 goto bad; 417 goto bad;
429 } 418 }
430 419
431 /* 420 /*
432 * If routing to interface only, short circuit routing lookup. 421 * If routing to interface only, short circuit routing lookup.
433 */ 422 */
434 if (flags & IP_ROUTETOIF) { 423 if (flags & IP_ROUTETOIF) {
435 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) { 424 if ((ia = ifatoia(ifa_ifwithladdr(sintocsa(dst)))) == NULL) {
436 IP_STATINC(IP_STAT_NOROUTE); 425 IP_STATINC(IP_STAT_NOROUTE);
437 error = ENETUNREACH; 426 error = ENETUNREACH;
438 goto bad; 427 goto bad;
439 } 428 }
440 ifp = ia->ia_ifp; 429 ifp = ia->ia_ifp;
441 mtu = ifp->if_mtu; 430 mtu = ifp->if_mtu;
442 ip->ip_ttl = 1; 431 ip->ip_ttl = 1;
443 isbroadcast = in_broadcast(dst->sin_addr, ifp); 432 isbroadcast = in_broadcast(dst->sin_addr, ifp);
444 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) || 433 } else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
445 ip->ip_dst.s_addr == INADDR_BROADCAST) && 434 ip->ip_dst.s_addr == INADDR_BROADCAST) &&
446 imo != NULL && imo->imo_multicast_ifp != NULL) { 435 imo != NULL && imo->imo_multicast_ifp != NULL) {
447 ifp = imo->imo_multicast_ifp; 436 ifp = imo->imo_multicast_ifp;
448 mtu = ifp->if_mtu; 437 mtu = ifp->if_mtu;
449 IFP_TO_IA(ifp, ia); 438 IFP_TO_IA(ifp, ia);
450 isbroadcast = 0; 439 isbroadcast = 0;
451 } else { 440 } else {
452 if (rt == NULL) 441 if (rt == NULL)
453 rt = rtcache_init(ro); 442 rt = rtcache_init(ro);
454 if (rt == NULL) { 443 if (rt == NULL) {
455 IP_STATINC(IP_STAT_NOROUTE); 444 IP_STATINC(IP_STAT_NOROUTE);
456 error = EHOSTUNREACH; 445 error = EHOSTUNREACH;
457 goto bad; 446 goto bad;
458 } 447 }
459 ia = ifatoia(rt->rt_ifa); 448 ia = ifatoia(rt->rt_ifa);
460 ifp = rt->rt_ifp; 449 ifp = rt->rt_ifp;
461 if ((mtu = rt->rt_rmx.rmx_mtu) == 0) 450 if ((mtu = rt->rt_rmx.rmx_mtu) == 0)
462 mtu = ifp->if_mtu; 451 mtu = ifp->if_mtu;
463 rt->rt_use++; 452 rt->rt_use++;
464 if (rt->rt_flags & RTF_GATEWAY) 453 if (rt->rt_flags & RTF_GATEWAY)
465 dst = satosin(rt->rt_gateway); 454 dst = satosin(rt->rt_gateway);
466 if (rt->rt_flags & RTF_HOST) 455 if (rt->rt_flags & RTF_HOST)
467 isbroadcast = rt->rt_flags & RTF_BROADCAST; 456 isbroadcast = rt->rt_flags & RTF_BROADCAST;
468 else 457 else
469 isbroadcast = in_broadcast(dst->sin_addr, ifp); 458 isbroadcast = in_broadcast(dst->sin_addr, ifp);
470 } 459 }
471 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0; 460 rtmtu_nolock = rt && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0;
472 461
473 if (IN_MULTICAST(ip->ip_dst.s_addr) || 462 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
474 (ip->ip_dst.s_addr == INADDR_BROADCAST)) { 463 (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
475 bool inmgroup; 464 bool inmgroup;
476 465
477 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ? 466 m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
478 M_BCAST : M_MCAST; 467 M_BCAST : M_MCAST;
479 /* 468 /*
480 * See if the caller provided any multicast options 469 * See if the caller provided any multicast options
481 */ 470 */
482 if (imo != NULL) 471 if (imo != NULL)
483 ip->ip_ttl = imo->imo_multicast_ttl; 472 ip->ip_ttl = imo->imo_multicast_ttl;
484 else 473 else
485 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL; 474 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
486 475
487 /* 476 /*
488 * if we don't know the outgoing ifp yet, we can't generate 477 * if we don't know the outgoing ifp yet, we can't generate
489 * output 478 * output
490 */ 479 */
491 if (!ifp) { 480 if (!ifp) {
492 IP_STATINC(IP_STAT_NOROUTE); 481 IP_STATINC(IP_STAT_NOROUTE);
493 error = ENETUNREACH; 482 error = ENETUNREACH;
494 goto bad; 483 goto bad;
495 } 484 }
496 485
497 /* 486 /*
498 * If the packet is multicast or broadcast, confirm that 487 * If the packet is multicast or broadcast, confirm that
499 * the outgoing interface can transmit it. 488 * the outgoing interface can transmit it.
500 */ 489 */
501 if (((m->m_flags & M_MCAST) && 490 if (((m->m_flags & M_MCAST) &&
502 (ifp->if_flags & IFF_MULTICAST) == 0) || 491 (ifp->if_flags & IFF_MULTICAST) == 0) ||
503 ((m->m_flags & M_BCAST) && 492 ((m->m_flags & M_BCAST) &&
504 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) { 493 (ifp->if_flags & (IFF_BROADCAST|IFF_POINTOPOINT)) == 0)) {
505 IP_STATINC(IP_STAT_NOROUTE); 494 IP_STATINC(IP_STAT_NOROUTE);
506 error = ENETUNREACH; 495 error = ENETUNREACH;
507 goto bad; 496 goto bad;
508 } 497 }
509 /* 498 /*
510 * If source address not specified yet, use an address 499 * If source address not specified yet, use an address
511 * of outgoing interface. 500 * of outgoing interface.
512 */ 501 */
513 if (in_nullhost(ip->ip_src)) { 502 if (in_nullhost(ip->ip_src)) {
514 struct in_ifaddr *xia; 503 struct in_ifaddr *xia;
515 struct ifaddr *xifa; 504 struct ifaddr *xifa;
516 505
517 IFP_TO_IA(ifp, xia); 506 IFP_TO_IA(ifp, xia);
518 if (!xia) { 507 if (!xia) {
519 error = EADDRNOTAVAIL; 508 error = EADDRNOTAVAIL;
520 goto bad; 509 goto bad;
521 } 510 }
522 xifa = &xia->ia_ifa; 511 xifa = &xia->ia_ifa;
523 if (xifa->ifa_getifa != NULL) { 512 if (xifa->ifa_getifa != NULL) {
524 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst)); 513 xia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
525 if (xia == NULL) { 514 if (xia == NULL) {
526 error = EADDRNOTAVAIL; 515 error = EADDRNOTAVAIL;
527 goto bad; 516 goto bad;
528 } 517 }
529 } 518 }
530 ip->ip_src = xia->ia_addr.sin_addr; 519 ip->ip_src = xia->ia_addr.sin_addr;
531 } 520 }
532 521
533 inmgroup = in_multi_group(ip->ip_dst, ifp, flags); 522 inmgroup = in_multi_group(ip->ip_dst, ifp, flags);
534 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) { 523 if (inmgroup && (imo == NULL || imo->imo_multicast_loop)) {
535 /* 524 /*
536 * If we belong to the destination multicast group 525 * If we belong to the destination multicast group
537 * on the outgoing interface, and the caller did not 526 * on the outgoing interface, and the caller did not
538 * forbid loopback, loop back a copy. 527 * forbid loopback, loop back a copy.
539 */ 528 */
540 ip_mloopback(ifp, m, &u.dst4); 529 ip_mloopback(ifp, m, &u.dst4);
541 } 530 }
542#ifdef MROUTING 531#ifdef MROUTING
543 else { 532 else {
544 /* 533 /*
545 * If we are acting as a multicast router, perform 534 * If we are acting as a multicast router, perform
546 * multicast forwarding as if the packet had just 535 * multicast forwarding as if the packet had just
547 * arrived on the interface to which we are about 536 * arrived on the interface to which we are about
548 * to send. The multicast forwarding function 537 * to send. The multicast forwarding function
549 * recursively calls this function, using the 538 * recursively calls this function, using the
550 * IP_FORWARDING flag to prevent infinite recursion. 539 * IP_FORWARDING flag to prevent infinite recursion.
551 * 540 *
552 * Multicasts that are looped back by ip_mloopback(), 541 * Multicasts that are looped back by ip_mloopback(),
553 * above, will be forwarded by the ip_input() routine, 542 * above, will be forwarded by the ip_input() routine,
554 * if necessary. 543 * if necessary.
555 */ 544 */
556 extern struct socket *ip_mrouter; 545 extern struct socket *ip_mrouter;
557 546
558 if (ip_mrouter && (flags & IP_FORWARDING) == 0) { 547 if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
559 if (ip_mforward(m, ifp) != 0) { 548 if (ip_mforward(m, ifp) != 0) {
560 m_freem(m); 549 m_freem(m);
561 goto done; 550 goto done;
562 } 551 }
563 } 552 }
564 } 553 }
565#endif 554#endif
566 /* 555 /*
567 * Multicasts with a time-to-live of zero may be looped- 556 * Multicasts with a time-to-live of zero may be looped-
568 * back, above, but must not be transmitted on a network. 557 * back, above, but must not be transmitted on a network.
569 * Also, multicasts addressed to the loopback interface 558 * Also, multicasts addressed to the loopback interface
570 * are not sent -- the above call to ip_mloopback() will 559 * are not sent -- the above call to ip_mloopback() will
571 * loop back a copy if this host actually belongs to the 560 * loop back a copy if this host actually belongs to the
572 * destination group on the loopback interface. 561 * destination group on the loopback interface.
573 */ 562 */
574 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) { 563 if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
575 m_freem(m); 564 m_freem(m);
576 goto done; 565 goto done;
577 } 566 }
578 goto sendit; 567 goto sendit;
579 } 568 }
580 569
581 /* 570 /*
582 * If source address not specified yet, use address 571 * If source address not specified yet, use address
583 * of outgoing interface. 572 * of outgoing interface.
