Fri Aug 18 15:04:58 2017 UTC ()
Pull up following revision(s) (requested by mrg in ticket #1476):
	sys/dev/ic/dp83932.c: revision 1.41
Plug mbuf leak on MCLGET failure in sonic_rxintr.
From Ilja Van Sprundel.


(snj)
diff -r1.35 -r1.35.14.1 src/sys/dev/ic/dp83932.c

cvs diff -r1.35 -r1.35.14.1 src/sys/dev/ic/dp83932.c (switch to unified diff)

--- src/sys/dev/ic/dp83932.c 2010/11/13 13:52:00 1.35
+++ src/sys/dev/ic/dp83932.c 2017/08/18 15:04:58 1.35.14.1
@@ -1,1261 +1,1263 @@ @@ -1,1261 +1,1263 @@
1/* $NetBSD: dp83932.c,v 1.35 2010/11/13 13:52:00 uebayasi Exp $ */ 1/* $NetBSD: dp83932.c,v 1.35.14.1 2017/08/18 15:04:58 snj Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc. 4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * This code is derived from software contributed to The NetBSD Foundation 7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe. 8 * by Jason R. Thorpe.
9 * 9 *
10 * Redistribution and use in source and binary forms, with or without 10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions 11 * modification, are permitted provided that the following conditions
12 * are met: 12 * are met:
13 * 1. Redistributions of source code must retain the above copyright 13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer. 14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright 15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the 16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution. 17 * documentation and/or other materials provided with the distribution.
18 * 18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE. 29 * POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31 31
32/* 32/*
33 * Device driver for the National Semiconductor DP83932 33 * Device driver for the National Semiconductor DP83932
34 * Systems-Oriented Network Interface Controller (SONIC). 34 * Systems-Oriented Network Interface Controller (SONIC).
35 */ 35 */
36 36
37#include <sys/cdefs.h> 37#include <sys/cdefs.h>
38__KERNEL_RCSID(0, "$NetBSD: dp83932.c,v 1.35 2010/11/13 13:52:00 uebayasi Exp $"); 38__KERNEL_RCSID(0, "$NetBSD: dp83932.c,v 1.35.14.1 2017/08/18 15:04:58 snj Exp $");
39 39
40 40
41#include <sys/param.h> 41#include <sys/param.h>
42#include <sys/systm.h> 42#include <sys/systm.h>
43#include <sys/mbuf.h> 43#include <sys/mbuf.h>
44#include <sys/malloc.h> 44#include <sys/malloc.h>
45#include <sys/kernel.h> 45#include <sys/kernel.h>
46#include <sys/socket.h> 46#include <sys/socket.h>
47#include <sys/ioctl.h> 47#include <sys/ioctl.h>
48#include <sys/errno.h> 48#include <sys/errno.h>
49#include <sys/device.h> 49#include <sys/device.h>
50 50
51#include <net/if.h> 51#include <net/if.h>
52#include <net/if_dl.h> 52#include <net/if_dl.h>
53#include <net/if_ether.h> 53#include <net/if_ether.h>
54 54
55#include <net/bpf.h> 55#include <net/bpf.h>
56 56
57#include <sys/bus.h> 57#include <sys/bus.h>
58#include <sys/intr.h> 58#include <sys/intr.h>
59 59
60#include <dev/ic/dp83932reg.h> 60#include <dev/ic/dp83932reg.h>
61#include <dev/ic/dp83932var.h> 61#include <dev/ic/dp83932var.h>
62 62
63static void sonic_start(struct ifnet *); 63static void sonic_start(struct ifnet *);
64static void sonic_watchdog(struct ifnet *); 64static void sonic_watchdog(struct ifnet *);
65static int sonic_ioctl(struct ifnet *, u_long, void *); 65static int sonic_ioctl(struct ifnet *, u_long, void *);
66static int sonic_init(struct ifnet *); 66static int sonic_init(struct ifnet *);
67static void sonic_stop(struct ifnet *, int); 67static void sonic_stop(struct ifnet *, int);
68 68
69static bool sonic_shutdown(device_t, int); 69static bool sonic_shutdown(device_t, int);
70 70
71static void sonic_reset(struct sonic_softc *); 71static void sonic_reset(struct sonic_softc *);
72static void sonic_rxdrain(struct sonic_softc *); 72static void sonic_rxdrain(struct sonic_softc *);
73static int sonic_add_rxbuf(struct sonic_softc *, int); 73static int sonic_add_rxbuf(struct sonic_softc *, int);
74static void sonic_set_filter(struct sonic_softc *); 74static void sonic_set_filter(struct sonic_softc *);
75 75
76static uint16_t sonic_txintr(struct sonic_softc *); 76static uint16_t sonic_txintr(struct sonic_softc *);
77static void sonic_rxintr(struct sonic_softc *); 77static void sonic_rxintr(struct sonic_softc *);
78 78
79int sonic_copy_small = 0; 79int sonic_copy_small = 0;
80 80
81#define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN) 81#define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
82 82
83/* 83/*
84 * sonic_attach: 84 * sonic_attach:
85 * 85 *
86 * Attach a SONIC interface to the system. 86 * Attach a SONIC interface to the system.
87 */ 87 */
88void 88void
89sonic_attach(struct sonic_softc *sc, const uint8_t *enaddr) 89sonic_attach(struct sonic_softc *sc, const uint8_t *enaddr)
90{ 90{
91 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 91 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
92 int i, rseg, error; 92 int i, rseg, error;
93 bus_dma_segment_t seg; 93 bus_dma_segment_t seg;
94 size_t cdatasize; 94 size_t cdatasize;
95 uint8_t *nullbuf; 95 uint8_t *nullbuf;
96 96
97 /* 97 /*
98 * Allocate the control data structures, and create and load the 98 * Allocate the control data structures, and create and load the
99 * DMA map for it. 99 * DMA map for it.
100 */ 100 */
101 if (sc->sc_32bit) 101 if (sc->sc_32bit)
102 cdatasize = sizeof(struct sonic_control_data32); 102 cdatasize = sizeof(struct sonic_control_data32);
103 else 103 else
104 cdatasize = sizeof(struct sonic_control_data16); 104 cdatasize = sizeof(struct sonic_control_data16);
105 105
106 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdatasize + ETHER_PAD_LEN, 106 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdatasize + ETHER_PAD_LEN,
107 PAGE_SIZE, (64 * 1024), &seg, 1, &rseg, 107 PAGE_SIZE, (64 * 1024), &seg, 1, &rseg,
108 BUS_DMA_NOWAIT)) != 0) { 108 BUS_DMA_NOWAIT)) != 0) {
109 aprint_error_dev(sc->sc_dev, 109 aprint_error_dev(sc->sc_dev,
110 "unable to allocate control data, error = %d\n", error); 110 "unable to allocate control data, error = %d\n", error);
111 goto fail_0; 111 goto fail_0;
112 } 112 }
113 113
114 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 114 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
115 cdatasize + ETHER_PAD_LEN, (void **) &sc->sc_cdata16, 115 cdatasize + ETHER_PAD_LEN, (void **) &sc->sc_cdata16,
116 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) { 116 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
117 aprint_error_dev(sc->sc_dev, 117 aprint_error_dev(sc->sc_dev,
118 "unable to map control data, error = %d\n", error); 118 "unable to map control data, error = %d\n", error);
119 goto fail_1; 119 goto fail_1;
120 } 120 }
121 nullbuf = (uint8_t *)sc->sc_cdata16 + cdatasize; 121 nullbuf = (uint8_t *)sc->sc_cdata16 + cdatasize;
122 memset(nullbuf, 0, ETHER_PAD_LEN); 122 memset(nullbuf, 0, ETHER_PAD_LEN);
123 123
124 if ((error = bus_dmamap_create(sc->sc_dmat, 124 if ((error = bus_dmamap_create(sc->sc_dmat,
125 cdatasize, 1, cdatasize, 0, BUS_DMA_NOWAIT, 125 cdatasize, 1, cdatasize, 0, BUS_DMA_NOWAIT,
126 &sc->sc_cddmamap)) != 0) { 126 &sc->sc_cddmamap)) != 0) {
127 aprint_error_dev(sc->sc_dev, 127 aprint_error_dev(sc->sc_dev,
128 "unable to create control data DMA map, error = %d\n", 128 "unable to create control data DMA map, error = %d\n",
129 error); 129 error);
130 goto fail_2; 130 goto fail_2;
131 } 131 }
132 132
133 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 133 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
134 sc->sc_cdata16, cdatasize, NULL, BUS_DMA_NOWAIT)) != 0) { 134 sc->sc_cdata16, cdatasize, NULL, BUS_DMA_NOWAIT)) != 0) {
135 aprint_error_dev(sc->sc_dev, 135 aprint_error_dev(sc->sc_dev,
136 "unable to load control data DMA map, error = %d\n", error); 136 "unable to load control data DMA map, error = %d\n", error);
137 goto fail_3; 137 goto fail_3;
138 } 138 }
139 139
140 /* 140 /*
141 * Create the transmit buffer DMA maps. 141 * Create the transmit buffer DMA maps.
142 */ 142 */
143 for (i = 0; i < SONIC_NTXDESC; i++) { 143 for (i = 0; i < SONIC_NTXDESC; i++) {
144 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 144 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
145 SONIC_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT, 145 SONIC_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
146 &sc->sc_txsoft[i].ds_dmamap)) != 0) { 146 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
147 aprint_error_dev(sc->sc_dev, 147 aprint_error_dev(sc->sc_dev,
148 "unable to create tx DMA map %d, error = %d\n", 148 "unable to create tx DMA map %d, error = %d\n",
149 i, error); 149 i, error);
150 goto fail_4; 150 goto fail_4;
151 } 151 }
152 } 152 }
153 153
154 /* 154 /*
155 * Create the receive buffer DMA maps. 155 * Create the receive buffer DMA maps.
