Sat Aug 19 04:24:20 2017 UTC ()
Pull up following revision(s) (requested by mrg in ticket #1484):
	sys/kern/kern_ktrace.c: revision 1.171 via patch
Clamp the length we use, not the length we don't.
Avoids uninitialized memory disclosure to userland.
From Ilja Van Sprundel.


(snj)
diff -r1.160 -r1.160.6.1 src/sys/kern/kern_ktrace.c

cvs diff -r1.160 -r1.160.6.1 src/sys/kern/kern_ktrace.c (switch to unified diff)

--- src/sys/kern/kern_ktrace.c 2011/12/30 20:33:04 1.160
+++ src/sys/kern/kern_ktrace.c 2017/08/19 04:24:20 1.160.6.1
@@ -1,1591 +1,1591 @@ @@ -1,1591 +1,1591 @@
1/* $NetBSD: kern_ktrace.c,v 1.160 2011/12/30 20:33:04 christos Exp $ */ 1/* $NetBSD: kern_ktrace.c,v 1.160.6.1 2017/08/19 04:24:20 snj Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc. 4 * Copyright (c) 2006, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * This code is derived from software contributed to The NetBSD Foundation 7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran. 8 * by Andrew Doran.
9 * 9 *
10 * Redistribution and use in source and binary forms, with or without 10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions 11 * modification, are permitted provided that the following conditions
12 * are met: 12 * are met:
13 * 1. Redistributions of source code must retain the above copyright 13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer. 14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright 15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the 16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution. 17 * documentation and/or other materials provided with the distribution.
18 * 18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE. 29 * POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31 31
32/* 32/*
33 * Copyright (c) 1989, 1993 33 * Copyright (c) 1989, 1993
34 * The Regents of the University of California. All rights reserved. 34 * The Regents of the University of California. All rights reserved.
35 * 35 *
36 * Redistribution and use in source and binary forms, with or without 36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions 37 * modification, are permitted provided that the following conditions
38 * are met: 38 * are met:
39 * 1. Redistributions of source code must retain the above copyright 39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer. 40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright 41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the 42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution. 43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors 44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software 45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission. 46 * without specific prior written permission.
47 * 47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE. 58 * SUCH DAMAGE.
59 * 59 *
60 * @(#)kern_ktrace.c 8.5 (Berkeley) 5/14/95 60 * @(#)kern_ktrace.c 8.5 (Berkeley) 5/14/95
61 */ 61 */
62 62
63#include <sys/cdefs.h> 63#include <sys/cdefs.h>
64__KERNEL_RCSID(0, "$NetBSD: kern_ktrace.c,v 1.160 2011/12/30 20:33:04 christos Exp $"); 64__KERNEL_RCSID(0, "$NetBSD: kern_ktrace.c,v 1.160.6.1 2017/08/19 04:24:20 snj Exp $");
65 65
66#include <sys/param.h> 66#include <sys/param.h>
67#include <sys/systm.h> 67#include <sys/systm.h>
68#include <sys/proc.h> 68#include <sys/proc.h>
69#include <sys/file.h> 69#include <sys/file.h>
70#include <sys/namei.h> 70#include <sys/namei.h>
71#include <sys/vnode.h> 71#include <sys/vnode.h>
72#include <sys/kernel.h> 72#include <sys/kernel.h>
73#include <sys/kthread.h> 73#include <sys/kthread.h>
74#include <sys/ktrace.h> 74#include <sys/ktrace.h>
75#include <sys/kmem.h> 75#include <sys/kmem.h>
76#include <sys/syslog.h> 76#include <sys/syslog.h>
77#include <sys/filedesc.h> 77#include <sys/filedesc.h>
78#include <sys/ioctl.h> 78#include <sys/ioctl.h>
79#include <sys/callout.h> 79#include <sys/callout.h>
80#include <sys/kauth.h> 80#include <sys/kauth.h>
81 81
82#include <sys/mount.h> 82#include <sys/mount.h>
83#include <sys/sa.h> 83#include <sys/sa.h>
84#include <sys/syscallargs.h> 84#include <sys/syscallargs.h>
85 85
86/* 86/*
87 * TODO: 87 * TODO:
88 * - need better error reporting? 88 * - need better error reporting?