584 */ 573 */
585 if (in_nullhost(ip->ip_src)) { 574 if (in_nullhost(ip->ip_src)) {
586 struct ifaddr *xifa; 575 struct ifaddr *xifa;
587 576
588 xifa = &ia->ia_ifa; 577 xifa = &ia->ia_ifa;
589 if (xifa->ifa_getifa != NULL) { 578 if (xifa->ifa_getifa != NULL) {
590 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst)); 579 ia = ifatoia((*xifa->ifa_getifa)(xifa, rdst));
591 if (ia == NULL) { 580 if (ia == NULL) {
592 error = EADDRNOTAVAIL; 581 error = EADDRNOTAVAIL;
593 goto bad; 582 goto bad;
594 } 583 }
595 } 584 }
596 ip->ip_src = ia->ia_addr.sin_addr; 585 ip->ip_src = ia->ia_addr.sin_addr;
597 } 586 }
598 587
599 /* 588 /*
600 * packets with Class-D address as source are not valid per 589 * packets with Class-D address as source are not valid per
601 * RFC 1112 590 * RFC 1112
602 */ 591 */
603 if (IN_MULTICAST(ip->ip_src.s_addr)) { 592 if (IN_MULTICAST(ip->ip_src.s_addr)) {
604 IP_STATINC(IP_STAT_ODROPPED); 593 IP_STATINC(IP_STAT_ODROPPED);
605 error = EADDRNOTAVAIL; 594 error = EADDRNOTAVAIL;
606 goto bad; 595 goto bad;
607 } 596 }
608 597
609 /* 598 /*
610 * Look for broadcast address and and verify user is allowed to 599 * Look for broadcast address and and verify user is allowed to
611 * send such a packet. 600 * send such a packet.
612 */ 601 */
613 if (isbroadcast) { 602 if (isbroadcast) {
614 if ((ifp->if_flags & IFF_BROADCAST) == 0) { 603 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
615 error = EADDRNOTAVAIL; 604 error = EADDRNOTAVAIL;
616 goto bad; 605 goto bad;
617 } 606 }
618 if ((flags & IP_ALLOWBROADCAST) == 0) { 607 if ((flags & IP_ALLOWBROADCAST) == 0) {
619 error = EACCES; 608 error = EACCES;
620 goto bad; 609 goto bad;
621 } 610 }
622 /* don't allow broadcast messages to be fragmented */ 611 /* don't allow broadcast messages to be fragmented */
623 if (ntohs(ip->ip_len) > ifp->if_mtu) { 612 if (ntohs(ip->ip_len) > ifp->if_mtu) {
624 error = EMSGSIZE; 613 error = EMSGSIZE;
625 goto bad; 614 goto bad;
626 } 615 }
627 m->m_flags |= M_BCAST; 616 m->m_flags |= M_BCAST;
628 } else 617 } else
629 m->m_flags &= ~M_BCAST; 618 m->m_flags &= ~M_BCAST;
630 619
631sendit: 620sendit:
632 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) { 621 if ((flags & (IP_FORWARDING|IP_NOIPNEWID)) == 0) {
633 if (m->m_pkthdr.len < IP_MINFRAGSIZE) { 622 if (m->m_pkthdr.len < IP_MINFRAGSIZE) {
634 ip->ip_id = 0; 623 ip->ip_id = 0;
635 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) { 624 } else if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
636 ip->ip_id = ip_newid(ia); 625 ip->ip_id = ip_newid(ia);
637 } else { 626 } else {
638 627
639 /* 628 /*
640 * TSO capable interfaces (typically?) increment 629 * TSO capable interfaces (typically?) increment
641 * ip_id for each segment. 630 * ip_id for each segment.
642 * "allocate" enough ids here to increase the chance 631 * "allocate" enough ids here to increase the chance
643 * for them to be unique. 632 * for them to be unique.
644 * 633 *
645 * note that the following calculation is not 634 * note that the following calculation is not
646 * needed to be precise. wasting some ip_id is fine. 635 * needed to be precise. wasting some ip_id is fine.
647 */ 636 */
648 637
649 unsigned int segsz = m->m_pkthdr.segsz; 638 unsigned int segsz = m->m_pkthdr.segsz;
650 unsigned int datasz = ntohs(ip->ip_len) - hlen; 639 unsigned int datasz = ntohs(ip->ip_len) - hlen;
651 unsigned int num = howmany(datasz, segsz); 640 unsigned int num = howmany(datasz, segsz);
652 641
653 ip->ip_id = ip_newid_range(ia, num); 642 ip->ip_id = ip_newid_range(ia, num);
654 } 643 }
655 } 644 }
656 645
657 /* 646 /*
658 * If we're doing Path MTU Discovery, we need to set DF unless 647 * If we're doing Path MTU Discovery, we need to set DF unless
659 * the route's MTU is locked. 648 * the route's MTU is locked.
660 */ 649 */
661 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) { 650 if ((flags & IP_MTUDISC) != 0 && rtmtu_nolock) {
662 ip->ip_off |= htons(IP_DF); 651 ip->ip_off |= htons(IP_DF);
663 } 652 }
664 653
665#ifdef IPSEC 654#ifdef IPSEC
666 if (ipsec_used) { 655 if (ipsec_used) {
667 bool ipsec_done = false; 656 bool ipsec_done = false;
668 657
669 /* Perform IPsec processing, if any. */ 658 /* Perform IPsec processing, if any. */
670 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag, 659 error = ipsec4_output(m, so, flags, &sp, &mtu, &natt_frag,
671 &ipsec_done); 660 &ipsec_done);
672 if (error || ipsec_done) 661 if (error || ipsec_done)
673 goto done; 662 goto done;
674 } 663 }
675#endif 664#endif
676 665
677 /* 666 /*
678 * Run through list of hooks for output packets. 667 * Run through list of hooks for output packets.
679 */ 668 */
680 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT); 669 error = pfil_run_hooks(inet_pfil_hook, &m, ifp, PFIL_OUT);
681 if (error) 670 if (error)
682 goto done; 671 goto done;
683 if (m == NULL) 672 if (m == NULL)
684 goto done; 673 goto done;
685 674
686 ip = mtod(m, struct ip *); 675 ip = mtod(m, struct ip *);
687 hlen = ip->ip_hl << 2; 676 hlen = ip->ip_hl << 2;
688 677
689 m->m_pkthdr.csum_data |= hlen << 16; 678 m->m_pkthdr.csum_data |= hlen << 16;
690 679
691#if IFA_STATS 680#if IFA_STATS
692 /* 681 /*
693 * search for the source address structure to 682 * search for the source address structure to
694 * maintain output statistics. 683 * maintain output statistics.
695 */ 684 */
696 INADDR_TO_IA(ip->ip_src, ia); 685 INADDR_TO_IA(ip->ip_src, ia);
697#endif 686#endif
698 687
699 /* Maybe skip checksums on loopback interfaces. */ 688 /* Maybe skip checksums on loopback interfaces. */
700 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) { 689 if (IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) {
701 m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 690 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
702 } 691 }
703 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx; 692 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
704 /* 693 /*
705 * If small enough for mtu of path, or if using TCP segmentation 694 * If small enough for mtu of path, or if using TCP segmentation
706 * offload, can just send directly. 695 * offload, can just send directly.
707 */ 696 */
708 if (ntohs(ip->ip_len) <= mtu || 697 if (ntohs(ip->ip_len) <= mtu ||
709 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) { 698 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0) {
710 const struct sockaddr *sa; 699 const struct sockaddr *sa;
711 700
712#if IFA_STATS 701#if IFA_STATS
713 if (ia) 702 if (ia)
714 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len); 703 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
715#endif 704#endif
716 /* 705 /*
717 * Always initialize the sum to 0! Some HW assisted 706 * Always initialize the sum to 0! Some HW assisted
718 * checksumming requires this. 707 * checksumming requires this.
719 */ 708 */
720 ip->ip_sum = 0; 709 ip->ip_sum = 0;
721 710
722 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) { 711 if ((m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0) {
723 /* 712 /*
724 * Perform any checksums that the hardware can't do 713 * Perform any checksums that the hardware can't do
725 * for us. 714 * for us.
726 * 715 *
727 * XXX Does any hardware require the {th,uh}_sum 716 * XXX Does any hardware require the {th,uh}_sum
728 * XXX fields to be 0? 717 * XXX fields to be 0?
729 */ 718 */
730 if (sw_csum & M_CSUM_IPv4) { 719 if (sw_csum & M_CSUM_IPv4) {
731 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)); 720 KASSERT(IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4));
732 ip->ip_sum = in_cksum(m, hlen); 721 ip->ip_sum = in_cksum(m, hlen);
733 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4; 722 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
734 } 723 }
735 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 724 if (sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
736 if (IN_NEED_CHECKSUM(ifp, 725 if (IN_NEED_CHECKSUM(ifp,
737 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) { 726 sw_csum & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
738 in_delayed_cksum(m); 727 in_delayed_cksum(m);
739 } 728 }
740 m->m_pkthdr.csum_flags &= 729 m->m_pkthdr.csum_flags &=
741 ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 730 ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
742 } 731 }
743 } 732 }
744 733
745 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst); 734 sa = (m->m_flags & M_MCAST) ? sintocsa(rdst) : sintocsa(dst);
746 if (__predict_true( 735 if (__predict_true(
747 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 || 736 (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) == 0 ||
748 (ifp->if_capenable & IFCAP_TSOv4) != 0)) { 737 (ifp->if_capenable & IFCAP_TSOv4) != 0)) {
749 error = ip_hresolv_output(ifp, m, sa, rt); 738 error = ip_hresolv_output(ifp, m, sa, rt);
750 } else { 739 } else {
751 error = ip_tso_output(ifp, m, sa, rt); 740 error = ip_tso_output(ifp, m, sa, rt);
752 } 741 }
753 goto done; 742 goto done;
754 } 743 }
755 744
756 /* 745 /*
757 * We can't use HW checksumming if we're about to 746 * We can't use HW checksumming if we're about to
758 * to fragment the packet. 747 * to fragment the packet.
759 * 748 *
760 * XXX Some hardware can do this. 749 * XXX Some hardware can do this.