156 */ 156 */
157 for (i = 0; i < SONIC_NRXDESC; i++) { 157 for (i = 0; i < SONIC_NRXDESC; i++) {
158 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 158 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
159 MCLBYTES, 0, BUS_DMA_NOWAIT, 159 MCLBYTES, 0, BUS_DMA_NOWAIT,
160 &sc->sc_rxsoft[i].ds_dmamap)) != 0) { 160 &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
161 aprint_error_dev(sc->sc_dev, 161 aprint_error_dev(sc->sc_dev,
162 "unable to create rx DMA map %d, error = %d\n", 162 "unable to create rx DMA map %d, error = %d\n",
163 i, error); 163 i, error);
164 goto fail_5; 164 goto fail_5;
165 } 165 }
166 sc->sc_rxsoft[i].ds_mbuf = NULL; 166 sc->sc_rxsoft[i].ds_mbuf = NULL;
167 } 167 }
168 168
169 /* 169 /*
170 * create and map the pad buffer 170 * create and map the pad buffer
171 */ 171 */
172 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1, 172 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
173 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT, &sc->sc_nulldmamap)) != 0) { 173 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT, &sc->sc_nulldmamap)) != 0) {
174 aprint_error_dev(sc->sc_dev, 174 aprint_error_dev(sc->sc_dev,
175 "unable to create pad buffer DMA map, error = %d\n", error); 175 "unable to create pad buffer DMA map, error = %d\n", error);
176 goto fail_5; 176 goto fail_5;
177 } 177 }
178 178
179 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap, 179 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
180 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) { 180 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
181 aprint_error_dev(sc->sc_dev, 181 aprint_error_dev(sc->sc_dev,
182 "unable to load pad buffer DMA map, error = %d\n", error); 182 "unable to load pad buffer DMA map, error = %d\n", error);
183 goto fail_6; 183 goto fail_6;
184 } 184 }
185 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN, 185 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
186 BUS_DMASYNC_PREWRITE); 186 BUS_DMASYNC_PREWRITE);
187 187
188 /* 188 /*
189 * Reset the chip to a known state. 189 * Reset the chip to a known state.
190 */ 190 */
191 sonic_reset(sc); 191 sonic_reset(sc);
192 192
193 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", 193 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
194 ether_sprintf(enaddr)); 194 ether_sprintf(enaddr));
195 195
196 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 196 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
197 ifp->if_softc = sc; 197 ifp->if_softc = sc;
198 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 198 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
199 ifp->if_ioctl = sonic_ioctl; 199 ifp->if_ioctl = sonic_ioctl;
200 ifp->if_start = sonic_start; 200 ifp->if_start = sonic_start;
201 ifp->if_watchdog = sonic_watchdog; 201 ifp->if_watchdog = sonic_watchdog;
202 ifp->if_init = sonic_init; 202 ifp->if_init = sonic_init;
203 ifp->if_stop = sonic_stop; 203 ifp->if_stop = sonic_stop;
204 IFQ_SET_READY(&ifp->if_snd); 204 IFQ_SET_READY(&ifp->if_snd);
205 205
206 /* 206 /*
207 * We can support 802.1Q VLAN-sized frames. 207 * We can support 802.1Q VLAN-sized frames.
208 */ 208 */
209 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 209 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
210 210
211 /* 211 /*
212 * Attach the interface. 212 * Attach the interface.
213 */ 213 */
214 if_attach(ifp); 214 if_attach(ifp);
215 ether_ifattach(ifp, enaddr); 215 ether_ifattach(ifp, enaddr);
216 216
217 /* 217 /*
218 * Make sure the interface is shutdown during reboot. 218 * Make sure the interface is shutdown during reboot.
219 */ 219 */
220 if (pmf_device_register1(sc->sc_dev, NULL, NULL, sonic_shutdown)) 220 if (pmf_device_register1(sc->sc_dev, NULL, NULL, sonic_shutdown))
221 pmf_class_network_register(sc->sc_dev, ifp); 221 pmf_class_network_register(sc->sc_dev, ifp);
222 else 222 else
223 aprint_error_dev(sc->sc_dev, 223 aprint_error_dev(sc->sc_dev,
224 "couldn't establish power handler\n"); 224 "couldn't establish power handler\n");
225 225
226 return; 226 return;
227 227
228 /* 228 /*
229 * Free any resources we've allocated during the failed attach 229 * Free any resources we've allocated during the failed attach
230 * attempt. Do this in reverse order and fall through. 230 * attempt. Do this in reverse order and fall through.
231 */ 231 */
232 fail_6: 232 fail_6:
233 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap); 233 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
234 fail_5: 234 fail_5:
235 for (i = 0; i < SONIC_NRXDESC; i++) { 235 for (i = 0; i < SONIC_NRXDESC; i++) {
236 if (sc->sc_rxsoft[i].ds_dmamap != NULL) 236 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
237 bus_dmamap_destroy(sc->sc_dmat, 237 bus_dmamap_destroy(sc->sc_dmat,
238 sc->sc_rxsoft[i].ds_dmamap); 238 sc->sc_rxsoft[i].ds_dmamap);
239 } 239 }
240 fail_4: 240 fail_4:
241 for (i = 0; i < SONIC_NTXDESC; i++) { 241 for (i = 0; i < SONIC_NTXDESC; i++) {
242 if (sc->sc_txsoft[i].ds_dmamap != NULL) 242 if (sc->sc_txsoft[i].ds_dmamap != NULL)
243 bus_dmamap_destroy(sc->sc_dmat, 243 bus_dmamap_destroy(sc->sc_dmat,
244 sc->sc_txsoft[i].ds_dmamap); 244 sc->sc_txsoft[i].ds_dmamap);
245 } 245 }
246 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 246 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
247 fail_3: 247 fail_3:
248 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 248 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
249 fail_2: 249 fail_2:
250 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_cdata16, cdatasize); 250 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_cdata16, cdatasize);
251 fail_1: 251 fail_1:
252 bus_dmamem_free(sc->sc_dmat, &seg, rseg); 252 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
253 fail_0: 253 fail_0:
254 return; 254 return;
255} 255}
256 256
257/* 257/*
258 * sonic_shutdown: 258 * sonic_shutdown:
259 * 259 *
260 * Make sure the interface is stopped at reboot. 260 * Make sure the interface is stopped at reboot.
261 */ 261 */
262bool 262bool
263sonic_shutdown(device_t self, int howto) 263sonic_shutdown(device_t self, int howto)
264{ 264{
265 struct sonic_softc *sc = device_private(self); 265 struct sonic_softc *sc = device_private(self);
266 266
267 sonic_stop(&sc->sc_ethercom.ec_if, 1); 267 sonic_stop(&sc->sc_ethercom.ec_if, 1);
268 268
269 return true; 269 return true;
270} 270}
271 271
272/* 272/*
273 * sonic_start: [ifnet interface function] 273 * sonic_start: [ifnet interface function]
274 * 274 *
275 * Start packet transmission on the interface. 275 * Start packet transmission on the interface.
276 */ 276 */
277void 277void
278sonic_start(struct ifnet *ifp) 278sonic_start(struct ifnet *ifp)
279{ 279{
280 struct sonic_softc *sc = ifp->if_softc; 280 struct sonic_softc *sc = ifp->if_softc;
281 struct mbuf *m0, *m; 281 struct mbuf *m0, *m;
282 struct sonic_tda16 *tda16; 282 struct sonic_tda16 *tda16;
283 struct sonic_tda32 *tda32; 283 struct sonic_tda32 *tda32;
284 struct sonic_descsoft *ds; 284 struct sonic_descsoft *ds;
285 bus_dmamap_t dmamap; 285 bus_dmamap_t dmamap;
286 int error, olasttx, nexttx, opending, totlen, olseg; 286 int error, olasttx, nexttx, opending, totlen, olseg;
287 int seg = 0; /* XXX: gcc */ 287 int seg = 0; /* XXX: gcc */
288 288
289 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 289 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
290 return; 290 return;
291 291
292 /* 292 /*
293 * Remember the previous txpending and the current "last txdesc 293 * Remember the previous txpending and the current "last txdesc
294 * used" index. 294 * used" index.
295 */ 295 */
296 opending = sc->sc_txpending; 296 opending = sc->sc_txpending;
297 olasttx = sc->sc_txlast; 297 olasttx = sc->sc_txlast;
298 298
299 /* 299 /*
300 * Loop through the send queue, setting up transmit descriptors 300 * Loop through the send queue, setting up transmit descriptors
301 * until we drain the queue, or use up all available transmit 301 * until we drain the queue, or use up all available transmit
302 * descriptors. Leave one at the end for sanity's sake. 302 * descriptors. Leave one at the end for sanity's sake.
303 */ 303 */
304 while (sc->sc_txpending < (SONIC_NTXDESC - 1)) { 304 while (sc->sc_txpending < (SONIC_NTXDESC - 1)) {
305 /* 305 /*
306 * Grab a packet off the queue. 306 * Grab a packet off the queue.
307 */ 307 */
308 IFQ_POLL(&ifp->if_snd, m0); 308 IFQ_POLL(&ifp->if_snd, m0);
309 if (m0 == NULL) 309 if (m0 == NULL)
310 break; 310 break;
311 m = NULL; 311 m = NULL;
312 312
313 /* 313 /*
314 * Get the next available transmit descriptor. 314 * Get the next available transmit descriptor.
315 */ 315 */
316 nexttx = SONIC_NEXTTX(sc->sc_txlast); 316 nexttx = SONIC_NEXTTX(sc->sc_txlast);
317 ds = &sc->sc_txsoft[nexttx]; 317 ds = &sc->sc_txsoft[nexttx];
318 dmamap = ds->ds_dmamap; 318 dmamap = ds->ds_dmamap;
319 319
320 /* 320 /*
321 * Load the DMA map. If this fails, the packet either 321 * Load the DMA map. If this fails, the packet either
322 * didn't fit in the allotted number of frags, or we were 322 * didn't fit in the allotted number of frags, or we were
323 * short on resources. In this case, we'll copy and try 323 * short on resources. In this case, we'll copy and try
324 * again. 324 * again.
325 */ 325 */
326 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 326 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
327 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 || 327 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
328 (m0->m_pkthdr.len < ETHER_PAD_LEN && 328 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
329 dmamap->dm_nsegs == SONIC_NTXFRAGS)) { 329 dmamap->dm_nsegs == SONIC_NTXFRAGS)) {
330 if (error == 0) 330 if (error == 0)
331 bus_dmamap_unload(sc->sc_dmat, dmamap); 331 bus_dmamap_unload(sc->sc_dmat, dmamap);
332 MGETHDR(m, M_DONTWAIT, MT_DATA); 332 MGETHDR(m, M_DONTWAIT, MT_DATA);
333 if (m == NULL) { 333 if (m == NULL) {
334 printf("%s: unable to allocate Tx mbuf\n", 334 printf("%s: unable to allocate Tx mbuf\n",
335 device_xname(sc->sc_dev)); 335 device_xname(sc->sc_dev));
336 break; 336 break;
337 } 337 }
338 if (m0->m_pkthdr.len > MHLEN) { 338 if (m0->m_pkthdr.len > MHLEN) {
339 MCLGET(m, M_DONTWAIT); 339 MCLGET(m, M_DONTWAIT);
340 if ((m->m_flags & M_EXT) == 0) { 340 if ((m->m_flags & M_EXT) == 0) {
341 printf("%s: unable to allocate Tx " 341 printf("%s: unable to allocate Tx "
342 "cluster\n", 342 "cluster\n",
343 device_xname(sc->sc_dev)); 343 device_xname(sc->sc_dev));
344 m_freem(m); 344 m_freem(m);
345 break; 345 break;
346 } 346 }
347 } 347 }
348 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 348 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
349 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 349 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
350 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, 350 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
351 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 351 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
352 if (error) { 352 if (error) {
353 printf("%s: unable to load Tx buffer, " 353 printf("%s: unable to load Tx buffer, "
354 "error = %d\n", device_xname(sc->sc_dev), 354 "error = %d\n", device_xname(sc->sc_dev),
355 error); 355 error);
356 m_freem(m); 356 m_freem(m);
357 break; 357 break;
358 } 358 }
359 } 359 }
360 IFQ_DEQUEUE(&ifp->if_snd, m0); 360 IFQ_DEQUEUE(&ifp->if_snd, m0);
361 if (m != NULL) { 361 if (m != NULL) {
362 m_freem(m0); 362 m_freem(m0);
363 m0 = m; 363 m0 = m;
364 } 364 }
365 365
366 /* 366 /*
367 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 367 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
368 */ 368 */
369 369
370 /* Sync the DMA map. */ 370 /* Sync the DMA map. */
371 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 371 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
372 BUS_DMASYNC_PREWRITE); 372 BUS_DMASYNC_PREWRITE);
373 373
374 /* 374 /*
375 * Store a pointer to the packet so we can free it later. 375 * Store a pointer to the packet so we can free it later.