89 * - userland utility to sort ktrace.out by timestamp. 89 * - userland utility to sort ktrace.out by timestamp.
90 * - keep minimum information in ktrace_entry when rest of alloc failed. 90 * - keep minimum information in ktrace_entry when rest of alloc failed.
91 * - per trace control of configurable parameters. 91 * - per trace control of configurable parameters.
92 */ 92 */
93 93
94struct ktrace_entry { 94struct ktrace_entry {
95 TAILQ_ENTRY(ktrace_entry) kte_list; 95 TAILQ_ENTRY(ktrace_entry) kte_list;
96 struct ktr_header kte_kth; 96 struct ktr_header kte_kth;
97 void *kte_buf; 97 void *kte_buf;
98 size_t kte_bufsz;  98 size_t kte_bufsz;
99#define KTE_SPACE 32 99#define KTE_SPACE 32
100 uint8_t kte_space[KTE_SPACE] __aligned(sizeof(register_t)); 100 uint8_t kte_space[KTE_SPACE] __aligned(sizeof(register_t));
101}; 101};
102 102
103struct ktr_desc { 103struct ktr_desc {
104 TAILQ_ENTRY(ktr_desc) ktd_list; 104 TAILQ_ENTRY(ktr_desc) ktd_list;
105 int ktd_flags; 105 int ktd_flags;
106#define KTDF_WAIT 0x0001 106#define KTDF_WAIT 0x0001
107#define KTDF_DONE 0x0002 107#define KTDF_DONE 0x0002
108#define KTDF_BLOCKING 0x0004 108#define KTDF_BLOCKING 0x0004
109#define KTDF_INTERACTIVE 0x0008 109#define KTDF_INTERACTIVE 0x0008
110 int ktd_error; 110 int ktd_error;
111#define KTDE_ENOMEM 0x0001 111#define KTDE_ENOMEM 0x0001
112#define KTDE_ENOSPC 0x0002 112#define KTDE_ENOSPC 0x0002
113 int ktd_errcnt; 113 int ktd_errcnt;
114 int ktd_ref; /* # of reference */ 114 int ktd_ref; /* # of reference */
115 int ktd_qcount; /* # of entry in the queue */ 115 int ktd_qcount; /* # of entry in the queue */
116 116
117 /* 117 /*
118 * Params to control behaviour. 118 * Params to control behaviour.
119 */ 119 */
120 int ktd_delayqcnt; /* # of entry allowed to delay */ 120 int ktd_delayqcnt; /* # of entry allowed to delay */
121 int ktd_wakedelay; /* delay of wakeup in *tick* */ 121 int ktd_wakedelay; /* delay of wakeup in *tick* */
122 int ktd_intrwakdl; /* ditto, but when interactive */ 122 int ktd_intrwakdl; /* ditto, but when interactive */
123 123
124 file_t *ktd_fp; /* trace output file */ 124 file_t *ktd_fp; /* trace output file */
125 lwp_t *ktd_lwp; /* our kernel thread */ 125 lwp_t *ktd_lwp; /* our kernel thread */
126 TAILQ_HEAD(, ktrace_entry) ktd_queue; 126 TAILQ_HEAD(, ktrace_entry) ktd_queue;
127 callout_t ktd_wakch; /* delayed wakeup */ 127 callout_t ktd_wakch; /* delayed wakeup */
128 kcondvar_t ktd_sync_cv; 128 kcondvar_t ktd_sync_cv;
129 kcondvar_t ktd_cv; 129 kcondvar_t ktd_cv;
130}; 130};
131 131
132static int ktealloc(struct ktrace_entry **, void **, lwp_t *, int, 132static int ktealloc(struct ktrace_entry **, void **, lwp_t *, int,
133 size_t); 133 size_t);