761 */ 750 */
762 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) { 751 if (m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
763 if (IN_NEED_CHECKSUM(ifp, 752 if (IN_NEED_CHECKSUM(ifp,
764 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) { 753 m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))) {
765 in_delayed_cksum(m); 754 in_delayed_cksum(m);
766 } 755 }
767 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4); 756 m->m_pkthdr.csum_flags &= ~(M_CSUM_TCPv4|M_CSUM_UDPv4);
768 } 757 }
769 758
770 /* 759 /*
771 * Too large for interface; fragment if possible. 760 * Too large for interface; fragment if possible.
772 * Must be able to put at least 8 bytes per fragment. 761 * Must be able to put at least 8 bytes per fragment.
773 */ 762 */
774 if (ntohs(ip->ip_off) & IP_DF) { 763 if (ntohs(ip->ip_off) & IP_DF) {
775 if (flags & IP_RETURNMTU) { 764 if (flags & IP_RETURNMTU) {
776 struct inpcb *inp; 765 struct inpcb *inp;
777 766
778 KASSERT(so && solocked(so)); 767 KASSERT(so && solocked(so));
779 inp = sotoinpcb(so); 768 inp = sotoinpcb(so);
780 inp->inp_errormtu = mtu; 769 inp->inp_errormtu = mtu;
781 } 770 }
782 error = EMSGSIZE; 771 error = EMSGSIZE;
783 IP_STATINC(IP_STAT_CANTFRAG); 772 IP_STATINC(IP_STAT_CANTFRAG);
784 goto bad; 773 goto bad;
785 } 774 }
786 775
787 error = ip_fragment(m, ifp, mtu); 776 error = ip_fragment(m, ifp, mtu);
788 if (error) { 777 if (error) {
789 m = NULL; 778 m = NULL;
790 goto bad; 779 goto bad;
791 } 780 }
792 781
793 for (; m; m = m0) { 782 for (; m; m = m0) {
794 m0 = m->m_nextpkt; 783 m0 = m->m_nextpkt;
795 m->m_nextpkt = 0; 784 m->m_nextpkt = 0;
796 if (error) { 785 if (error) {
797 m_freem(m); 786 m_freem(m);
798 continue; 787 continue;
799 } 788 }
800#if IFA_STATS 789#if IFA_STATS
801 if (ia) 790 if (ia)
802 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len); 791 ia->ia_ifa.ifa_data.ifad_outbytes += ntohs(ip->ip_len);
803#endif 792#endif
804 /* 793 /*
805 * If we get there, the packet has not been handled by 794 * If we get there, the packet has not been handled by
806 * IPsec whereas it should have. Now that it has been 795 * IPsec whereas it should have. Now that it has been
807 * fragmented, re-inject it in ip_output so that IPsec 796 * fragmented, re-inject it in ip_output so that IPsec
808 * processing can occur. 797 * processing can occur.
809 */ 798 */
810 if (natt_frag) { 799 if (natt_frag) {
811 error = ip_output(m, opt, ro, 800 error = ip_output(m, opt, ro,
812 flags | IP_RAWOUTPUT | IP_NOIPNEWID, 801 flags | IP_RAWOUTPUT | IP_NOIPNEWID,
813 imo, so); 802 imo, so);
814 } else { 803 } else {
815 KASSERT((m->m_pkthdr.csum_flags & 804 KASSERT((m->m_pkthdr.csum_flags &
816 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0); 805 (M_CSUM_UDPv4 | M_CSUM_TCPv4)) == 0);
817 error = ip_hresolv_output(ifp, m, 806 error = ip_hresolv_output(ifp, m,
818 (m->m_flags & M_MCAST) ? 807 (m->m_flags & M_MCAST) ?
819 sintocsa(rdst) : sintocsa(dst), rt); 808 sintocsa(rdst) : sintocsa(dst), rt);
820 } 809 }
821 } 810 }
822 if (error == 0) { 811 if (error == 0) {
823 IP_STATINC(IP_STAT_FRAGMENTED); 812 IP_STATINC(IP_STAT_FRAGMENTED);
824 } 813 }
825done: 814done:
826 if (ro == &iproute) { 815 if (ro == &iproute) {
827 rtcache_free(&iproute); 816 rtcache_free(&iproute);
828 } 817 }
829#ifdef IPSEC 818#ifdef IPSEC
830 if (sp) { 819 if (sp) {
831 KEY_FREESP(&sp); 820 KEY_FREESP(&sp);
832 } 821 }
833#endif 822#endif
834 return error; 823 return error;
835bad: 824bad:
836 m_freem(m); 825 m_freem(m);
837 goto done; 826 goto done;
838} 827}
839 828
840int 829int
841ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu) 830ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
842{ 831{
843 struct ip *ip, *mhip; 832 struct ip *ip, *mhip;
844 struct mbuf *m0; 833 struct mbuf *m0;
845 int len, hlen, off; 834 int len, hlen, off;
846 int mhlen, firstlen; 835 int mhlen, firstlen;
847 struct mbuf **mnext; 836 struct mbuf **mnext;
848 int sw_csum = m->m_pkthdr.csum_flags; 837 int sw_csum = m->m_pkthdr.csum_flags;
849 int fragments = 0; 838 int fragments = 0;
850 int s; 839 int s;
851 int error = 0; 840 int error = 0;
852 841
853 ip = mtod(m, struct ip *); 842 ip = mtod(m, struct ip *);
854 hlen = ip->ip_hl << 2; 843 hlen = ip->ip_hl << 2;
855 if (ifp != NULL) 844 if (ifp != NULL)
856 sw_csum &= ~ifp->if_csum_flags_tx; 845 sw_csum &= ~ifp->if_csum_flags_tx;
857 846
858 len = (mtu - hlen) &~ 7; 847 len = (mtu - hlen) &~ 7;
859 if (len < 8) { 848 if (len < 8) {
860 m_freem(m); 849 m_freem(m);
861 return (EMSGSIZE); 850 return (EMSGSIZE);
862 } 851 }
863 852
864 firstlen = len; 853 firstlen = len;
865 mnext = &m->m_nextpkt; 854 mnext = &m->m_nextpkt;
866 855
867 /* 856 /*
868 * Loop through length of segment after first fragment, 857 * Loop through length of segment after first fragment,
869 * make new header and copy data of each part and link onto chain. 858 * make new header and copy data of each part and link onto chain.
870 */ 859 */
871 m0 = m; 860 m0 = m;
872 mhlen = sizeof (struct ip); 861 mhlen = sizeof (struct ip);
873 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) { 862 for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
874 MGETHDR(m, M_DONTWAIT, MT_HEADER); 863 MGETHDR(m, M_DONTWAIT, MT_HEADER);
875 if (m == 0) { 864 if (m == 0) {
876 error = ENOBUFS; 865 error = ENOBUFS;
877 IP_STATINC(IP_STAT_ODROPPED); 866 IP_STATINC(IP_STAT_ODROPPED);
878 goto sendorfree; 867 goto sendorfree;
879 } 868 }
880 MCLAIM(m, m0->m_owner); 869 MCLAIM(m, m0->m_owner);
881 *mnext = m; 870 *mnext = m;
882 mnext = &m->m_nextpkt; 871 mnext = &m->m_nextpkt;
883 m->m_data += max_linkhdr; 872 m->m_data += max_linkhdr;
884 mhip = mtod(m, struct ip *); 873 mhip = mtod(m, struct ip *);
885 *mhip = *ip; 874 *mhip = *ip;
886 /* we must inherit MCAST and BCAST flags */ 875 /* we must inherit MCAST and BCAST flags */
887 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST); 876 m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
888 if (hlen > sizeof (struct ip)) { 877 if (hlen > sizeof (struct ip)) {
889 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip); 878 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
890 mhip->ip_hl = mhlen >> 2; 879 mhip->ip_hl = mhlen >> 2;
891 } 880 }
892 m->m_len = mhlen; 881 m->m_len = mhlen;
893 mhip->ip_off = ((off - hlen) >> 3) + 882 mhip->ip_off = ((off - hlen) >> 3) +
894 (ntohs(ip->ip_off) & ~IP_MF); 883 (ntohs(ip->ip_off) & ~IP_MF);
895 if (ip->ip_off & htons(IP_MF)) 884 if (ip->ip_off & htons(IP_MF))
896 mhip->ip_off |= IP_MF; 885 mhip->ip_off |= IP_MF;
897 if (off + len >= ntohs(ip->ip_len)) 886 if (off + len >= ntohs(ip->ip_len))
898 len = ntohs(ip->ip_len) - off; 887 len = ntohs(ip->ip_len) - off;
899 else 888 else
900 mhip->ip_off |= IP_MF; 889 mhip->ip_off |= IP_MF;
901 HTONS(mhip->ip_off); 890 HTONS(mhip->ip_off);
902 mhip->ip_len = htons((u_int16_t)(len + mhlen)); 891 mhip->ip_len = htons((u_int16_t)(len + mhlen));
903 m->m_next = m_copym(m0, off, len, M_DONTWAIT); 892 m->m_next = m_copym(m0, off, len, M_DONTWAIT);
904 if (m->m_next == 0) { 893 if (m->m_next == 0) {
905 error = ENOBUFS; /* ??? */ 894 error = ENOBUFS; /* ??? */
906 IP_STATINC(IP_STAT_ODROPPED); 895 IP_STATINC(IP_STAT_ODROPPED);
907 goto sendorfree; 896 goto sendorfree;
908 } 897 }
909 m->m_pkthdr.len = mhlen + len; 898 m->m_pkthdr.len = mhlen + len;
910 m->m_pkthdr.rcvif = NULL; 899 m->m_pkthdr.rcvif = NULL;
911 mhip->ip_sum = 0; 900 mhip->ip_sum = 0;
912 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0); 901 KASSERT((m->m_pkthdr.csum_flags & M_CSUM_IPv4) == 0);
913 if (sw_csum & M_CSUM_IPv4) { 902 if (sw_csum & M_CSUM_IPv4) {
914 mhip->ip_sum = in_cksum(m, mhlen); 903 mhip->ip_sum = in_cksum(m, mhlen);
915 } else { 904 } else {
916 /* 905 /*
917 * checksum is hw-offloaded or not necessary. 906 * checksum is hw-offloaded or not necessary.