376 */ 376 */
377 ds->ds_mbuf = m0; 377 ds->ds_mbuf = m0;
378 378
379 /* 379 /*
380 * Initialize the transmit descriptor. 380 * Initialize the transmit descriptor.
381 */ 381 */
382 totlen = 0; 382 totlen = 0;
383 if (sc->sc_32bit) { 383 if (sc->sc_32bit) {
384 tda32 = &sc->sc_tda32[nexttx]; 384 tda32 = &sc->sc_tda32[nexttx];
385 for (seg = 0; seg < dmamap->dm_nsegs; seg++) { 385 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
386 tda32->tda_frags[seg].frag_ptr1 = 386 tda32->tda_frags[seg].frag_ptr1 =
387 htosonic32(sc, 387 htosonic32(sc,
388 (dmamap->dm_segs[seg].ds_addr >> 16) & 388 (dmamap->dm_segs[seg].ds_addr >> 16) &
389 0xffff); 389 0xffff);
390 tda32->tda_frags[seg].frag_ptr0 = 390 tda32->tda_frags[seg].frag_ptr0 =
391 htosonic32(sc, 391 htosonic32(sc,
392 dmamap->dm_segs[seg].ds_addr & 0xffff); 392 dmamap->dm_segs[seg].ds_addr & 0xffff);
393 tda32->tda_frags[seg].frag_size = 393 tda32->tda_frags[seg].frag_size =
394 htosonic32(sc, dmamap->dm_segs[seg].ds_len); 394 htosonic32(sc, dmamap->dm_segs[seg].ds_len);
395 totlen += dmamap->dm_segs[seg].ds_len; 395 totlen += dmamap->dm_segs[seg].ds_len;
396 } 396 }
397 if (totlen < ETHER_PAD_LEN) { 397 if (totlen < ETHER_PAD_LEN) {
398 tda32->tda_frags[seg].frag_ptr1 = 398 tda32->tda_frags[seg].frag_ptr1 =
399 htosonic32(sc, 399 htosonic32(sc,
400 (sc->sc_nulldma >> 16) & 0xffff); 400 (sc->sc_nulldma >> 16) & 0xffff);
401 tda32->tda_frags[seg].frag_ptr0 = 401 tda32->tda_frags[seg].frag_ptr0 =
402 htosonic32(sc, sc->sc_nulldma & 0xffff); 402 htosonic32(sc, sc->sc_nulldma & 0xffff);
403 tda32->tda_frags[seg].frag_size = 403 tda32->tda_frags[seg].frag_size =
404 htosonic32(sc, ETHER_PAD_LEN - totlen); 404 htosonic32(sc, ETHER_PAD_LEN - totlen);
405 totlen = ETHER_PAD_LEN; 405 totlen = ETHER_PAD_LEN;
406 seg++; 406 seg++;
407 } 407 }
408 408
409 tda32->tda_status = 0; 409 tda32->tda_status = 0;
410 tda32->tda_pktconfig = 0; 410 tda32->tda_pktconfig = 0;
411 tda32->tda_pktsize = htosonic32(sc, totlen); 411 tda32->tda_pktsize = htosonic32(sc, totlen);
412 tda32->tda_fragcnt = htosonic32(sc, seg); 412 tda32->tda_fragcnt = htosonic32(sc, seg);
413 413
414 /* Link it up. */ 414 /* Link it up. */
415 tda32->tda_frags[seg].frag_ptr0 = 415 tda32->tda_frags[seg].frag_ptr0 =
416 htosonic32(sc, SONIC_CDTXADDR32(sc, 416 htosonic32(sc, SONIC_CDTXADDR32(sc,
417 SONIC_NEXTTX(nexttx)) & 0xffff); 417 SONIC_NEXTTX(nexttx)) & 0xffff);
418 418
419 /* Sync the Tx descriptor. */ 419 /* Sync the Tx descriptor. */
420 SONIC_CDTXSYNC32(sc, nexttx, 420 SONIC_CDTXSYNC32(sc, nexttx,
421 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 421 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
422 } else { 422 } else {
423 tda16 = &sc->sc_tda16[nexttx]; 423 tda16 = &sc->sc_tda16[nexttx];
424 for (seg = 0; seg < dmamap->dm_nsegs; seg++) { 424 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
425 tda16->tda_frags[seg].frag_ptr1 = 425 tda16->tda_frags[seg].frag_ptr1 =
426 htosonic16(sc, 426 htosonic16(sc,
427 (dmamap->dm_segs[seg].ds_addr >> 16) & 427 (dmamap->dm_segs[seg].ds_addr >> 16) &
428 0xffff); 428 0xffff);
429 tda16->tda_frags[seg].frag_ptr0 = 429 tda16->tda_frags[seg].frag_ptr0 =
430 htosonic16(sc, 430 htosonic16(sc,
431 dmamap->dm_segs[seg].ds_addr & 0xffff); 431 dmamap->dm_segs[seg].ds_addr & 0xffff);
432 tda16->tda_frags[seg].frag_size = 432 tda16->tda_frags[seg].frag_size =
433 htosonic16(sc, dmamap->dm_segs[seg].ds_len); 433 htosonic16(sc, dmamap->dm_segs[seg].ds_len);
434 totlen += dmamap->dm_segs[seg].ds_len; 434 totlen += dmamap->dm_segs[seg].ds_len;
435 } 435 }
436 if (totlen < ETHER_PAD_LEN) { 436 if (totlen < ETHER_PAD_LEN) {
437 tda16->tda_frags[seg].frag_ptr1 = 437 tda16->tda_frags[seg].frag_ptr1 =
438 htosonic16(sc, 438 htosonic16(sc,
439 (sc->sc_nulldma >> 16) & 0xffff); 439 (sc->sc_nulldma >> 16) & 0xffff);
440 tda16->tda_frags[seg].frag_ptr0 = 440 tda16->tda_frags[seg].frag_ptr0 =
441 htosonic16(sc, sc->sc_nulldma & 0xffff); 441 htosonic16(sc, sc->sc_nulldma & 0xffff);
442 tda16->tda_frags[seg].frag_size = 442 tda16->tda_frags[seg].frag_size =
443 htosonic16(sc, ETHER_PAD_LEN - totlen); 443 htosonic16(sc, ETHER_PAD_LEN - totlen);
444 totlen = ETHER_PAD_LEN; 444 totlen = ETHER_PAD_LEN;
445 seg++; 445 seg++;
446 } 446 }
447 447
448 tda16->tda_status = 0; 448 tda16->tda_status = 0;
449 tda16->tda_pktconfig = 0; 449 tda16->tda_pktconfig = 0;
450 tda16->tda_pktsize = htosonic16(sc, totlen); 450 tda16->tda_pktsize = htosonic16(sc, totlen);
451 tda16->tda_fragcnt = htosonic16(sc, seg); 451 tda16->tda_fragcnt = htosonic16(sc, seg);
452 452
453 /* Link it up. */ 453 /* Link it up. */
454 tda16->tda_frags[seg].frag_ptr0 = 454 tda16->tda_frags[seg].frag_ptr0 =
455 htosonic16(sc, SONIC_CDTXADDR16(sc, 455 htosonic16(sc, SONIC_CDTXADDR16(sc,
456 SONIC_NEXTTX(nexttx)) & 0xffff); 456 SONIC_NEXTTX(nexttx)) & 0xffff);
457 457
458 /* Sync the Tx descriptor. */ 458 /* Sync the Tx descriptor. */
459 SONIC_CDTXSYNC16(sc, nexttx, 459 SONIC_CDTXSYNC16(sc, nexttx,
460 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 460 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
461 } 461 }
462 462
463 /* Advance the Tx pointer. */ 463 /* Advance the Tx pointer. */
464 sc->sc_txpending++; 464 sc->sc_txpending++;
465 sc->sc_txlast = nexttx; 465 sc->sc_txlast = nexttx;
466 466
467 /* 467 /*
468 * Pass the packet to any BPF listeners. 468 * Pass the packet to any BPF listeners.
469 */ 469 */
470 bpf_mtap(ifp, m0); 470 bpf_mtap(ifp, m0);
471 } 471 }
472 472
473 if (sc->sc_txpending == (SONIC_NTXDESC - 1)) { 473 if (sc->sc_txpending == (SONIC_NTXDESC - 1)) {
474 /* No more slots left; notify upper layer. */ 474 /* No more slots left; notify upper layer. */
475 ifp->if_flags |= IFF_OACTIVE; 475 ifp->if_flags |= IFF_OACTIVE;
476 } 476 }
477 477
478 if (sc->sc_txpending != opending) { 478 if (sc->sc_txpending != opending) {
479 /* 479 /*
480 * We enqueued packets. If the transmitter was idle, 480 * We enqueued packets. If the transmitter was idle,
481 * reset the txdirty pointer. 481 * reset the txdirty pointer.
482 */ 482 */
483 if (opending == 0) 483 if (opending == 0)
484 sc->sc_txdirty = SONIC_NEXTTX(olasttx); 484 sc->sc_txdirty = SONIC_NEXTTX(olasttx);
485 485
486 /* 486 /*
487 * Stop the SONIC on the last packet we've set up, 487 * Stop the SONIC on the last packet we've set up,
488 * and clear end-of-list on the descriptor previous 488 * and clear end-of-list on the descriptor previous
489 * to our new chain. 489 * to our new chain.
490 * 490 *
491 * NOTE: our `seg' variable should still be valid! 491 * NOTE: our `seg' variable should still be valid!