134static void ktrwrite(struct ktr_desc *, struct ktrace_entry *); 134static void ktrwrite(struct ktr_desc *, struct ktrace_entry *);
135static int ktrace_common(lwp_t *, int, int, int, file_t **); 135static int ktrace_common(lwp_t *, int, int, int, file_t **);
136static int ktrops(lwp_t *, struct proc *, int, int, 136static int ktrops(lwp_t *, struct proc *, int, int,
137 struct ktr_desc *); 137 struct ktr_desc *);
138static int ktrsetchildren(lwp_t *, struct proc *, int, int, 138static int ktrsetchildren(lwp_t *, struct proc *, int, int,
139 struct ktr_desc *); 139 struct ktr_desc *);
140static int ktrcanset(lwp_t *, struct proc *); 140static int ktrcanset(lwp_t *, struct proc *);
141static int ktrsamefile(file_t *, file_t *); 141static int ktrsamefile(file_t *, file_t *);
142static void ktr_kmem(lwp_t *, int, const void *, size_t); 142static void ktr_kmem(lwp_t *, int, const void *, size_t);
143static void ktr_io(lwp_t *, int, enum uio_rw, struct iovec *, size_t); 143static void ktr_io(lwp_t *, int, enum uio_rw, struct iovec *, size_t);
144 144
145static struct ktr_desc * 145static struct ktr_desc *
146 ktd_lookup(file_t *); 146 ktd_lookup(file_t *);
147static void ktdrel(struct ktr_desc *); 147static void ktdrel(struct ktr_desc *);
148static void ktdref(struct ktr_desc *); 148static void ktdref(struct ktr_desc *);
149static void ktraddentry(lwp_t *, struct ktrace_entry *, int); 149static void ktraddentry(lwp_t *, struct ktrace_entry *, int);
150/* Flags for ktraddentry (3rd arg) */ 150/* Flags for ktraddentry (3rd arg) */
151#define KTA_NOWAIT 0x0000 151#define KTA_NOWAIT 0x0000
152#define KTA_WAITOK 0x0001 152#define KTA_WAITOK 0x0001
153#define KTA_LARGE 0x0002 153#define KTA_LARGE 0x0002
154static void ktefree(struct ktrace_entry *); 154static void ktefree(struct ktrace_entry *);
155static void ktd_logerrl(struct ktr_desc *, int); 155static void ktd_logerrl(struct ktr_desc *, int);
156static void ktrace_thread(void *); 156static void ktrace_thread(void *);
157static int ktrderefall(struct ktr_desc *, int); 157static int ktrderefall(struct ktr_desc *, int);
158 158
159/* 159/*
160 * Default vaules. 160 * Default vaules.
161 */ 161 */
162#define KTD_MAXENTRY 1000 /* XXX: tune */ 162#define KTD_MAXENTRY 1000 /* XXX: tune */
163#define KTD_TIMEOUT 5 /* XXX: tune */ 163#define KTD_TIMEOUT 5 /* XXX: tune */
164#define KTD_DELAYQCNT 100 /* XXX: tune */ 164#define KTD_DELAYQCNT 100 /* XXX: tune */
165#define KTD_WAKEDELAY 5000 /* XXX: tune */ 165#define KTD_WAKEDELAY 5000 /* XXX: tune */
166#define KTD_INTRWAKDL 100 /* XXX: tune */ 166#define KTD_INTRWAKDL 100 /* XXX: tune */
167 167
168/* 168/*
169 * Patchable variables. 169 * Patchable variables.