918 */ 907 */
919 m->m_pkthdr.csum_flags |= 908 m->m_pkthdr.csum_flags |=
920 m0->m_pkthdr.csum_flags & M_CSUM_IPv4; 909 m0->m_pkthdr.csum_flags & M_CSUM_IPv4;
921 m->m_pkthdr.csum_data |= mhlen << 16; 910 m->m_pkthdr.csum_data |= mhlen << 16;
922 KASSERT(!(ifp != NULL && 911 KASSERT(!(ifp != NULL &&
923 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) || 912 IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
924 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0); 913 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
925 } 914 }
926 IP_STATINC(IP_STAT_OFRAGMENTS); 915 IP_STATINC(IP_STAT_OFRAGMENTS);
927 fragments++; 916 fragments++;
928 } 917 }
929 /* 918 /*
930 * Update first fragment by trimming what's been copied out 919 * Update first fragment by trimming what's been copied out
931 * and updating header, then send each fragment (in order). 920 * and updating header, then send each fragment (in order).
932 */ 921 */
933 m = m0; 922 m = m0;
934 m_adj(m, hlen + firstlen - ntohs(ip->ip_len)); 923 m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
935 m->m_pkthdr.len = hlen + firstlen; 924 m->m_pkthdr.len = hlen + firstlen;
936 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len); 925 ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
937 ip->ip_off |= htons(IP_MF); 926 ip->ip_off |= htons(IP_MF);
938 ip->ip_sum = 0; 927 ip->ip_sum = 0;
939 if (sw_csum & M_CSUM_IPv4) { 928 if (sw_csum & M_CSUM_IPv4) {
940 ip->ip_sum = in_cksum(m, hlen); 929 ip->ip_sum = in_cksum(m, hlen);
941 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4; 930 m->m_pkthdr.csum_flags &= ~M_CSUM_IPv4;
942 } else { 931 } else {
943 /* 932 /*
944 * checksum is hw-offloaded or not necessary. 933 * checksum is hw-offloaded or not necessary.
945 */ 934 */
946 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) || 935 KASSERT(!(ifp != NULL && IN_NEED_CHECKSUM(ifp, M_CSUM_IPv4)) ||
947 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0); 936 (m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0);
948 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >= 937 KASSERT(M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) >=
949 sizeof(struct ip)); 938 sizeof(struct ip));
950 } 939 }
951sendorfree: 940sendorfree:
952 /* 941 /*
953 * If there is no room for all the fragments, don't queue 942 * If there is no room for all the fragments, don't queue
954 * any of them. 943 * any of them.
955 */ 944 */
956 if (ifp != NULL) { 945 if (ifp != NULL) {
957 s = splnet(); 946 s = splnet();
958 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments && 947 if (ifp->if_snd.ifq_maxlen - ifp->if_snd.ifq_len < fragments &&
959 error == 0) { 948 error == 0) {
960 error = ENOBUFS; 949 error = ENOBUFS;
961 IP_STATINC(IP_STAT_ODROPPED); 950 IP_STATINC(IP_STAT_ODROPPED);
962 IFQ_INC_DROPS(&ifp->if_snd); 951 IFQ_INC_DROPS(&ifp->if_snd);
963 } 952 }
964 splx(s); 953 splx(s);
965 } 954 }
966 if (error) { 955 if (error) {
967 for (m = m0; m; m = m0) { 956 for (m = m0; m; m = m0) {
968 m0 = m->m_nextpkt; 957 m0 = m->m_nextpkt;
969 m->m_nextpkt = NULL; 958 m->m_nextpkt = NULL;
970 m_freem(m); 959 m_freem(m);
971 } 960 }
972 } 961 }
973 return (error); 962 return (error);
974} 963}
975 964
976/* 965/*
977 * Process a delayed payload checksum calculation. 966 * Process a delayed payload checksum calculation.
978 */ 967 */
979void 968void
980in_delayed_cksum(struct mbuf *m) 969in_delayed_cksum(struct mbuf *m)
981{ 970{
982 struct ip *ip; 971 struct ip *ip;
983 u_int16_t csum, offset; 972 u_int16_t csum, offset;
984 973
985 ip = mtod(m, struct ip *); 974 ip = mtod(m, struct ip *);
986 offset = ip->ip_hl << 2; 975 offset = ip->ip_hl << 2;
987 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset); 976 csum = in4_cksum(m, 0, offset, ntohs(ip->ip_len) - offset);
988 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0) 977 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
989 csum = 0xffff; 978 csum = 0xffff;
990 979
991 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data); 980 offset += M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
992 981
993 if ((offset + sizeof(u_int16_t)) > m->m_len) { 982 if ((offset + sizeof(u_int16_t)) > m->m_len) {
994 /* This happen when ip options were inserted 983 /* This happen when ip options were inserted
995 printf("in_delayed_cksum: pullup len %d off %d proto %d\n", 984 printf("in_delayed_cksum: pullup len %d off %d proto %d\n",
996 m->m_len, offset, ip->ip_p); 985 m->m_len, offset, ip->ip_p);
997 */ 986 */
998 m_copyback(m, offset, sizeof(csum), (void *) &csum); 987 m_copyback(m, offset, sizeof(csum), (void *) &csum);
999 } else 988 } else
1000 *(u_int16_t *)(mtod(m, char *) + offset) = csum; 989 *(u_int16_t *)(mtod(m, char *) + offset) = csum;
1001} 990}
1002 991
1003/* 992/*
1004 * Determine the maximum length of the options to be inserted; 993 * Determine the maximum length of the options to be inserted;
1005 * we would far rather allocate too much space rather than too little. 994 * we would far rather allocate too much space rather than too little.
1006 */ 995 */
1007 996
1008u_int 997u_int
1009ip_optlen(struct inpcb *inp) 998ip_optlen(struct inpcb *inp)
1010{ 999{
1011 struct mbuf *m = inp->inp_options; 1000 struct mbuf *m = inp->inp_options;
1012 1001
1013 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) { 1002 if (m && m->m_len > offsetof(struct ipoption, ipopt_dst)) {
1014 return (m->m_len - offsetof(struct ipoption, ipopt_dst)); 1003 return (m->m_len - offsetof(struct ipoption, ipopt_dst));
1015 } 1004 }
1016 return 0; 1005 return 0;
1017} 1006}
1018 1007
1019/* 1008/*
1020 * Insert IP options into preformed packet. 1009 * Insert IP options into preformed packet.
1021 * Adjust IP destination as required for IP source routing, 1010 * Adjust IP destination as required for IP source routing,
1022 * as indicated by a non-zero in_addr at the start of the options. 1011 * as indicated by a non-zero in_addr at the start of the options.
1023 */ 1012 */
1024static struct mbuf * 1013static struct mbuf *
1025ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen) 1014ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
1026{ 1015{
1027 struct ipoption *p = mtod(opt, struct ipoption *); 1016 struct ipoption *p = mtod(opt, struct ipoption *);
1028 struct mbuf *n; 1017 struct mbuf *n;
1029 struct ip *ip = mtod(m, struct ip *); 1018 struct ip *ip = mtod(m, struct ip *);
1030 unsigned optlen; 1019 unsigned optlen;
1031 1020
1032 optlen = opt->m_len - sizeof(p->ipopt_dst); 1021 optlen = opt->m_len - sizeof(p->ipopt_dst);
1033 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET) 1022 if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
1034 return (m); /* XXX should fail */ 1023 return (m); /* XXX should fail */
1035 if (!in_nullhost(p->ipopt_dst)) 1024 if (!in_nullhost(p->ipopt_dst))
1036 ip->ip_dst = p->ipopt_dst; 1025 ip->ip_dst = p->ipopt_dst;
1037 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) { 1026 if (M_READONLY(m) || M_LEADINGSPACE(m) < optlen) {
1038 MGETHDR(n, M_DONTWAIT, MT_HEADER); 1027 MGETHDR(n, M_DONTWAIT, MT_HEADER);
1039 if (n == 0) 1028 if (n == 0)
1040 return (m); 1029 return (m);
1041 MCLAIM(n, m->m_owner); 1030 MCLAIM(n, m->m_owner);
1042 M_MOVE_PKTHDR(n, m); 1031 M_MOVE_PKTHDR(n, m);
1043 m->m_len -= sizeof(struct ip); 1032 m->m_len -= sizeof(struct ip);
1044 m->m_data += sizeof(struct ip); 1033 m->m_data += sizeof(struct ip);
1045 n->m_next = m; 1034 n->m_next = m;
1046 m = n; 1035 m = n;
1047 m->m_len = optlen + sizeof(struct ip); 1036 m->m_len = optlen + sizeof(struct ip);
1048 m->m_data += max_linkhdr; 1037 m->m_data += max_linkhdr;
1049 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip)); 1038 bcopy((void *)ip, mtod(m, void *), sizeof(struct ip));
1050 } else { 1039 } else {
1051 m->m_data -= optlen; 1040 m->m_data -= optlen;
1052 m->m_len += optlen; 1041 m->m_len += optlen;
1053 memmove(mtod(m, void *), ip, sizeof(struct ip)); 1042 memmove(mtod(m, void *), ip, sizeof(struct ip));
1054 } 1043 }
1055 m->m_pkthdr.len += optlen; 1044 m->m_pkthdr.len += optlen;
1056 ip = mtod(m, struct ip *); 1045 ip = mtod(m, struct ip *);
1057 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen); 1046 bcopy((void *)p->ipopt_list, (void *)(ip + 1), (unsigned)optlen);
1058 *phlen = sizeof(struct ip) + optlen; 1047 *phlen = sizeof(struct ip) + optlen;
1059 ip->ip_len = htons(ntohs(ip->ip_len) + optlen); 1048 ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1060 return (m); 1049 return (m);
1061} 1050}
1062 1051
1063/* 1052/*
1064 * Copy options from ip to jp, 1053 * Copy options from ip to jp,
1065 * omitting those not copied during fragmentation. 1054 * omitting those not copied during fragmentation.