492 */ 492 */
493 if (sc->sc_32bit) { 493 if (sc->sc_32bit) {
494 olseg = 494 olseg =
495 sonic32toh(sc, sc->sc_tda32[olasttx].tda_fragcnt); 495 sonic32toh(sc, sc->sc_tda32[olasttx].tda_fragcnt);
496 sc->sc_tda32[sc->sc_txlast].tda_frags[seg].frag_ptr0 |= 496 sc->sc_tda32[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
497 htosonic32(sc, TDA_LINK_EOL); 497 htosonic32(sc, TDA_LINK_EOL);
498 SONIC_CDTXSYNC32(sc, sc->sc_txlast, 498 SONIC_CDTXSYNC32(sc, sc->sc_txlast,
499 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 499 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
500 sc->sc_tda32[olasttx].tda_frags[olseg].frag_ptr0 &= 500 sc->sc_tda32[olasttx].tda_frags[olseg].frag_ptr0 &=
501 htosonic32(sc, ~TDA_LINK_EOL); 501 htosonic32(sc, ~TDA_LINK_EOL);
502 SONIC_CDTXSYNC32(sc, olasttx, 502 SONIC_CDTXSYNC32(sc, olasttx,
503 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 503 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
504 } else { 504 } else {
505 olseg = 505 olseg =
506 sonic16toh(sc, sc->sc_tda16[olasttx].tda_fragcnt); 506 sonic16toh(sc, sc->sc_tda16[olasttx].tda_fragcnt);
507 sc->sc_tda16[sc->sc_txlast].tda_frags[seg].frag_ptr0 |= 507 sc->sc_tda16[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
508 htosonic16(sc, TDA_LINK_EOL); 508 htosonic16(sc, TDA_LINK_EOL);
509 SONIC_CDTXSYNC16(sc, sc->sc_txlast, 509 SONIC_CDTXSYNC16(sc, sc->sc_txlast,
510 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 510 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
511 sc->sc_tda16[olasttx].tda_frags[olseg].frag_ptr0 &= 511 sc->sc_tda16[olasttx].tda_frags[olseg].frag_ptr0 &=
512 htosonic16(sc, ~TDA_LINK_EOL); 512 htosonic16(sc, ~TDA_LINK_EOL);
513 SONIC_CDTXSYNC16(sc, olasttx, 513 SONIC_CDTXSYNC16(sc, olasttx,
514 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 514 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
515 } 515 }
516 516
517 /* Start the transmitter. */ 517 /* Start the transmitter. */
518 CSR_WRITE(sc, SONIC_CR, CR_TXP); 518 CSR_WRITE(sc, SONIC_CR, CR_TXP);
519 519
520 /* Set a watchdog timer in case the chip flakes out. */ 520 /* Set a watchdog timer in case the chip flakes out. */
521 ifp->if_timer = 5; 521 ifp->if_timer = 5;
522 } 522 }
523} 523}
524 524
525/* 525/*
526 * sonic_watchdog: [ifnet interface function] 526 * sonic_watchdog: [ifnet interface function]
527 * 527 *
528 * Watchdog timer handler. 528 * Watchdog timer handler.
529 */ 529 */
530void 530void
531sonic_watchdog(struct ifnet *ifp) 531sonic_watchdog(struct ifnet *ifp)
532{ 532{
533 struct sonic_softc *sc = ifp->if_softc; 533 struct sonic_softc *sc = ifp->if_softc;
534 534
535 printf("%s: device timeout\n", device_xname(sc->sc_dev)); 535 printf("%s: device timeout\n", device_xname(sc->sc_dev));
536 ifp->if_oerrors++; 536 ifp->if_oerrors++;
537 537
538 (void)sonic_init(ifp); 538 (void)sonic_init(ifp);
539} 539}
540 540
541/* 541/*
542 * sonic_ioctl: [ifnet interface function] 542 * sonic_ioctl: [ifnet interface function]
543 * 543 *
544 * Handle control requests from the operator. 544 * Handle control requests from the operator.
545 */ 545 */
546int 546int
547sonic_ioctl(struct ifnet *ifp, u_long cmd, void *data) 547sonic_ioctl(struct ifnet *ifp, u_long cmd, void *data)
548{ 548{
549 int s, error; 549 int s, error;
550 550
551 s = splnet(); 551 s = splnet();
552 552
553 error = ether_ioctl(ifp, cmd, data); 553 error = ether_ioctl(ifp, cmd, data);
554 if (error == ENETRESET) { 554 if (error == ENETRESET) {
555 /* 555 /*
556 * Multicast list has changed; set the hardware 556 * Multicast list has changed; set the hardware
557 * filter accordingly. 557 * filter accordingly.
558 */ 558 */
559 if (ifp->if_flags & IFF_RUNNING) 559 if (ifp->if_flags & IFF_RUNNING)
560 (void)sonic_init(ifp); 560 (void)sonic_init(ifp);
561 error = 0; 561 error = 0;
562 } 562 }
563 563
564 splx(s); 564 splx(s);
565 return error; 565 return error;
566} 566}
567 567
568/* 568/*
569 * sonic_intr: 569 * sonic_intr:
570 * 570 *
571 * Interrupt service routine. 571 * Interrupt service routine.
572 */ 572 */
573int 573int
574sonic_intr(void *arg) 574sonic_intr(void *arg)
575{ 575{
576 struct sonic_softc *sc = arg; 576 struct sonic_softc *sc = arg;
577 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 577 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
578 uint16_t isr; 578 uint16_t isr;
579 int handled = 0, wantinit; 579 int handled = 0, wantinit;
580 580
581 for (wantinit = 0; wantinit == 0;) { 581 for (wantinit = 0; wantinit == 0;) {
582 isr = CSR_READ(sc, SONIC_ISR) & sc->sc_imr; 582 isr = CSR_READ(sc, SONIC_ISR) & sc->sc_imr;
583 if (isr == 0) 583 if (isr == 0)
584 break; 584 break;
585 CSR_WRITE(sc, SONIC_ISR, isr); /* ACK */ 585 CSR_WRITE(sc, SONIC_ISR, isr); /* ACK */
586 586
587 handled = 1; 587 handled = 1;
588 588
589 if (isr & IMR_PRX) 589 if (isr & IMR_PRX)
590 sonic_rxintr(sc); 590 sonic_rxintr(sc);
591 591
592 if (isr & (IMR_PTX|IMR_TXER)) { 592 if (isr & (IMR_PTX|IMR_TXER)) {
593 if (sonic_txintr(sc) & TCR_FU) { 593 if (sonic_txintr(sc) & TCR_FU) {
594 printf("%s: transmit FIFO underrun\n", 594 printf("%s: transmit FIFO underrun\n",
595 device_xname(sc->sc_dev)); 595 device_xname(sc->sc_dev));
596 wantinit = 1; 596 wantinit = 1;
597 } 597 }
598 } 598 }
599 599
600 if (isr & (IMR_RFO|IMR_RBA|IMR_RBE|IMR_RDE)) { 600 if (isr & (IMR_RFO|IMR_RBA|IMR_RBE|IMR_RDE)) {
601#define PRINTERR(bit, str) \ 601#define PRINTERR(bit, str) \
602 if (isr & (bit)) \ 602 if (isr & (bit)) \
603 printf("%s: %s\n",device_xname(sc->sc_dev), str) 603 printf("%s: %s\n",device_xname(sc->sc_dev), str)
604 PRINTERR(IMR_RFO, "receive FIFO overrun"); 604 PRINTERR(IMR_RFO, "receive FIFO overrun");
605 PRINTERR(IMR_RBA, "receive buffer exceeded"); 605 PRINTERR(IMR_RBA, "receive buffer exceeded");
606 PRINTERR(IMR_RBE, "receive buffers exhausted"); 606 PRINTERR(IMR_RBE, "receive buffers exhausted");
607 PRINTERR(IMR_RDE, "receive descriptors exhausted"); 607 PRINTERR(IMR_RDE, "receive descriptors exhausted");
608 wantinit = 1; 608 wantinit = 1;
609 } 609 }
610 } 610 }
611 611
612 if (handled) { 612 if (handled) {
613 if (wantinit) 613 if (wantinit)
614 (void)sonic_init(ifp); 614 (void)sonic_init(ifp);
615 sonic_start(ifp); 615 sonic_start(ifp);
616 } 616 }
617 617
618 return handled; 618 return handled;
619} 619}
620 620
621/* 621/*
622 * sonic_txintr: 622 * sonic_txintr:
623 * 623 *
624 * Helper; handle transmit complete interrupts. 624 * Helper; handle transmit complete interrupts.
625 */ 625 */
626uint16_t 626uint16_t
627sonic_txintr(struct sonic_softc *sc) 627sonic_txintr(struct sonic_softc *sc)
628{ 628{
629 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 629 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
630 struct sonic_descsoft *ds; 630 struct sonic_descsoft *ds;
631 struct sonic_tda32 *tda32; 631 struct sonic_tda32 *tda32;
632 struct sonic_tda16 *tda16; 632 struct sonic_tda16 *tda16;
633 uint16_t status, totstat = 0; 633 uint16_t status, totstat = 0;
634 int i; 634 int i;
635 635
636 ifp->if_flags &= ~IFF_OACTIVE; 636 ifp->if_flags &= ~IFF_OACTIVE;
637 637
638 for (i = sc->sc_txdirty; sc->sc_txpending != 0; 638 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
639 i = SONIC_NEXTTX(i), sc->sc_txpending--) { 639 i = SONIC_NEXTTX(i), sc->sc_txpending--) {
640 ds = &sc->sc_txsoft[i]; 640 ds = &sc->sc_txsoft[i];
641 641
642 if (sc->sc_32bit) { 642 if (sc->sc_32bit) {
643 SONIC_CDTXSYNC32(sc, i, 643 SONIC_CDTXSYNC32(sc, i,
644 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 644 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
645 tda32 = &sc->sc_tda32[i]; 645 tda32 = &sc->sc_tda32[i];
646 status = sonic32toh(sc, tda32->tda_status); 646 status = sonic32toh(sc, tda32->tda_status);
647 SONIC_CDTXSYNC32(sc, i, BUS_DMASYNC_PREREAD); 647 SONIC_CDTXSYNC32(sc, i, BUS_DMASYNC_PREREAD);
648 } else { 648 } else {
649 SONIC_CDTXSYNC16(sc, i, 649 SONIC_CDTXSYNC16(sc, i,
650 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 650 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
651 tda16 = &sc->sc_tda16[i]; 651 tda16 = &sc->sc_tda16[i];
652 status = sonic16toh(sc, tda16->tda_status); 652 status = sonic16toh(sc, tda16->tda_status);
653 SONIC_CDTXSYNC16(sc, i, BUS_DMASYNC_PREREAD); 653 SONIC_CDTXSYNC16(sc, i, BUS_DMASYNC_PREREAD);
654 } 654 }
655 655
656 if ((status & ~(TCR_EXDIS|TCR_CRCI|TCR_POWC|TCR_PINT)) == 0) 656 if ((status & ~(TCR_EXDIS|TCR_CRCI|TCR_POWC|TCR_PINT)) == 0)
657 break; 657 break;
658 658
659 totstat |= status; 659 totstat |= status;
660 660
661 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 661 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
662 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 662 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
663 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 663 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
664 m_freem(ds->ds_mbuf); 664 m_freem(ds->ds_mbuf);
665 ds->ds_mbuf = NULL; 665 ds->ds_mbuf = NULL;
666 666
667 /* 667 /*
668 * Check for errors and collisions. 668 * Check for errors and collisions.