170 */ 170 */
171int ktd_maxentry = KTD_MAXENTRY; /* max # of entry in the queue */ 171int ktd_maxentry = KTD_MAXENTRY; /* max # of entry in the queue */
172int ktd_timeout = KTD_TIMEOUT; /* timeout in seconds */ 172int ktd_timeout = KTD_TIMEOUT; /* timeout in seconds */
173int ktd_delayqcnt = KTD_DELAYQCNT; /* # of entry allowed to delay */ 173int ktd_delayqcnt = KTD_DELAYQCNT; /* # of entry allowed to delay */
174int ktd_wakedelay = KTD_WAKEDELAY; /* delay of wakeup in *ms* */ 174int ktd_wakedelay = KTD_WAKEDELAY; /* delay of wakeup in *ms* */
175int ktd_intrwakdl = KTD_INTRWAKDL; /* ditto, but when interactive */ 175int ktd_intrwakdl = KTD_INTRWAKDL; /* ditto, but when interactive */
176 176
177kmutex_t ktrace_lock; 177kmutex_t ktrace_lock;
178int ktrace_on; 178int ktrace_on;
179static TAILQ_HEAD(, ktr_desc) ktdq = TAILQ_HEAD_INITIALIZER(ktdq); 179static TAILQ_HEAD(, ktr_desc) ktdq = TAILQ_HEAD_INITIALIZER(ktdq);
180static pool_cache_t kte_cache; 180static pool_cache_t kte_cache;
181 181
182static kauth_listener_t ktrace_listener; 182static kauth_listener_t ktrace_listener;
183 183
184static void 184static void
185ktd_wakeup(struct ktr_desc *ktd) 185ktd_wakeup(struct ktr_desc *ktd)
186{ 186{
187 187
188 callout_stop(&ktd->ktd_wakch); 188 callout_stop(&ktd->ktd_wakch);
189 cv_signal(&ktd->ktd_cv); 189 cv_signal(&ktd->ktd_cv);
190} 190}
191 191
192static void 192static void
193ktd_callout(void *arg) 193ktd_callout(void *arg)
194{ 194{
195 195
196 mutex_enter(&ktrace_lock); 196 mutex_enter(&ktrace_lock);
197 ktd_wakeup(arg); 197 ktd_wakeup(arg);
198 mutex_exit(&ktrace_lock); 198 mutex_exit(&ktrace_lock);
199} 199}
200 200
201static void 201static void
202ktd_logerrl(struct ktr_desc *ktd, int error) 202ktd_logerrl(struct ktr_desc *ktd, int error)
203{ 203{
204 204
205 ktd->ktd_error |= error; 205 ktd->ktd_error |= error;
206 ktd->ktd_errcnt++; 206 ktd->ktd_errcnt++;
207} 207}
208 208
209#if 0 209#if 0
210static void 210static void
211ktd_logerr(struct proc *p, int error) 211ktd_logerr(struct proc *p, int error)
212{ 212{
213 struct ktr_desc *ktd; 213 struct ktr_desc *ktd;
214 214
215 KASSERT(mutex_owned(&ktrace_lock)); 215 KASSERT(mutex_owned(&ktrace_lock));
216 216
217 ktd = p->p_tracep; 217 ktd = p->p_tracep;
218 if (ktd == NULL) 218 if (ktd == NULL)
219 return; 219 return;
220 220
221 ktd_logerrl(ktd, error); 221 ktd_logerrl(ktd, error);
222} 222}
223#endif 223#endif
224 224
225static inline int 225static inline int
226ktrenter(lwp_t *l) 226ktrenter(lwp_t *l)
227{ 227{
228 228
229 if ((l->l_pflag & LP_KTRACTIVE) != 0) 229 if ((l->l_pflag & LP_KTRACTIVE) != 0)
230 return 1; 230 return 1;
231 l->l_pflag |= LP_KTRACTIVE; 231 l->l_pflag |= LP_KTRACTIVE;
232 return 0; 232 return 0;
233} 233}
234 234
235static inline void 235static inline void
236ktrexit(lwp_t *l) 236ktrexit(lwp_t *l)
237{ 237{
238 238
239 l->l_pflag &= ~LP_KTRACTIVE; 239 l->l_pflag &= ~LP_KTRACTIVE;
240} 240}
241 241
242static int 242static int
243ktrace_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 243ktrace_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
244 void *arg0, void *arg1, void *arg2, void *arg3) 244 void *arg0, void *arg1, void *arg2, void *arg3)
245{ 245{
246 struct proc *p; 246 struct proc *p;