1066 */ 1055 */
1067int 1056int
1068ip_optcopy(struct ip *ip, struct ip *jp) 1057ip_optcopy(struct ip *ip, struct ip *jp)
1069{ 1058{
1070 u_char *cp, *dp; 1059 u_char *cp, *dp;
1071 int opt, optlen, cnt; 1060 int opt, optlen, cnt;
1072 1061
1073 cp = (u_char *)(ip + 1); 1062 cp = (u_char *)(ip + 1);
1074 dp = (u_char *)(jp + 1); 1063 dp = (u_char *)(jp + 1);
1075 cnt = (ip->ip_hl << 2) - sizeof (struct ip); 1064 cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1076 for (; cnt > 0; cnt -= optlen, cp += optlen) { 1065 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1077 opt = cp[0]; 1066 opt = cp[0];
1078 if (opt == IPOPT_EOL) 1067 if (opt == IPOPT_EOL)
1079 break; 1068 break;
1080 if (opt == IPOPT_NOP) { 1069 if (opt == IPOPT_NOP) {
1081 /* Preserve for IP mcast tunnel's LSRR alignment. */ 1070 /* Preserve for IP mcast tunnel's LSRR alignment. */
1082 *dp++ = IPOPT_NOP; 1071 *dp++ = IPOPT_NOP;
1083 optlen = 1; 1072 optlen = 1;
1084 continue; 1073 continue;
1085 } 1074 }
1086 1075
1087 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp)); 1076 KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp));
1088 optlen = cp[IPOPT_OLEN]; 1077 optlen = cp[IPOPT_OLEN];
1089 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt); 1078 KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen < cnt);
1090 1079
1091 /* Invalid lengths should have been caught by ip_dooptions. */ 1080 /* Invalid lengths should have been caught by ip_dooptions. */
1092 if (optlen > cnt) 1081 if (optlen > cnt)
1093 optlen = cnt; 1082 optlen = cnt;
1094 if (IPOPT_COPIED(opt)) { 1083 if (IPOPT_COPIED(opt)) {
1095 bcopy((void *)cp, (void *)dp, (unsigned)optlen); 1084 bcopy((void *)cp, (void *)dp, (unsigned)optlen);
1096 dp += optlen; 1085 dp += optlen;
1097 } 1086 }
1098 } 1087 }
1099 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++) 1088 for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1100 *dp++ = IPOPT_EOL; 1089 *dp++ = IPOPT_EOL;
1101 return (optlen); 1090 return (optlen);
1102} 1091}
1103 1092
1104/* 1093/*
1105 * IP socket option processing. 1094 * IP socket option processing.
1106 */ 1095 */
1107int 1096int
1108ip_ctloutput(int op, struct socket *so, struct sockopt *sopt) 1097ip_ctloutput(int op, struct socket *so, struct sockopt *sopt)
1109{ 1098{
1110 struct inpcb *inp = sotoinpcb(so); 1099 struct inpcb *inp = sotoinpcb(so);
1111 struct ip *ip = &inp->inp_ip; 1100 struct ip *ip = &inp->inp_ip;
1112 int inpflags = inp->inp_flags; 1101 int inpflags = inp->inp_flags;
1113 int optval = 0, error = 0; 1102 int optval = 0, error = 0;
1114 1103
1115 if (sopt->sopt_level != IPPROTO_IP) { 1104 if (sopt->sopt_level != IPPROTO_IP) {
1116 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER) 1105 if (sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_NOHEADER)
1117 return 0; 1106 return 0;
1118 return ENOPROTOOPT; 1107 return ENOPROTOOPT;
1119 } 1108 }
1120 1109
1121 switch (op) { 1110 switch (op) {
1122 case PRCO_SETOPT: 1111 case PRCO_SETOPT:
1123 switch (sopt->sopt_name) { 1112 switch (sopt->sopt_name) {
1124 case IP_OPTIONS: 1113 case IP_OPTIONS:
1125#ifdef notyet 1114#ifdef notyet
1126 case IP_RETOPTS: 1115 case IP_RETOPTS:
1127#endif 1116#endif
1128 error = ip_pcbopts(inp, sopt); 1117 error = ip_pcbopts(inp, sopt);
1129 break; 1118 break;
1130 1119
1131 case IP_TOS: 1120 case IP_TOS:
1132 case IP_TTL: 1121 case IP_TTL:
1133 case IP_MINTTL: 1122 case IP_MINTTL:
1134 case IP_PKTINFO: 1123 case IP_PKTINFO:
1135 case IP_RECVOPTS: 1124 case IP_RECVOPTS:
1136 case IP_RECVRETOPTS: 1125 case IP_RECVRETOPTS:
1137 case IP_RECVDSTADDR: 1126 case IP_RECVDSTADDR:
1138 case IP_RECVIF: 1127 case IP_RECVIF:
1139 case IP_RECVPKTINFO: 1128 case IP_RECVPKTINFO:
1140 case IP_RECVTTL: 1129 case IP_RECVTTL:
1141 error = sockopt_getint(sopt, &optval); 1130 error = sockopt_getint(sopt, &optval);
1142 if (error) 1131 if (error)
1143 break; 1132 break;
1144 1133
1145 switch (sopt->sopt_name) { 1134 switch (sopt->sopt_name) {
1146 case IP_TOS: 1135 case IP_TOS:
1147 ip->ip_tos = optval; 1136 ip->ip_tos = optval;
1148 break; 1137 break;
1149 1138
1150 case IP_TTL: 1139 case IP_TTL:
1151 ip->ip_ttl = optval; 1140 ip->ip_ttl = optval;
1152 break; 1141 break;
1153 1142
1154 case IP_MINTTL: 1143 case IP_MINTTL:
1155 if (optval > 0 && optval <= MAXTTL) 1144 if (optval > 0 && optval <= MAXTTL)
1156 inp->inp_ip_minttl = optval; 1145 inp->inp_ip_minttl = optval;
1157 else 1146 else
1158 error = EINVAL; 1147 error = EINVAL;
1159 break; 1148 break;
1160#define OPTSET(bit) \ 1149#define OPTSET(bit) \
1161 if (optval) \ 1150 if (optval) \
1162 inpflags |= bit; \ 1151 inpflags |= bit; \
1163 else \ 1152 else \
1164 inpflags &= ~bit; 1153 inpflags &= ~bit;
1165 1154
1166 case IP_PKTINFO: 1155 case IP_PKTINFO:
1167 OPTSET(INP_PKTINFO); 1156 OPTSET(INP_PKTINFO);
1168 break; 1157 break;
1169 1158
1170 case IP_RECVOPTS: 1159 case IP_RECVOPTS:
1171 OPTSET(INP_RECVOPTS); 1160 OPTSET(INP_RECVOPTS);
1172 break; 1161 break;
1173 1162
1174 case IP_RECVPKTINFO: 1163 case IP_RECVPKTINFO:
1175 OPTSET(INP_RECVPKTINFO); 1164 OPTSET(INP_RECVPKTINFO);
1176 break; 1165 break;
1177 1166
1178 case IP_RECVRETOPTS: 1167 case IP_RECVRETOPTS:
1179 OPTSET(INP_RECVRETOPTS); 1168 OPTSET(INP_RECVRETOPTS);
1180 break; 1169 break;
1181 1170
1182 case IP_RECVDSTADDR: 1171 case IP_RECVDSTADDR:
1183 OPTSET(INP_RECVDSTADDR); 1172 OPTSET(INP_RECVDSTADDR);
1184 break; 1173 break;
1185 1174
1186 case IP_RECVIF: 1175 case IP_RECVIF:
1187 OPTSET(INP_RECVIF); 1176 OPTSET(INP_RECVIF);
1188 break; 1177 break;
1189 1178
1190 case IP_RECVTTL: 1179 case IP_RECVTTL:
1191 OPTSET(INP_RECVTTL); 1180 OPTSET(INP_RECVTTL);
1192 break; 1181 break;
1193 } 1182 }
1194 break; 1183 break;
1195#undef OPTSET 1184#undef OPTSET
1196 1185
1197 case IP_MULTICAST_IF: 1186 case IP_MULTICAST_IF:
1198 case IP_MULTICAST_TTL: 1187 case IP_MULTICAST_TTL:
1199 case IP_MULTICAST_LOOP: 1188 case IP_MULTICAST_LOOP:
1200 case IP_ADD_MEMBERSHIP: 1189 case IP_ADD_MEMBERSHIP:
1201 case IP_DROP_MEMBERSHIP: 1190 case IP_DROP_MEMBERSHIP:
1202 error = ip_setmoptions(&inp->inp_moptions, sopt); 1191 error = ip_setmoptions(&inp->inp_moptions, sopt);
1203 break; 1192 break;
1204 1193
1205 case IP_PORTRANGE: 1194 case IP_PORTRANGE:
1206 error = sockopt_getint(sopt, &optval); 1195 error = sockopt_getint(sopt, &optval);
1207 if (error) 1196 if (error)
1208 break; 1197 break;
1209 1198
1210 switch (optval) { 1199 switch (optval) {
1211 case IP_PORTRANGE_DEFAULT: 1200 case IP_PORTRANGE_DEFAULT:
1212 case IP_PORTRANGE_HIGH: 1201 case IP_PORTRANGE_HIGH:
1213 inpflags &= ~(INP_LOWPORT); 1202 inpflags &= ~(INP_LOWPORT);
1214 break; 1203 break;
1215 1204
1216 case IP_PORTRANGE_LOW: 1205 case IP_PORTRANGE_LOW:
1217 inpflags |= INP_LOWPORT; 1206 inpflags |= INP_LOWPORT;
1218 break; 1207 break;
1219 1208
1220 default: 1209 default:
1221 error = EINVAL; 1210 error = EINVAL;
1222 break; 1211 break;
1223 } 1212 }
1224 break; 1213 break;
1225 1214
1226 case IP_PORTALGO: 1215 case IP_PORTALGO:
1227 error = sockopt_getint(sopt, &optval); 1216 error = sockopt_getint(sopt, &optval);
1228 if (error) 1217 if (error)
1229 break; 1218 break;
1230 1219
1231 error = portalgo_algo_index_select( 1220 error = portalgo_algo_index_select(
1232 (struct inpcb_hdr *)inp, optval); 1221 (struct inpcb_hdr *)inp, optval);
1233 break; 1222 break;
1234 1223
1235#if defined(IPSEC) 1224#if defined(IPSEC)
1236 case IP_IPSEC_POLICY: 1225 case IP_IPSEC_POLICY:
1237 if (ipsec_enabled) { 1226 if (ipsec_enabled) {
1238 error = ipsec4_set_policy(inp, sopt->sopt_name, 1227 error = ipsec4_set_policy(inp, sopt->sopt_name,
1239 sopt->sopt_data, sopt->sopt_size, 1228 sopt->sopt_data, sopt->sopt_size,
1240 curlwp->l_cred); 1229 curlwp->l_cred);
1241 break; 1230 break;
1242 } 1231 }
1243 /*FALLTHROUGH*/ 1232 /*FALLTHROUGH*/
1244#endif /* IPSEC */ 1233#endif /* IPSEC */
1245 1234
1246 default: 1235 default:
1247 error = ENOPROTOOPT; 1236 error = ENOPROTOOPT;
1248 break; 1237 break;
1249 } 1238 }
1250 break; 1239 break;
1251 1240
1252 case PRCO_GETOPT: 1241 case PRCO_GETOPT:
1253 switch (sopt->sopt_name) { 1242 switch (sopt->sopt_name) {
1254 case IP_OPTIONS: 1243 case IP_OPTIONS:
1255 case IP_RETOPTS: { 1244 case IP_RETOPTS: {
1256 struct mbuf *mopts = inp->inp_options; 1245 struct mbuf *mopts = inp->inp_options;
1257 1246
1258 if (mopts) { 1247 if (mopts) {
1259 struct mbuf *m; 1248 struct mbuf *m;
1260 1249
1261 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT); 1250 m = m_copym(mopts, 0, M_COPYALL, M_DONTWAIT);
1262 if (m == NULL) { 1251 if (m == NULL) {
1263 error = ENOBUFS; 1252 error = ENOBUFS;
1264 break; 1253 break;
1265 } 1254 }
1266 error = sockopt_setmbuf(sopt, m); 1255 error = sockopt_setmbuf(sopt, m);
1267 } 1256 }
1268 break; 1257 break;
1269 } 1258 }
1270 case IP_PKTINFO: 1259 case IP_PKTINFO:
1271 case IP_TOS: 1260 case IP_TOS:
1272 case IP_TTL: 1261 case IP_TTL:
1273 case IP_MINTTL: 1262 case IP_MINTTL:
1274 case IP_RECVOPTS: 1263 case IP_RECVOPTS:
1275 case IP_RECVRETOPTS: 1264 case IP_RECVRETOPTS:
1276 case IP_RECVDSTADDR: 1265 case IP_RECVDSTADDR:
1277 case IP_RECVIF: 1266 case IP_RECVIF:
1278 case IP_RECVPKTINFO: 1267 case IP_RECVPKTINFO:
1279 case IP_RECVTTL: 1268 case IP_RECVTTL:
1280 case IP_ERRORMTU: 1269 case IP_ERRORMTU:
1281 switch (sopt->sopt_name) { 1270 switch (sopt->sopt_name) {
1282 case IP_TOS: 1271 case IP_TOS:
1283 optval = ip->ip_tos; 1272 optval = ip->ip_tos;
1284 break; 1273 break;
1285 1274
1286 case IP_TTL: 1275 case IP_TTL:
1287 optval = ip->ip_ttl; 1276 optval = ip->ip_ttl;
1288 break; 1277 break;
1289 1278
1290 case IP_MINTTL: 1279 case IP_MINTTL:
1291 optval = inp->inp_ip_minttl; 1280 optval = inp->inp_ip_minttl;
1292 break; 1281 break;
1293 1282
1294 case IP_ERRORMTU: 1283 case IP_ERRORMTU:
1295 optval = inp->inp_errormtu; 1284 optval = inp->inp_errormtu;
1296 break; 1285 break;
1297 1286
1298#define OPTBIT(bit) (inpflags & bit ? 1 : 0) 1287#define OPTBIT(bit) (inpflags & bit ? 1 : 0)
1299 1288
1300 case IP_PKTINFO: 1289 case IP_PKTINFO:
1301 optval = OPTBIT(INP_PKTINFO); 1290 optval = OPTBIT(INP_PKTINFO);
1302 break; 1291 break;
1303 1292
1304 case IP_RECVOPTS: 1293 case IP_RECVOPTS:
1305 optval = OPTBIT(INP_RECVOPTS); 1294 optval = OPTBIT(INP_RECVOPTS);
1306 break; 1295 break;
1307 1296
1308 case IP_RECVPKTINFO: 1297 case IP_RECVPKTINFO:
1309 optval = OPTBIT(INP_RECVPKTINFO); 1298 optval = OPTBIT(INP_RECVPKTINFO);
1310 break; 1299 break;
1311 1300
1312 case IP_RECVRETOPTS: 1301 case IP_RECVRETOPTS:
1313 optval = OPTBIT(INP_RECVRETOPTS); 1302 optval = OPTBIT(INP_RECVRETOPTS);
1314 break; 1303 break;
1315 1304
1316 case IP_RECVDSTADDR: 1305 case IP_RECVDSTADDR:
1317 optval = OPTBIT(INP_RECVDSTADDR); 1306 optval = OPTBIT(INP_RECVDSTADDR);
1318 break; 1307 break;
1319 1308
1320 case IP_RECVIF: 1309 case IP_RECVIF:
1321 optval = OPTBIT(INP_RECVIF); 1310 optval = OPTBIT(INP_RECVIF);
1322 break; 1311 break;
1323 1312
1324 case IP_RECVTTL: 1313 case IP_RECVTTL:
1325 optval = OPTBIT(INP_RECVTTL); 1314 optval = OPTBIT(INP_RECVTTL);
1326 break; 1315 break;
1327 } 1316 }
1328 error = sockopt_setint(sopt, optval); 1317 error = sockopt_setint(sopt, optval);
1329 break; 1318 break;
1330 1319
1331#if 0 /* defined(IPSEC) */ 1320#if 0 /* defined(IPSEC) */
1332 case IP_IPSEC_POLICY: 1321 case IP_IPSEC_POLICY:
1333 { 1322 {
1334 struct mbuf *m = NULL; 1323 struct mbuf *m = NULL;
1335 1324
1336 /* XXX this will return EINVAL as sopt is empty */ 1325 /* XXX this will return EINVAL as sopt is empty */
1337 error = ipsec4_get_policy(inp, sopt->sopt_data, 1326 error = ipsec4_get_policy(inp, sopt->sopt_data,
1338 sopt->sopt_size, &m); 1327 sopt->sopt_size, &m);
1339 if (error == 0) 1328 if (error == 0)
1340 error = sockopt_setmbuf(sopt, m); 1329 error = sockopt_setmbuf(sopt, m);
1341 break; 1330 break;
1342 } 1331 }
1343#endif /*IPSEC*/ 1332#endif /*IPSEC*/
1344 1333
1345 case IP_MULTICAST_IF: 1334 case IP_MULTICAST_IF:
1346 case IP_MULTICAST_TTL: 1335 case IP_MULTICAST_TTL:
1347 case IP_MULTICAST_LOOP: 1336 case IP_MULTICAST_LOOP:
1348 case IP_ADD_MEMBERSHIP: 1337 case IP_ADD_MEMBERSHIP:
1349 case IP_DROP_MEMBERSHIP: 1338 case IP_DROP_MEMBERSHIP:
1350 error = ip_getmoptions(inp->inp_moptions, sopt); 1339 error = ip_getmoptions(inp->inp_moptions, sopt);
1351 break; 1340 break;
1352 1341
1353 case IP_PORTRANGE: 1342 case IP_PORTRANGE:
1354 if (inpflags & INP_LOWPORT) 1343 if (inpflags & INP_LOWPORT)
1355 optval = IP_PORTRANGE_LOW; 1344 optval = IP_PORTRANGE_LOW;
1356 else 1345 else
1357 optval = IP_PORTRANGE_DEFAULT; 1346 optval = IP_PORTRANGE_DEFAULT;
1358 error = sockopt_setint(sopt, optval); 1347 error = sockopt_setint(sopt, optval);
1359 break; 1348 break;
1360 1349
1361 case IP_PORTALGO: 1350 case IP_PORTALGO:
1362 optval = inp->inp_portalgo; 1351 optval = inp->inp_portalgo;
1363 error = sockopt_setint(sopt, optval); 1352 error = sockopt_setint(sopt, optval);
1364 break; 1353 break;
1365 1354
1366 default: 1355 default:
1367 error = ENOPROTOOPT; 1356 error = ENOPROTOOPT;
1368 break; 1357 break;
1369 } 1358 }
1370 break; 1359 break;
1371 } 1360 }
1372 1361
1373 if (!error) { 1362 if (!error) {

cvs diff -r1.109 -r1.110 src/sys/netinet/ip_var.h (switch to unified diff)

--- src/sys/netinet/ip_var.h 2016/01/20 22:02:54 1.109
+++ src/sys/netinet/ip_var.h 2016/01/20 22:12:22 1.110
@@ -1,253 +1,254 @@ @@ -1,253 +1,254 @@
1/* $NetBSD: ip_var.h,v 1.109 2016/01/20 22:02:54 riastradh Exp $ */ 1/* $NetBSD: ip_var.h,v 1.110 2016/01/20 22:12:22 riastradh Exp $ */
2 2
3/* 3/*
4 * Copyright (c) 1982, 1986, 1993 4 * Copyright (c) 1982, 1986, 1993
5 * The Regents of the University of California. All rights reserved. 5 * The Regents of the University of California. All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions 8 * modification, are permitted provided that the following conditions
9 * are met: 9 * are met:
10 * 1. Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer. 11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright 12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the 13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution. 14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors 15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software 16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission. 17 * without specific prior written permission.
18 * 18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE. 29 * SUCH DAMAGE.
30 * 30 *
31 * @(#)ip_var.h 8.2 (Berkeley) 1/9/95 31 * @(#)ip_var.h 8.2 (Berkeley) 1/9/95
32 */ 32 */
33 33
34#ifndef _NETINET_IP_VAR_H_ 34#ifndef _NETINET_IP_VAR_H_
35#define _NETINET_IP_VAR_H_ 35#define _NETINET_IP_VAR_H_
36 36
37#include <sys/queue.h> 37#include <sys/queue.h>
38#include <net/route.h> 38#include <net/route.h>
39 39
40/* 40/*
41 * Overlay for ip header used by other protocols (tcp, udp). 41 * Overlay for ip header used by other protocols (tcp, udp).