669 */ 669 */
670 if (status & TCR_PTX) 670 if (status & TCR_PTX)
671 ifp->if_opackets++; 671 ifp->if_opackets++;
672 else 672 else
673 ifp->if_oerrors++; 673 ifp->if_oerrors++;
674 ifp->if_collisions += TDA_STATUS_NCOL(status); 674 ifp->if_collisions += TDA_STATUS_NCOL(status);
675 } 675 }
676 676
677 /* Update the dirty transmit buffer pointer. */ 677 /* Update the dirty transmit buffer pointer. */
678 sc->sc_txdirty = i; 678 sc->sc_txdirty = i;
679 679
680 /* 680 /*
681 * Cancel the watchdog timer if there are no pending 681 * Cancel the watchdog timer if there are no pending
682 * transmissions. 682 * transmissions.
683 */ 683 */
684 if (sc->sc_txpending == 0) 684 if (sc->sc_txpending == 0)
685 ifp->if_timer = 0; 685 ifp->if_timer = 0;
686 686
687 return totstat; 687 return totstat;
688} 688}
689 689
690/* 690/*
691 * sonic_rxintr: 691 * sonic_rxintr:
692 * 692 *
693 * Helper; handle receive interrupts. 693 * Helper; handle receive interrupts.
694 */ 694 */
695void 695void
696sonic_rxintr(struct sonic_softc *sc) 696sonic_rxintr(struct sonic_softc *sc)
697{ 697{
698 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 698 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
699 struct sonic_descsoft *ds; 699 struct sonic_descsoft *ds;
700 struct sonic_rda32 *rda32; 700 struct sonic_rda32 *rda32;
701 struct sonic_rda16 *rda16; 701 struct sonic_rda16 *rda16;
702 struct mbuf *m; 702 struct mbuf *m;
703 int i, len; 703 int i, len;
704 uint16_t status, bytecount, ptr0, ptr1, seqno; 704 uint16_t status, bytecount, ptr0, ptr1, seqno;
705 705
706 for (i = sc->sc_rxptr;; i = SONIC_NEXTRX(i)) { 706 for (i = sc->sc_rxptr;; i = SONIC_NEXTRX(i)) {
707 ds = &sc->sc_rxsoft[i]; 707 ds = &sc->sc_rxsoft[i];
708 708
709 if (sc->sc_32bit) { 709 if (sc->sc_32bit) {
710 SONIC_CDRXSYNC32(sc, i, 710 SONIC_CDRXSYNC32(sc, i,
711 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 711 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
712 rda32 = &sc->sc_rda32[i]; 712 rda32 = &sc->sc_rda32[i];
713 SONIC_CDRXSYNC32(sc, i, BUS_DMASYNC_PREREAD); 713 SONIC_CDRXSYNC32(sc, i, BUS_DMASYNC_PREREAD);
714 if (rda32->rda_inuse != 0) 714 if (rda32->rda_inuse != 0)
715 break; 715 break;
716 status = sonic32toh(sc, rda32->rda_status); 716 status = sonic32toh(sc, rda32->rda_status);
717 bytecount = sonic32toh(sc, rda32->rda_bytecount); 717 bytecount = sonic32toh(sc, rda32->rda_bytecount);
718 ptr0 = sonic32toh(sc, rda32->rda_pkt_ptr0); 718 ptr0 = sonic32toh(sc, rda32->rda_pkt_ptr0);
719 ptr1 = sonic32toh(sc, rda32->rda_pkt_ptr1); 719 ptr1 = sonic32toh(sc, rda32->rda_pkt_ptr1);
720 seqno = sonic32toh(sc, rda32->rda_seqno); 720 seqno = sonic32toh(sc, rda32->rda_seqno);
721 } else { 721 } else {
722 SONIC_CDRXSYNC16(sc, i, 722 SONIC_CDRXSYNC16(sc, i,
723 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 723 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
724 rda16 = &sc->sc_rda16[i]; 724 rda16 = &sc->sc_rda16[i];
725 SONIC_CDRXSYNC16(sc, i, BUS_DMASYNC_PREREAD); 725 SONIC_CDRXSYNC16(sc, i, BUS_DMASYNC_PREREAD);
726 if (rda16->rda_inuse != 0) 726 if (rda16->rda_inuse != 0)
727 break; 727 break;
728 status = sonic16toh(sc, rda16->rda_status); 728 status = sonic16toh(sc, rda16->rda_status);
729 bytecount = sonic16toh(sc, rda16->rda_bytecount); 729 bytecount = sonic16toh(sc, rda16->rda_bytecount);
730 ptr0 = sonic16toh(sc, rda16->rda_pkt_ptr0); 730 ptr0 = sonic16toh(sc, rda16->rda_pkt_ptr0);
731 ptr1 = sonic16toh(sc, rda16->rda_pkt_ptr1); 731 ptr1 = sonic16toh(sc, rda16->rda_pkt_ptr1);
732 seqno = sonic16toh(sc, rda16->rda_seqno); 732 seqno = sonic16toh(sc, rda16->rda_seqno);
733 } 733 }
734 734
735 /* 735 /*
736 * Make absolutely sure this is the only packet 736 * Make absolutely sure this is the only packet
737 * in this receive buffer. Our entire Rx buffer 737 * in this receive buffer. Our entire Rx buffer
738 * management scheme depends on this, and if the 738 * management scheme depends on this, and if the
739 * SONIC didn't follow our rule, it means we've 739 * SONIC didn't follow our rule, it means we've
740 * misconfigured it. 740 * misconfigured it.
741 */ 741 */
742 KASSERT(status & RCR_LPKT); 742 KASSERT(status & RCR_LPKT);
743 743
744 /* 744 /*
745 * Make sure the packet arrived OK. If an error occurred, 745 * Make sure the packet arrived OK. If an error occurred,
746 * update stats and reset the descriptor. The buffer will 746 * update stats and reset the descriptor. The buffer will
747 * be reused the next time the descriptor comes up in the 747 * be reused the next time the descriptor comes up in the
748 * ring. 748 * ring.
749 */ 749 */
750 if ((status & RCR_PRX) == 0) { 750 if ((status & RCR_PRX) == 0) {
751 if (status & RCR_FAER) 751 if (status & RCR_FAER)
752 printf("%s: Rx frame alignment error\n", 752 printf("%s: Rx frame alignment error\n",
753 device_xname(sc->sc_dev)); 753 device_xname(sc->sc_dev));
754 else if (status & RCR_CRCR) 754 else if (status & RCR_CRCR)
755 printf("%s: Rx CRC error\n", 755 printf("%s: Rx CRC error\n",
756 device_xname(sc->sc_dev)); 756 device_xname(sc->sc_dev));
757 ifp->if_ierrors++; 757 ifp->if_ierrors++;
758 SONIC_INIT_RXDESC(sc, i); 758 SONIC_INIT_RXDESC(sc, i);
759 continue; 759 continue;
760 } 760 }
761 761
762 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 762 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
763 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 763 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
764 764
765 /* 765 /*
766 * The SONIC includes the CRC with every packet. 766 * The SONIC includes the CRC with every packet.
767 */ 767 */
768 len = bytecount - ETHER_CRC_LEN; 768 len = bytecount - ETHER_CRC_LEN;
769 769
770 /* 770 /*
771 * Ok, if the chip is in 32-bit mode, then receive 771 * Ok, if the chip is in 32-bit mode, then receive
772 * buffers must be aligned to 32-bit boundaries, 772 * buffers must be aligned to 32-bit boundaries,
773 * which means the payload is misaligned. In this 773 * which means the payload is misaligned. In this
774 * case, we must allocate a new mbuf, and copy the 774 * case, we must allocate a new mbuf, and copy the
775 * packet into it, scooted forward 2 bytes to ensure 775 * packet into it, scooted forward 2 bytes to ensure
776 * proper alignment. 776 * proper alignment.
777 * 777 *
778 * Note, in 16-bit mode, we can configure the SONIC 778 * Note, in 16-bit mode, we can configure the SONIC
779 * to do what we want, and we have. 779 * to do what we want, and we have.
780 */ 780 */
781#ifndef __NO_STRICT_ALIGNMENT 781#ifndef __NO_STRICT_ALIGNMENT
782 if (sc->sc_32bit) { 782 if (sc->sc_32bit) {
783 MGETHDR(m, M_DONTWAIT, MT_DATA); 783 MGETHDR(m, M_DONTWAIT, MT_DATA);
784 if (m == NULL) 784 if (m == NULL)
785 goto dropit; 785 goto dropit;
786 if (len > (MHLEN - 2)) { 786 if (len > (MHLEN - 2)) {
787 MCLGET(m, M_DONTWAIT); 787 MCLGET(m, M_DONTWAIT);
788 if ((m->m_flags & M_EXT) == 0) 788 if ((m->m_flags & M_EXT) == 0) {
 789 m_freem(m);
789 goto dropit; 790 goto dropit;
 791 }
790 } 792 }
791 m->m_data += 2; 793 m->m_data += 2;
792 /* 794 /*
793 * Note that we use a cluster for incoming frames, 795 * Note that we use a cluster for incoming frames,
794 * so the buffer is virtually contiguous. 796 * so the buffer is virtually contiguous.
795 */ 797 */
796 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), 798 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
797 len); 799 len);
798 SONIC_INIT_RXDESC(sc, i); 800 SONIC_INIT_RXDESC(sc, i);
799 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 801 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
800 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 802 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
801 } else 803 } else
802#endif /* ! __NO_STRICT_ALIGNMENT */ 804#endif /* ! __NO_STRICT_ALIGNMENT */
803 /* 805 /*
804 * If the packet is small enough to fit in a single 806 * If the packet is small enough to fit in a single
805 * header mbuf, allocate one and copy the data into 807 * header mbuf, allocate one and copy the data into
806 * it. This greatly reduces memory consumption when 808 * it. This greatly reduces memory consumption when
807 * we receive lots of small packets. 809 * we receive lots of small packets.
808 */ 810 */
809 if (sonic_copy_small != 0 && len <= (MHLEN - 2)) { 811 if (sonic_copy_small != 0 && len <= (MHLEN - 2)) {
810 MGETHDR(m, M_DONTWAIT, MT_DATA); 812 MGETHDR(m, M_DONTWAIT, MT_DATA);
811 if (m == NULL) 813 if (m == NULL)
812 goto dropit; 814 goto dropit;
813 m->m_data += 2; 815 m->m_data += 2;
814 /* 816 /*
815 * Note that we use a cluster for incoming frames, 817 * Note that we use a cluster for incoming frames,
816 * so the buffer is virtually contiguous. 818 * so the buffer is virtually contiguous.
817 */ 819 */
818 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *), 820 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
819 len); 821 len);
820 SONIC_INIT_RXDESC(sc, i); 822 SONIC_INIT_RXDESC(sc, i);
821 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 823 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
822 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 824 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
823 } else { 825 } else {
824 m = ds->ds_mbuf; 826 m = ds->ds_mbuf;
825 if (sonic_add_rxbuf(sc, i) != 0) { 827 if (sonic_add_rxbuf(sc, i) != 0) {
826 dropit: 828 dropit:
827 ifp->if_ierrors++; 829 ifp->if_ierrors++;
828 SONIC_INIT_RXDESC(sc, i); 830 SONIC_INIT_RXDESC(sc, i);
829 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 831 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
830 ds->ds_dmamap->dm_mapsize, 832 ds->ds_dmamap->dm_mapsize,
831 BUS_DMASYNC_PREREAD); 833 BUS_DMASYNC_PREREAD);
832 continue; 834 continue;
833 } 835 }
834 } 836 }
835 837
836 ifp->if_ipackets++; 838 ifp->if_ipackets++;
837 m->m_pkthdr.rcvif = ifp; 839 m->m_pkthdr.rcvif = ifp;
838 m->m_pkthdr.len = m->m_len = len; 840 m->m_pkthdr.len = m->m_len = len;
839 841
840 /* 842 /*
841 * Pass this up to any BPF listeners. 843 * Pass this up to any BPF listeners.
842 */ 844 */
843 bpf_mtap(ifp, m); 845 bpf_mtap(ifp, m);
844 846
845 /* Pass it on. */ 847 /* Pass it on. */
846 (*ifp->if_input)(ifp, m); 848 (*ifp->if_input)(ifp, m);
847 } 849 }
848 850
849 /* Update the receive pointer. */ 851 /* Update the receive pointer. */
850 sc->sc_rxptr = i; 852 sc->sc_rxptr = i;
851 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_PREVRX(i))); 853 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_PREVRX(i)));
852} 854}
853 855
854/* 856/*
855 * sonic_reset: 857 * sonic_reset:
856 * 858 *
857 * Perform a soft reset on the SONIC. 859 * Perform a soft reset on the SONIC.
858 */ 860 */
859void 861void
860sonic_reset(struct sonic_softc *sc) 862sonic_reset(struct sonic_softc *sc)
861{ 863{
862 864
863 /* stop TX, RX and timer, and ensure RST is clear */ 865 /* stop TX, RX and timer, and ensure RST is clear */
864 CSR_WRITE(sc, SONIC_CR, CR_STP | CR_RXDIS | CR_HTX); 866 CSR_WRITE(sc, SONIC_CR, CR_STP | CR_RXDIS | CR_HTX);
865 delay(1000); 867 delay(1000);
866 868
867 CSR_WRITE(sc, SONIC_CR, CR_RST); 869 CSR_WRITE(sc, SONIC_CR, CR_RST);
868 delay(1000); 870 delay(1000);
869 871
870 /* clear all interrupts */ 872 /* clear all interrupts */
871 CSR_WRITE(sc, SONIC_IMR, 0); 873 CSR_WRITE(sc, SONIC_IMR, 0);
872 CSR_WRITE(sc, SONIC_ISR, IMR_ALL); 874 CSR_WRITE(sc, SONIC_ISR, IMR_ALL);
873 875
874 CSR_WRITE(sc, SONIC_CR, 0); 876 CSR_WRITE(sc, SONIC_CR, 0);
875 delay(1000); 877 delay(1000);
876} 878}
877 879
878/* 880/*
879 * sonic_init: [ifnet interface function] 881 * sonic_init: [ifnet interface function]
880 * 882 *
881 * Initialize the interface. Must be called at splnet(). 883 * Initialize the interface. Must be called at splnet().
882 */ 884 */
883int 885int
884sonic_init(struct ifnet *ifp) 886sonic_init(struct ifnet *ifp)
885{ 887{
886 struct sonic_softc *sc = ifp->if_softc; 888 struct sonic_softc *sc = ifp->if_softc;
887 struct sonic_descsoft *ds; 889 struct sonic_descsoft *ds;
888 int i, error = 0; 890 int i, error = 0;
889 uint16_t reg; 891 uint16_t reg;
890 892
891 /* 893 /*
892 * Cancel any pending I/O. 894 * Cancel any pending I/O.
893 */ 895 */
894 sonic_stop(ifp, 0); 896 sonic_stop(ifp, 0);
895 897
896 /* 898 /*
897 * Reset the SONIC to a known state. 899 * Reset the SONIC to a known state.
898 */ 900 */
899 sonic_reset(sc); 901 sonic_reset(sc);
900 902
901 /* 903 /*
902 * Bring the SONIC into reset state, and program the DCR. 904 * Bring the SONIC into reset state, and program the DCR.
903 * 905 *
904 * Note: We don't bother optimizing the transmit and receive 906 * Note: We don't bother optimizing the transmit and receive
905 * thresholds, here. TFT/RFT values should be set in MD attachments. 907 * thresholds, here. TFT/RFT values should be set in MD attachments.
906 */ 908 */
907 reg = sc->sc_dcr; 909 reg = sc->sc_dcr;
908 if (sc->sc_32bit) 910 if (sc->sc_32bit)
909 reg |= DCR_DW; 911 reg |= DCR_DW;
910 CSR_WRITE(sc, SONIC_CR, CR_RST); 912 CSR_WRITE(sc, SONIC_CR, CR_RST);
911 CSR_WRITE(sc, SONIC_DCR, reg); 913 CSR_WRITE(sc, SONIC_DCR, reg);
912 CSR_WRITE(sc, SONIC_DCR2, sc->sc_dcr2); 914 CSR_WRITE(sc, SONIC_DCR2, sc->sc_dcr2);
913 CSR_WRITE(sc, SONIC_CR, 0); 915 CSR_WRITE(sc, SONIC_CR, 0);
914 916
915 /* 917 /*
916 * Initialize the transmit descriptors. 918 * Initialize the transmit descriptors.
917 */ 919 */
918 if (sc->sc_32bit) { 920 if (sc->sc_32bit) {
919 for (i = 0; i < SONIC_NTXDESC; i++) { 921 for (i = 0; i < SONIC_NTXDESC; i++) {
920 memset(&sc->sc_tda32[i], 0, sizeof(struct sonic_tda32)); 922 memset(&sc->sc_tda32[i], 0, sizeof(struct sonic_tda32));
921 SONIC_CDTXSYNC32(sc, i, 923 SONIC_CDTXSYNC32(sc, i,
922 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 924 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
923 } 925 }
924 } else { 926 } else {
925 for (i = 0; i < SONIC_NTXDESC; i++) { 927 for (i = 0; i < SONIC_NTXDESC; i++) {
926 memset(&sc->sc_tda16[i], 0, sizeof(struct sonic_tda16)); 928 memset(&sc->sc_tda16[i], 0, sizeof(struct sonic_tda16));
927 SONIC_CDTXSYNC16(sc, i, 929 SONIC_CDTXSYNC16(sc, i,
928 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 930 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
929 } 931 }
930 } 932 }
931 sc->sc_txpending = 0; 933 sc->sc_txpending = 0;
932 sc->sc_txdirty = 0; 934 sc->sc_txdirty = 0;
933 sc->sc_txlast = SONIC_NTXDESC - 1; 935 sc->sc_txlast = SONIC_NTXDESC - 1;
934 936
935 /* 937 /*
936 * Initialize the receive descriptor ring. 938 * Initialize the receive descriptor ring.
937 */ 939 */
938 for (i = 0; i < SONIC_NRXDESC; i++) { 940 for (i = 0; i < SONIC_NRXDESC; i++) {
939 ds = &sc->sc_rxsoft[i]; 941 ds = &sc->sc_rxsoft[i];
940 if (ds->ds_mbuf == NULL) { 942 if (ds->ds_mbuf == NULL) {
941 if ((error = sonic_add_rxbuf(sc, i)) != 0) { 943 if ((error = sonic_add_rxbuf(sc, i)) != 0) {
942 printf("%s: unable to allocate or map Rx " 944 printf("%s: unable to allocate or map Rx "
943 "buffer %d, error = %d\n", 945 "buffer %d, error = %d\n",
944 device_xname(sc->sc_dev), i, error); 946 device_xname(sc->sc_dev), i, error);
945 /* 947 /*
946 * XXX Should attempt to run with fewer receive 948 * XXX Should attempt to run with fewer receive
947 * XXX buffers instead of just failing. 949 * XXX buffers instead of just failing.