42 */ 42 */
43struct ipovly { 43struct ipovly {
44 u_int8_t ih_x1[9]; /* (unused) */ 44 u_int8_t ih_x1[9]; /* (unused) */
45 u_int8_t ih_pr; /* protocol */ 45 u_int8_t ih_pr; /* protocol */
46 u_int16_t ih_len; /* protocol length */ 46 u_int16_t ih_len; /* protocol length */
47 struct in_addr ih_src; /* source internet address */ 47 struct in_addr ih_src; /* source internet address */
48 struct in_addr ih_dst; /* destination internet address */ 48 struct in_addr ih_dst; /* destination internet address */
49} __packed; 49} __packed;
50 50
51/* 51/*
52 * IP Flow structure 52 * IP Flow structure
53 */ 53 */
54struct ipflow { 54struct ipflow {
55 LIST_ENTRY(ipflow) ipf_list; /* next in active list */ 55 LIST_ENTRY(ipflow) ipf_list; /* next in active list */
56 LIST_ENTRY(ipflow) ipf_hash; /* next ipflow in bucket */ 56 LIST_ENTRY(ipflow) ipf_hash; /* next ipflow in bucket */
57 struct in_addr ipf_dst; /* destination address */ 57 struct in_addr ipf_dst; /* destination address */
58 struct in_addr ipf_src; /* source address */ 58 struct in_addr ipf_src; /* source address */
59 uint8_t ipf_tos; /* type-of-service */ 59 uint8_t ipf_tos; /* type-of-service */
60 struct route ipf_ro; /* associated route entry */ 60 struct route ipf_ro; /* associated route entry */
61 u_long ipf_uses; /* number of uses in this period */ 61 u_long ipf_uses; /* number of uses in this period */
62 u_long ipf_last_uses; /* number of uses in last period */ 62 u_long ipf_last_uses; /* number of uses in last period */
63 u_long ipf_dropped; /* ENOBUFS retured by if_output */ 63 u_long ipf_dropped; /* ENOBUFS retured by if_output */
64 u_long ipf_errors; /* other errors returned by if_output */ 64 u_long ipf_errors; /* other errors returned by if_output */
65 u_int ipf_timer; /* lifetime timer */ 65 u_int ipf_timer; /* lifetime timer */
66}; 66};
67 67
68/* 68/*
69 * IP sequence queue structure. 69 * IP sequence queue structure.
70 * 70 *
71 * XXX -- The following explains why the ipqe_m field is here, for TCP's use: 71 * XXX -- The following explains why the ipqe_m field is here, for TCP's use:
72 * We want to avoid doing m_pullup on incoming packets but that 72 * We want to avoid doing m_pullup on incoming packets but that
73 * means avoiding dtom on the tcp reassembly code. That in turn means 73 * means avoiding dtom on the tcp reassembly code. That in turn means
74 * keeping an mbuf pointer in the reassembly queue (since we might 74 * keeping an mbuf pointer in the reassembly queue (since we might
75 * have a cluster). As a quick hack, the source & destination 75 * have a cluster). As a quick hack, the source & destination
76 * port numbers (which are no longer needed once we've located the 76 * port numbers (which are no longer needed once we've located the
77 * tcpcb) are overlayed with an mbuf pointer. 77 * tcpcb) are overlayed with an mbuf pointer.
78 */ 78 */
79TAILQ_HEAD(ipqehead, ipqent); 79TAILQ_HEAD(ipqehead, ipqent);
80struct ipqent { 80struct ipqent {
81 TAILQ_ENTRY(ipqent) ipqe_q; 81 TAILQ_ENTRY(ipqent) ipqe_q;
82 union { 82 union {
83 struct ip *_ip; 83 struct ip *_ip;
84 struct tcpiphdr *_tcp; 84 struct tcpiphdr *_tcp;
85 } _ipqe_u1; 85 } _ipqe_u1;
86 struct mbuf *ipqe_m; /* point to first mbuf */ 86 struct mbuf *ipqe_m; /* point to first mbuf */
87 struct mbuf *ipre_mlast; /* point to last mbuf */ 87 struct mbuf *ipre_mlast; /* point to last mbuf */
88 u_int8_t ipqe_mff; /* for IP fragmentation */ 88 u_int8_t ipqe_mff; /* for IP fragmentation */
89 /* 89 /*
90 * The following are used in TCP reassembly 90 * The following are used in TCP reassembly
91 */ 91 */
92 TAILQ_ENTRY(ipqent) ipqe_timeq; 92 TAILQ_ENTRY(ipqent) ipqe_timeq;
93 u_int32_t ipqe_seq; 93 u_int32_t ipqe_seq;
94 u_int32_t ipqe_len; 94 u_int32_t ipqe_len;
95 u_int32_t ipqe_flags; 95 u_int32_t ipqe_flags;
96}; 96};
97#define ipqe_tcp _ipqe_u1._tcp 97#define ipqe_tcp _ipqe_u1._tcp
98 98
99/* 99/*
100 * Structure stored in mbuf in inpcb.ip_options 100 * Structure stored in mbuf in inpcb.ip_options
101 * and passed to ip_output when ip options are in use. 101 * and passed to ip_output when ip options are in use.
102 * The actual length of the options (including ipopt_dst) 102 * The actual length of the options (including ipopt_dst)
103 * is in m_len. 103 * is in m_len.
104 */ 104 */
105#define MAX_IPOPTLEN 40 105#define MAX_IPOPTLEN 40
106 106
107struct ipoption { 107struct ipoption {
108 struct in_addr ipopt_dst; /* first-hop dst if source routed */ 108 struct in_addr ipopt_dst; /* first-hop dst if source routed */
109 int8_t ipopt_list[MAX_IPOPTLEN]; /* options proper */ 109 int8_t ipopt_list[MAX_IPOPTLEN]; /* options proper */
110}; 110};
111 111
112/* 112/*
113 * Structure attached to inpcb.ip_moptions and 113 * Structure attached to inpcb.ip_moptions and
114 * passed to ip_output when IP multicast options are in use. 114 * passed to ip_output when IP multicast options are in use.
115 */ 115 */
116struct ip_moptions { 116struct ip_moptions {
117 struct ifnet *imo_multicast_ifp; /* ifp for outgoing multicasts */ 117 struct ifnet *imo_multicast_ifp; /* ifp for outgoing multicasts */
118 struct in_addr imo_multicast_addr; /* ifindex/addr on MULTICAST_IF */ 118 struct in_addr imo_multicast_addr; /* ifindex/addr on MULTICAST_IF */
119 u_int8_t imo_multicast_ttl; /* TTL for outgoing multicasts */ 119 u_int8_t imo_multicast_ttl; /* TTL for outgoing multicasts */
120 u_int8_t imo_multicast_loop; /* 1 => hear sends if a member */ 120 u_int8_t imo_multicast_loop; /* 1 => hear sends if a member */
121 u_int16_t imo_num_memberships; /* no. memberships this socket */ 121 u_int16_t imo_num_memberships; /* no. memberships this socket */
122 struct in_multi *imo_membership[IP_MAX_MEMBERSHIPS]; 122 struct in_multi *imo_membership[IP_MAX_MEMBERSHIPS];
123}; 123};
124 124
125/* 125/*
126 * IP statistics. 126 * IP statistics.
127 * Each counter is an unsigned 64-bit value. 127 * Each counter is an unsigned 64-bit value.