948 */ 950 */
949 sonic_rxdrain(sc); 951 sonic_rxdrain(sc);
950 goto out; 952 goto out;
951 } 953 }
952 } else 954 } else
953 SONIC_INIT_RXDESC(sc, i); 955 SONIC_INIT_RXDESC(sc, i);
954 } 956 }
955 sc->sc_rxptr = 0; 957 sc->sc_rxptr = 0;
956 958
957 /* Give the transmit ring to the SONIC. */ 959 /* Give the transmit ring to the SONIC. */
958 CSR_WRITE(sc, SONIC_UTDAR, (SONIC_CDTXADDR(sc, 0) >> 16) & 0xffff); 960 CSR_WRITE(sc, SONIC_UTDAR, (SONIC_CDTXADDR(sc, 0) >> 16) & 0xffff);
959 CSR_WRITE(sc, SONIC_CTDAR, SONIC_CDTXADDR(sc, 0) & 0xffff); 961 CSR_WRITE(sc, SONIC_CTDAR, SONIC_CDTXADDR(sc, 0) & 0xffff);
960 962
961 /* Give the receive descriptor ring to the SONIC. */ 963 /* Give the receive descriptor ring to the SONIC. */
962 CSR_WRITE(sc, SONIC_URDAR, (SONIC_CDRXADDR(sc, 0) >> 16) & 0xffff); 964 CSR_WRITE(sc, SONIC_URDAR, (SONIC_CDRXADDR(sc, 0) >> 16) & 0xffff);
963 CSR_WRITE(sc, SONIC_CRDAR, SONIC_CDRXADDR(sc, 0) & 0xffff); 965 CSR_WRITE(sc, SONIC_CRDAR, SONIC_CDRXADDR(sc, 0) & 0xffff);
964 966
965 /* Give the receive buffer ring to the SONIC. */ 967 /* Give the receive buffer ring to the SONIC. */
966 CSR_WRITE(sc, SONIC_URRAR, (SONIC_CDRRADDR(sc, 0) >> 16) & 0xffff); 968 CSR_WRITE(sc, SONIC_URRAR, (SONIC_CDRRADDR(sc, 0) >> 16) & 0xffff);
967 CSR_WRITE(sc, SONIC_RSAR, SONIC_CDRRADDR(sc, 0) & 0xffff); 969 CSR_WRITE(sc, SONIC_RSAR, SONIC_CDRRADDR(sc, 0) & 0xffff);
968 if (sc->sc_32bit) 970 if (sc->sc_32bit)
969 CSR_WRITE(sc, SONIC_REAR, 971 CSR_WRITE(sc, SONIC_REAR,
970 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) + 972 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
971 sizeof(struct sonic_rra32)) & 0xffff); 973 sizeof(struct sonic_rra32)) & 0xffff);
972 else 974 else
973 CSR_WRITE(sc, SONIC_REAR, 975 CSR_WRITE(sc, SONIC_REAR,
974 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) + 976 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
975 sizeof(struct sonic_rra16)) & 0xffff); 977 sizeof(struct sonic_rra16)) & 0xffff);
976 CSR_WRITE(sc, SONIC_RRR, SONIC_CDRRADDR(sc, 0) & 0xffff); 978 CSR_WRITE(sc, SONIC_RRR, SONIC_CDRRADDR(sc, 0) & 0xffff);
977 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1)); 979 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1));
978 980
979 /* 981 /*
980 * Set the End-Of-Buffer counter such that only one packet 982 * Set the End-Of-Buffer counter such that only one packet
981 * will be placed into each buffer we provide. Note we are 983 * will be placed into each buffer we provide. Note we are
982 * following the recommendation of section 3.4.4 of the manual 984 * following the recommendation of section 3.4.4 of the manual
983 * here, and have "lengthened" the receive buffers accordingly. 985 * here, and have "lengthened" the receive buffers accordingly.
984 */ 986 */
985 if (sc->sc_32bit) 987 if (sc->sc_32bit)
986 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN + 2) / 2); 988 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN + 2) / 2);
987 else 989 else
988 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN / 2)); 990 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN / 2));
989 991
990 /* Reset the receive sequence counter. */ 992 /* Reset the receive sequence counter. */
991 CSR_WRITE(sc, SONIC_RSC, 0); 993 CSR_WRITE(sc, SONIC_RSC, 0);
992 994
993 /* Clear the tally registers. */ 995 /* Clear the tally registers. */
994 CSR_WRITE(sc, SONIC_CRCETC, 0xffff); 996 CSR_WRITE(sc, SONIC_CRCETC, 0xffff);
995 CSR_WRITE(sc, SONIC_FAET, 0xffff); 997 CSR_WRITE(sc, SONIC_FAET, 0xffff);
996 CSR_WRITE(sc, SONIC_MPT, 0xffff); 998 CSR_WRITE(sc, SONIC_MPT, 0xffff);
997 999
998 /* Set the receive filter. */ 1000 /* Set the receive filter. */
999 sonic_set_filter(sc); 1001 sonic_set_filter(sc);
1000 1002
1001 /* 1003 /*
1002 * Set the interrupt mask register. 1004 * Set the interrupt mask register.
1003 */ 1005 */
1004 sc->sc_imr = IMR_RFO | IMR_RBA | IMR_RBE | IMR_RDE | 1006 sc->sc_imr = IMR_RFO | IMR_RBA | IMR_RBE | IMR_RDE |
1005 IMR_TXER | IMR_PTX | IMR_PRX; 1007 IMR_TXER | IMR_PTX | IMR_PRX;
1006 CSR_WRITE(sc, SONIC_IMR, sc->sc_imr); 1008 CSR_WRITE(sc, SONIC_IMR, sc->sc_imr);
1007 1009
1008 /* 1010 /*
1009 * Start the receive process in motion. Note, we don't 1011 * Start the receive process in motion. Note, we don't
1010 * start the transmit process until we actually try to 1012 * start the transmit process until we actually try to
1011 * transmit packets. 1013 * transmit packets.
1012 */ 1014 */
1013 CSR_WRITE(sc, SONIC_CR, CR_RXEN | CR_RRRA); 1015 CSR_WRITE(sc, SONIC_CR, CR_RXEN | CR_RRRA);
1014 1016
1015 /* 1017 /*
1016 * ...all done! 1018 * ...all done!
1017 */ 1019 */
1018 ifp->if_flags |= IFF_RUNNING; 1020 ifp->if_flags |= IFF_RUNNING;
1019 ifp->if_flags &= ~IFF_OACTIVE; 1021 ifp->if_flags &= ~IFF_OACTIVE;
1020 1022
1021 out: 1023 out:
1022 if (error) 1024 if (error)
1023 printf("%s: interface not running\n", device_xname(sc->sc_dev)); 1025 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1024 return error; 1026 return error;
1025} 1027}
1026 1028
1027/* 1029/*
1028 * sonic_rxdrain: 1030 * sonic_rxdrain:
1029 * 1031 *
1030 * Drain the receive queue. 1032 * Drain the receive queue.
1031 */ 1033 */
1032void 1034void
1033sonic_rxdrain(struct sonic_softc *sc) 1035sonic_rxdrain(struct sonic_softc *sc)
1034{ 1036{
1035 struct sonic_descsoft *ds; 1037 struct sonic_descsoft *ds;
1036 int i; 1038 int i;
1037 1039
1038 for (i = 0; i < SONIC_NRXDESC; i++) { 1040 for (i = 0; i < SONIC_NRXDESC; i++) {
1039 ds = &sc->sc_rxsoft[i]; 1041 ds = &sc->sc_rxsoft[i];
1040 if (ds->ds_mbuf != NULL) { 1042 if (ds->ds_mbuf != NULL) {
1041 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1043 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1042 m_freem(ds->ds_mbuf); 1044 m_freem(ds->ds_mbuf);
1043 ds->ds_mbuf = NULL; 1045 ds->ds_mbuf = NULL;
1044 } 1046 }
1045 } 1047 }
1046} 1048}
1047 1049
1048/* 1050/*
1049 * sonic_stop: [ifnet interface function] 1051 * sonic_stop: [ifnet interface function]
1050 * 1052 *
1051 * Stop transmission on the interface. 1053 * Stop transmission on the interface.
1052 */ 1054 */
1053void 1055void
1054sonic_stop(struct ifnet *ifp, int disable) 1056sonic_stop(struct ifnet *ifp, int disable)
1055{ 1057{
1056 struct sonic_softc *sc = ifp->if_softc; 1058 struct sonic_softc *sc = ifp->if_softc;
1057 struct sonic_descsoft *ds; 1059 struct sonic_descsoft *ds;
1058 int i; 1060 int i;
1059 1061
1060 /* 1062 /*
1061 * Disable interrupts. 1063 * Disable interrupts.
1062 */ 1064 */
1063 CSR_WRITE(sc, SONIC_IMR, 0); 1065 CSR_WRITE(sc, SONIC_IMR, 0);
1064 1066
1065 /* 1067 /*
1066 * Stop the transmitter, receiver, and timer. 1068 * Stop the transmitter, receiver, and timer.
1067 */ 1069 */
1068 CSR_WRITE(sc, SONIC_CR, CR_HTX|CR_RXDIS|CR_STP); 1070 CSR_WRITE(sc, SONIC_CR, CR_HTX|CR_RXDIS|CR_STP);
1069 for (i = 0; i < 1000; i++) { 1071 for (i = 0; i < 1000; i++) {
1070 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) == 0) 1072 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) == 0)
1071 break; 1073 break;
1072 delay(2); 1074 delay(2);
1073 } 1075 }
1074 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) != 0) 1076 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) != 0)
1075 printf("%s: SONIC failed to stop\n", device_xname(sc->sc_dev)); 1077 printf("%s: SONIC failed to stop\n", device_xname(sc->sc_dev));
1076 1078
1077 /* 1079 /*
1078 * Release any queued transmit buffers. 1080 * Release any queued transmit buffers.
1079 */ 1081 */
1080 for (i = 0; i < SONIC_NTXDESC; i++) { 1082 for (i = 0; i < SONIC_NTXDESC; i++) {
1081 ds = &sc->sc_txsoft[i]; 1083 ds = &sc->sc_txsoft[i];
1082 if (ds->ds_mbuf != NULL) { 1084 if (ds->ds_mbuf != NULL) {
1083 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1085 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1084 m_freem(ds->ds_mbuf); 1086 m_freem(ds->ds_mbuf);
1085 ds->ds_mbuf = NULL; 1087 ds->ds_mbuf = NULL;
1086 } 1088 }
1087 } 1089 }
1088 1090
1089 /* 1091 /*
1090 * Mark the interface down and cancel the watchdog timer. 1092 * Mark the interface down and cancel the watchdog timer.
1091 */ 1093 */
1092 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 1094 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1093 ifp->if_timer = 0; 1095 ifp->if_timer = 0;
1094 1096
1095 if (disable) 1097 if (disable)
1096 sonic_rxdrain(sc); 1098 sonic_rxdrain(sc);
1097} 1099}
1098 1100
1099/* 1101/*
1100 * sonic_add_rxbuf: 1102 * sonic_add_rxbuf:
1101 * 1103 *
1102 * Add a receive buffer to the indicated descriptor. 1104 * Add a receive buffer to the indicated descriptor.