128 */ 128 */
129#define IP_STAT_TOTAL 0 /* total packets received */ 129#define IP_STAT_TOTAL 0 /* total packets received */
130#define IP_STAT_BADSUM 1 /* checksum bad */ 130#define IP_STAT_BADSUM 1 /* checksum bad */
131#define IP_STAT_TOOSHORT 2 /* packet too short */ 131#define IP_STAT_TOOSHORT 2 /* packet too short */
132#define IP_STAT_TOOSMALL 3 /* not enough data */ 132#define IP_STAT_TOOSMALL 3 /* not enough data */
133#define IP_STAT_BADHLEN 4 /* ip header length < data size */ 133#define IP_STAT_BADHLEN 4 /* ip header length < data size */
134#define IP_STAT_BADLEN 5 /* ip length < ip header length */ 134#define IP_STAT_BADLEN 5 /* ip length < ip header length */
135#define IP_STAT_FRAGMENTS 6 /* fragments received */ 135#define IP_STAT_FRAGMENTS 6 /* fragments received */
136#define IP_STAT_FRAGDROPPED 7 /* frags dropped (dups, out of space) */ 136#define IP_STAT_FRAGDROPPED 7 /* frags dropped (dups, out of space) */
137#define IP_STAT_FRAGTIMEOUT 8 /* fragments timed out */ 137#define IP_STAT_FRAGTIMEOUT 8 /* fragments timed out */
138#define IP_STAT_FORWARD 9 /* packets forwarded */ 138#define IP_STAT_FORWARD 9 /* packets forwarded */
139#define IP_STAT_FASTFORWARD 10 /* packets fast forwarded */ 139#define IP_STAT_FASTFORWARD 10 /* packets fast forwarded */
140#define IP_STAT_CANTFORWARD 11 /* packets rcvd for unreachable dest */ 140#define IP_STAT_CANTFORWARD 11 /* packets rcvd for unreachable dest */
141#define IP_STAT_REDIRECTSENT 12 /* packets forwareded on same net */ 141#define IP_STAT_REDIRECTSENT 12 /* packets forwareded on same net */
142#define IP_STAT_NOPROTO 13 /* unknown or unsupported protocol */ 142#define IP_STAT_NOPROTO 13 /* unknown or unsupported protocol */
143#define IP_STAT_DELIVERED 14 /* datagrams delivered to upper level */ 143#define IP_STAT_DELIVERED 14 /* datagrams delivered to upper level */
144#define IP_STAT_LOCALOUT 15 /* total ip packets generated here */ 144#define IP_STAT_LOCALOUT 15 /* total ip packets generated here */
145#define IP_STAT_ODROPPED 16 /* lost packets due to nobufs, etc. */ 145#define IP_STAT_ODROPPED 16 /* lost packets due to nobufs, etc. */
146#define IP_STAT_REASSEMBLED 17 /* total packets reassembled ok */ 146#define IP_STAT_REASSEMBLED 17 /* total packets reassembled ok */
147#define IP_STAT_FRAGMENTED 18 /* datagrams successfully fragmented */ 147#define IP_STAT_FRAGMENTED 18 /* datagrams successfully fragmented */
148#define IP_STAT_OFRAGMENTS 19 /* output fragments created */ 148#define IP_STAT_OFRAGMENTS 19 /* output fragments created */
149#define IP_STAT_CANTFRAG 20 /* don't fragment flag was set, etc. */ 149#define IP_STAT_CANTFRAG 20 /* don't fragment flag was set, etc. */
150#define IP_STAT_BADOPTIONS 21 /* error in option processing */ 150#define IP_STAT_BADOPTIONS 21 /* error in option processing */
151#define IP_STAT_NOROUTE 22 /* packets discarded due to no route */ 151#define IP_STAT_NOROUTE 22 /* packets discarded due to no route */
152#define IP_STAT_BADVERS 23 /* ip version != 4 */ 152#define IP_STAT_BADVERS 23 /* ip version != 4 */
153#define IP_STAT_RAWOUT 24 /* total raw ip packets generated */ 153#define IP_STAT_RAWOUT 24 /* total raw ip packets generated */
154#define IP_STAT_BADFRAGS 25 /* malformed fragments (bad length) */ 154#define IP_STAT_BADFRAGS 25 /* malformed fragments (bad length) */
155#define IP_STAT_RCVMEMDROP 26 /* frags dropped for lack of memory */ 155#define IP_STAT_RCVMEMDROP 26 /* frags dropped for lack of memory */
156#define IP_STAT_TOOLONG 27 /* ip length > max ip packet size */ 156#define IP_STAT_TOOLONG 27 /* ip length > max ip packet size */
157#define IP_STAT_NOGIF 28 /* no match gif found */ 157#define IP_STAT_NOGIF 28 /* no match gif found */
158#define IP_STAT_BADADDR 29 /* invalid address on header */ 158#define IP_STAT_BADADDR 29 /* invalid address on header */
159 159
160#define IP_NSTATS 30 160#define IP_NSTATS 30
161 161
162#ifdef _KERNEL 162#ifdef _KERNEL
163 163
164#ifdef _KERNEL_OPT 164#ifdef _KERNEL_OPT
165#include "opt_gateway.h" 165#include "opt_gateway.h"
166#include "opt_mbuftrace.h" 166#include "opt_mbuftrace.h"
167#endif 167#endif
168 168
169/* 169/*
170 * The following flags can be passed to ip_output() as last parameter 170 * The following flags can be passed to ip_output() as last parameter
171 */ 171 */
172#define IP_FORWARDING 0x0001 /* most of ip header exists */ 172#define IP_FORWARDING 0x0001 /* most of ip header exists */
173#define IP_RAWOUTPUT 0x0002 /* raw ip header exists */ 173#define IP_RAWOUTPUT 0x0002 /* raw ip header exists */
174#define IP_RETURNMTU 0x0004 /* pass back mtu on EMSGSIZE */ 174#define IP_RETURNMTU 0x0004 /* pass back mtu on EMSGSIZE */
175#define IP_NOIPNEWID 0x0008 /* don't fill in ip_id */ 175#define IP_NOIPNEWID 0x0008 /* don't fill in ip_id */
176__CTASSERT(SO_DONTROUTE == 0x0010); 176__CTASSERT(SO_DONTROUTE == 0x0010);
177__CTASSERT(SO_BROADCAST == 0x0020); 177__CTASSERT(SO_BROADCAST == 0x0020);
178#define IP_ROUTETOIF SO_DONTROUTE /* bypass routing tables */ 178#define IP_ROUTETOIF SO_DONTROUTE /* bypass routing tables */
179#define IP_ALLOWBROADCAST SO_BROADCAST /* can send broadcast packets */ 179#define IP_ALLOWBROADCAST SO_BROADCAST /* can send broadcast packets */
180 180
181#define IP_IGMP_MCAST 0x0040 /* IGMP for mcast join/leave */ 181#define IP_IGMP_MCAST 0x0040 /* IGMP for mcast join/leave */
182#define IP_MTUDISC 0x0400 /* Path MTU Discovery; set DF */ 182#define IP_MTUDISC 0x0400 /* Path MTU Discovery; set DF */
183 183
184extern struct domain inetdomain; 184extern struct domain inetdomain;
185extern const struct pr_usrreqs rip_usrreqs; 185extern const struct pr_usrreqs rip_usrreqs;
186 186
187extern int ip_defttl; /* default IP ttl */ 187extern int ip_defttl; /* default IP ttl */
188extern int ipforwarding; /* ip forwarding */ 188extern int ipforwarding; /* ip forwarding */
189extern int ip_mtudisc; /* mtu discovery */ 189extern int ip_mtudisc; /* mtu discovery */
190extern int ip_mtudisc_timeout; /* seconds to timeout mtu discovery */ 190extern int ip_mtudisc_timeout; /* seconds to timeout mtu discovery */
191extern int anonportmin; /* minimum ephemeral port */ 191extern int anonportmin; /* minimum ephemeral port */
192extern int anonportmax; /* maximum ephemeral port */ 192extern int anonportmax; /* maximum ephemeral port */
193extern int lowportmin; /* minimum reserved port */ 193extern int lowportmin; /* minimum reserved port */
194extern int lowportmax; /* maximum reserved port */ 194extern int lowportmax; /* maximum reserved port */
195extern int ip_do_loopback_cksum; /* do IP checksum on loopback? */ 195extern int ip_do_loopback_cksum; /* do IP checksum on loopback? */
196extern struct rttimer_queue *ip_mtudisc_timeout_q; 196extern struct rttimer_queue *ip_mtudisc_timeout_q;
197#ifdef MBUFTRACE 197#ifdef MBUFTRACE
198extern struct mowner ip_rx_mowner; 198extern struct mowner ip_rx_mowner;
199extern struct mowner ip_tx_mowner; 199extern struct mowner ip_tx_mowner;
200#endif 200#endif
201struct inpcb; 201struct inpcb;
202struct sockopt; 202struct sockopt;
203 203
204void ip_init(void); 204void ip_init(void);
205void in_init(void); 205void in_init(void);
206 206
207int ip_ctloutput(int, struct socket *, struct sockopt *); 207int ip_ctloutput(int, struct socket *, struct sockopt *);
208void ip_drain(void); 208void ip_drain(void);
209void ip_drainstub(void); 209void ip_drainstub(void);
210void ip_freemoptions(struct ip_moptions *); 210void ip_freemoptions(struct ip_moptions *);
211int ip_optcopy(struct ip *, struct ip *); 211int ip_optcopy(struct ip *, struct ip *);
212u_int ip_optlen(struct inpcb *); 212u_int ip_optlen(struct inpcb *);
213int ip_output(struct mbuf *, ...); 213int ip_output(struct mbuf *, struct mbuf *, struct route *, int,
 214 struct ip_moptions *, struct socket *);
214int ip_fragment(struct mbuf *, struct ifnet *, u_long); 215int ip_fragment(struct mbuf *, struct ifnet *, u_long);
215 216
216void ip_reass_init(void); 217void ip_reass_init(void);
217int ip_reass_packet(struct mbuf **, struct ip *); 218int ip_reass_packet(struct mbuf **, struct ip *);
218void ip_reass_slowtimo(void); 219void ip_reass_slowtimo(void);
219void ip_reass_drain(void); 220void ip_reass_drain(void);
220 221
221void ip_savecontrol(struct inpcb *, struct mbuf **, struct ip *, 222void ip_savecontrol(struct inpcb *, struct mbuf **, struct ip *,
222 struct mbuf *); 223 struct mbuf *);
223void ip_slowtimo(void); 224void ip_slowtimo(void);
224void ip_fasttimo(void); 225void ip_fasttimo(void);
225struct mbuf * 226struct mbuf *
226 ip_srcroute(void); 227 ip_srcroute(void);
227int ip_sysctl(int *, u_int, void *, size_t *, void *, size_t); 228int ip_sysctl(int *, u_int, void *, size_t *, void *, size_t);
228void ip_statinc(u_int); 229void ip_statinc(u_int);
229void * rip_ctlinput(int, const struct sockaddr *, void *); 230void * rip_ctlinput(int, const struct sockaddr *, void *);
230int rip_ctloutput(int, struct socket *, struct sockopt *); 231int rip_ctloutput(int, struct socket *, struct sockopt *);
231void rip_init(void); 232void rip_init(void);
232void rip_input(struct mbuf *, ...); 233void rip_input(struct mbuf *, ...);
233int rip_output(struct mbuf *, struct inpcb *); 234int rip_output(struct mbuf *, struct inpcb *);
234int rip_usrreq(struct socket *, 235int rip_usrreq(struct socket *,
235 int, struct mbuf *, struct mbuf *, struct mbuf *, struct lwp *); 236 int, struct mbuf *, struct mbuf *, struct mbuf *, struct lwp *);
236 237
237int ip_setmoptions(struct ip_moptions **, const struct sockopt *sopt); 238int ip_setmoptions(struct ip_moptions **, const struct sockopt *sopt);
238int ip_getmoptions(struct ip_moptions *, struct sockopt *sopt); 239int ip_getmoptions(struct ip_moptions *, struct sockopt *sopt);
239 240
240int ip_hresolv_output(struct ifnet * const, struct mbuf * const, 241int ip_hresolv_output(struct ifnet * const, struct mbuf * const,
241 const struct sockaddr * const, struct rtentry *); 242 const struct sockaddr * const, struct rtentry *);
242 243
243/* IP Flow interface. */ 244/* IP Flow interface. */
244void ipflow_init(void); 245void ipflow_init(void);
245void ipflow_poolinit(void); 246void ipflow_poolinit(void);
246struct ipflow *ipflow_reap(bool); 247struct ipflow *ipflow_reap(bool);
247void ipflow_create(const struct route *, struct mbuf *); 248void ipflow_create(const struct route *, struct mbuf *);
248void ipflow_slowtimo(void); 249void ipflow_slowtimo(void);
249int ipflow_invalidate_all(int); 250int ipflow_invalidate_all(int);
250 251
251#endif /* _KERNEL */ 252#endif /* _KERNEL */
252 253
253#endif /* !_NETINET_IP_VAR_H_ */ 254#endif /* !_NETINET_IP_VAR_H_ */