1103 */ 1105 */
1104int 1106int
1105sonic_add_rxbuf(struct sonic_softc *sc, int idx) 1107sonic_add_rxbuf(struct sonic_softc *sc, int idx)
1106{ 1108{
1107 struct sonic_descsoft *ds = &sc->sc_rxsoft[idx]; 1109 struct sonic_descsoft *ds = &sc->sc_rxsoft[idx];
1108 struct mbuf *m; 1110 struct mbuf *m;
1109 int error; 1111 int error;
1110 1112
1111 MGETHDR(m, M_DONTWAIT, MT_DATA); 1113 MGETHDR(m, M_DONTWAIT, MT_DATA);
1112 if (m == NULL) 1114 if (m == NULL)
1113 return ENOBUFS; 1115 return ENOBUFS;
1114 1116
1115 MCLGET(m, M_DONTWAIT); 1117 MCLGET(m, M_DONTWAIT);
1116 if ((m->m_flags & M_EXT) == 0) { 1118 if ((m->m_flags & M_EXT) == 0) {
1117 m_freem(m); 1119 m_freem(m);
1118 return ENOBUFS; 1120 return ENOBUFS;
1119 } 1121 }
1120 1122
1121 if (ds->ds_mbuf != NULL) 1123 if (ds->ds_mbuf != NULL)
1122 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); 1124 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1123 1125
1124 ds->ds_mbuf = m; 1126 ds->ds_mbuf = m;
1125 1127
1126 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap, 1128 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1127 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 1129 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1128 BUS_DMA_READ|BUS_DMA_NOWAIT); 1130 BUS_DMA_READ|BUS_DMA_NOWAIT);
1129 if (error) { 1131 if (error) {
1130 printf("%s: can't load rx DMA map %d, error = %d\n", 1132 printf("%s: can't load rx DMA map %d, error = %d\n",
1131 device_xname(sc->sc_dev), idx, error); 1133 device_xname(sc->sc_dev), idx, error);
1132 panic("sonic_add_rxbuf"); /* XXX */ 1134 panic("sonic_add_rxbuf"); /* XXX */
1133 } 1135 }
1134 1136
1135 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, 1137 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1136 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1138 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1137 1139
1138 SONIC_INIT_RXDESC(sc, idx); 1140 SONIC_INIT_RXDESC(sc, idx);
1139 1141
1140 return 0; 1142 return 0;
1141} 1143}
1142 1144
1143static void 1145static void
1144sonic_set_camentry(struct sonic_softc *sc, int entry, const uint8_t *enaddr) 1146sonic_set_camentry(struct sonic_softc *sc, int entry, const uint8_t *enaddr)
1145{ 1147{
1146 1148
1147 if (sc->sc_32bit) { 1149 if (sc->sc_32bit) {
1148 struct sonic_cda32 *cda = &sc->sc_cda32[entry]; 1150 struct sonic_cda32 *cda = &sc->sc_cda32[entry];
1149 1151
1150 cda->cda_entry = htosonic32(sc, entry); 1152 cda->cda_entry = htosonic32(sc, entry);
1151 cda->cda_addr0 = htosonic32(sc, enaddr[0] | (enaddr[1] << 8)); 1153 cda->cda_addr0 = htosonic32(sc, enaddr[0] | (enaddr[1] << 8));
1152 cda->cda_addr1 = htosonic32(sc, enaddr[2] | (enaddr[3] << 8)); 1154 cda->cda_addr1 = htosonic32(sc, enaddr[2] | (enaddr[3] << 8));
1153 cda->cda_addr2 = htosonic32(sc, enaddr[4] | (enaddr[5] << 8)); 1155 cda->cda_addr2 = htosonic32(sc, enaddr[4] | (enaddr[5] << 8));
1154 } else { 1156 } else {
1155 struct sonic_cda16 *cda = &sc->sc_cda16[entry]; 1157 struct sonic_cda16 *cda = &sc->sc_cda16[entry];
1156 1158
1157 cda->cda_entry = htosonic16(sc, entry); 1159 cda->cda_entry = htosonic16(sc, entry);
1158 cda->cda_addr0 = htosonic16(sc, enaddr[0] | (enaddr[1] << 8)); 1160 cda->cda_addr0 = htosonic16(sc, enaddr[0] | (enaddr[1] << 8));
1159 cda->cda_addr1 = htosonic16(sc, enaddr[2] | (enaddr[3] << 8)); 1161 cda->cda_addr1 = htosonic16(sc, enaddr[2] | (enaddr[3] << 8));
1160 cda->cda_addr2 = htosonic16(sc, enaddr[4] | (enaddr[5] << 8)); 1162 cda->cda_addr2 = htosonic16(sc, enaddr[4] | (enaddr[5] << 8));
1161 } 1163 }
1162} 1164}
1163 1165
1164/* 1166/*
1165 * sonic_set_filter: 1167 * sonic_set_filter:
1166 * 1168 *
1167 * Set the SONIC receive filter. 1169 * Set the SONIC receive filter.
1168 */ 1170 */
1169void 1171void
1170sonic_set_filter(struct sonic_softc *sc) 1172sonic_set_filter(struct sonic_softc *sc)
1171{ 1173{
1172 struct ethercom *ec = &sc->sc_ethercom; 1174 struct ethercom *ec = &sc->sc_ethercom;
1173 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1175 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1174 struct ether_multi *enm; 1176 struct ether_multi *enm;
1175 struct ether_multistep step; 1177 struct ether_multistep step;
1176 int i, entry = 0; 1178 int i, entry = 0;
1177 uint16_t camvalid = 0; 1179 uint16_t camvalid = 0;
1178 uint16_t rcr = 0; 1180 uint16_t rcr = 0;
1179 1181
1180 if (ifp->if_flags & IFF_BROADCAST) 1182 if (ifp->if_flags & IFF_BROADCAST)
1181 rcr |= RCR_BRD; 1183 rcr |= RCR_BRD;
1182 1184
1183 if (ifp->if_flags & IFF_PROMISC) { 1185 if (ifp->if_flags & IFF_PROMISC) {
1184 rcr |= RCR_PRO; 1186 rcr |= RCR_PRO;
1185 goto allmulti; 1187 goto allmulti;
1186 } 1188 }
1187 1189
1188 /* Put our station address in the first CAM slot. */ 1190 /* Put our station address in the first CAM slot. */
1189 sonic_set_camentry(sc, entry, CLLADDR(ifp->if_sadl)); 1191 sonic_set_camentry(sc, entry, CLLADDR(ifp->if_sadl));
1190 camvalid |= (1U << entry); 1192 camvalid |= (1U << entry);
1191 entry++; 1193 entry++;
1192 1194
1193 /* Add the multicast addresses to the CAM. */ 1195 /* Add the multicast addresses to the CAM. */
1194 ETHER_FIRST_MULTI(step, ec, enm); 1196 ETHER_FIRST_MULTI(step, ec, enm);
1195 while (enm != NULL) { 1197 while (enm != NULL) {
1196 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 1198 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1197 /* 1199 /*
1198 * We must listen to a range of multicast addresses. 1200 * We must listen to a range of multicast addresses.
1199 * The only way to do this on the SONIC is to enable 1201 * The only way to do this on the SONIC is to enable
1200 * reception of all multicast packets. 1202 * reception of all multicast packets.
1201 */ 1203 */
1202 goto allmulti; 1204 goto allmulti;
1203 } 1205 }
1204 1206
1205 if (entry == SONIC_NCAMENT) { 1207 if (entry == SONIC_NCAMENT) {
1206 /* 1208 /*
1207 * Out of CAM slots. Have to enable reception 1209 * Out of CAM slots. Have to enable reception
1208 * of all multicast addresses. 1210 * of all multicast addresses.
1209 */ 1211 */
1210 goto allmulti; 1212 goto allmulti;
1211 } 1213 }
1212 1214
1213 sonic_set_camentry(sc, entry, enm->enm_addrlo); 1215 sonic_set_camentry(sc, entry, enm->enm_addrlo);
1214 camvalid |= (1U << entry); 1216 camvalid |= (1U << entry);
1215 entry++; 1217 entry++;
1216 1218
1217 ETHER_NEXT_MULTI(step, enm); 1219 ETHER_NEXT_MULTI(step, enm);
1218 } 1220 }
1219 1221
1220 ifp->if_flags &= ~IFF_ALLMULTI; 1222 ifp->if_flags &= ~IFF_ALLMULTI;
1221 goto setit; 1223 goto setit;
1222 1224
1223 allmulti: 1225 allmulti:
1224 /* Use only the first CAM slot (station address). */ 1226 /* Use only the first CAM slot (station address). */
1225 camvalid = 0x0001; 1227 camvalid = 0x0001;
1226 entry = 1; 1228 entry = 1;
1227 rcr |= RCR_AMC; 1229 rcr |= RCR_AMC;
1228 1230
1229 setit: 1231 setit:
1230 /* set mask for the CAM Enable register */ 1232 /* set mask for the CAM Enable register */
1231 if (sc->sc_32bit) { 1233 if (sc->sc_32bit) {
1232 if (entry == SONIC_NCAMENT) 1234 if (entry == SONIC_NCAMENT)
1233 sc->sc_cdaenable32 = htosonic32(sc, camvalid); 1235 sc->sc_cdaenable32 = htosonic32(sc, camvalid);
1234 else 1236 else
1235 sc->sc_cda32[entry].cda_entry = 1237 sc->sc_cda32[entry].cda_entry =
1236 htosonic32(sc, camvalid); 1238 htosonic32(sc, camvalid);
1237 } else { 1239 } else {
1238 if (entry == SONIC_NCAMENT) 1240 if (entry == SONIC_NCAMENT)
1239 sc->sc_cdaenable16 = htosonic16(sc, camvalid); 1241 sc->sc_cdaenable16 = htosonic16(sc, camvalid);
1240 else 1242 else
1241 sc->sc_cda16[entry].cda_entry = 1243 sc->sc_cda16[entry].cda_entry =
1242 htosonic16(sc, camvalid); 1244 htosonic16(sc, camvalid);
1243 } 1245 }
1244 1246
1245 /* Load the CAM. */ 1247 /* Load the CAM. */
1246 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_PREWRITE); 1248 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_PREWRITE);
1247 CSR_WRITE(sc, SONIC_CDP, SONIC_CDCAMADDR(sc) & 0xffff); 1249 CSR_WRITE(sc, SONIC_CDP, SONIC_CDCAMADDR(sc) & 0xffff);
1248 CSR_WRITE(sc, SONIC_CDC, entry); 1250 CSR_WRITE(sc, SONIC_CDC, entry);
1249 CSR_WRITE(sc, SONIC_CR, CR_LCAM); 1251 CSR_WRITE(sc, SONIC_CR, CR_LCAM);
1250 for (i = 0; i < 10000; i++) { 1252 for (i = 0; i < 10000; i++) {
1251 if ((CSR_READ(sc, SONIC_CR) & CR_LCAM) == 0) 1253 if ((CSR_READ(sc, SONIC_CR) & CR_LCAM) == 0)
1252 break; 1254 break;
1253 delay(2); 1255 delay(2);
1254 } 1256 }
1255 if (CSR_READ(sc, SONIC_CR) & CR_LCAM) 1257 if (CSR_READ(sc, SONIC_CR) & CR_LCAM)
1256 printf("%s: CAM load failed\n", device_xname(sc->sc_dev)); 1258 printf("%s: CAM load failed\n", device_xname(sc->sc_dev));
1257 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_POSTWRITE); 1259 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_POSTWRITE);
1258 1260
1259 /* Set the receive control register. */ 1261 /* Set the receive control register. */
1260 CSR_WRITE(sc, SONIC_RCR, rcr); 1262 CSR_WRITE(sc, SONIC_RCR, rcr);
1261} 1263}