247 int result; 247 int result;
248 enum kauth_process_req req; 248 enum kauth_process_req req;
249 249
250 result = KAUTH_RESULT_DEFER; 250 result = KAUTH_RESULT_DEFER;
251 p = arg0; 251 p = arg0;
252 252
253 if (action != KAUTH_PROCESS_KTRACE) 253 if (action != KAUTH_PROCESS_KTRACE)
254 return result; 254 return result;
255 255
256 req = (enum kauth_process_req)(unsigned long)arg1; 256 req = (enum kauth_process_req)(unsigned long)arg1;
257 257
258 /* Privileged; secmodel should handle these. */ 258 /* Privileged; secmodel should handle these. */
259 if (req == KAUTH_REQ_PROCESS_KTRACE_PERSISTENT) 259 if (req == KAUTH_REQ_PROCESS_KTRACE_PERSISTENT)
260 return result; 260 return result;
261 261
262 if ((p->p_traceflag & KTRFAC_PERSISTENT) || 262 if ((p->p_traceflag & KTRFAC_PERSISTENT) ||
263 (p->p_flag & PK_SUGID)) 263 (p->p_flag & PK_SUGID))
264 return result; 264 return result;
265 265
266 if (kauth_cred_geteuid(cred) == kauth_cred_getuid(p->p_cred) && 266 if (kauth_cred_geteuid(cred) == kauth_cred_getuid(p->p_cred) &&
267 kauth_cred_getuid(cred) == kauth_cred_getsvuid(p->p_cred) && 267 kauth_cred_getuid(cred) == kauth_cred_getsvuid(p->p_cred) &&
268 kauth_cred_getgid(cred) == kauth_cred_getgid(p->p_cred) && 268 kauth_cred_getgid(cred) == kauth_cred_getgid(p->p_cred) &&
269 kauth_cred_getgid(cred) == kauth_cred_getsvgid(p->p_cred)) 269 kauth_cred_getgid(cred) == kauth_cred_getsvgid(p->p_cred))
270 result = KAUTH_RESULT_ALLOW; 270 result = KAUTH_RESULT_ALLOW;
271 271
272 return result; 272 return result;
273} 273}
274 274
275/* 275/*
276 * Initialise the ktrace system. 276 * Initialise the ktrace system.
277 */ 277 */
278void 278void
279ktrinit(void) 279ktrinit(void)
280{ 280{
281 281
282 mutex_init(&ktrace_lock, MUTEX_DEFAULT, IPL_NONE); 282 mutex_init(&ktrace_lock, MUTEX_DEFAULT, IPL_NONE);
283 kte_cache = pool_cache_init(sizeof(struct ktrace_entry), 0, 0, 0, 283 kte_cache = pool_cache_init(sizeof(struct ktrace_entry), 0, 0, 0,
284 "ktrace", &pool_allocator_nointr, IPL_NONE, NULL, NULL, NULL); 284 "ktrace", &pool_allocator_nointr, IPL_NONE, NULL, NULL, NULL);
285 285
286 ktrace_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 286 ktrace_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
287 ktrace_listener_cb, NULL);  287 ktrace_listener_cb, NULL);
288} 288}
289 289
290/* 290/*
291 * Release a reference. Called with ktrace_lock held. 291 * Release a reference. Called with ktrace_lock held.
292 */ 292 */
293void 293void
294ktdrel(struct ktr_desc *ktd) 294ktdrel(struct ktr_desc *ktd)
295{ 295{
296 296
297 KASSERT(mutex_owned(&ktrace_lock)); 297 KASSERT(mutex_owned(&ktrace_lock));
298 298
299 KDASSERT(ktd->ktd_ref != 0); 299 KDASSERT(ktd->ktd_ref != 0);
300 KASSERT(ktd->ktd_ref > 0); 300 KASSERT(ktd->ktd_ref > 0);
301 KASSERT(ktrace_on > 0); 301 KASSERT(ktrace_on > 0);
302 ktrace_on--; 302 ktrace_on--;
303 if (--ktd->ktd_ref <= 0) { 303 if (--ktd->ktd_ref <= 0) {
304 ktd->ktd_flags |= KTDF_DONE; 304 ktd->ktd_flags |= KTDF_DONE;
305 cv_signal(&ktd->ktd_cv); 305 cv_signal(&ktd->ktd_cv);
306 } 306 }
307} 307}
308 308
309void 309void
310ktdref(struct ktr_desc *ktd) 310ktdref(struct ktr_desc *ktd)
311{ 311{
312 312
313 KASSERT(mutex_owned(&ktrace_lock)); 313 KASSERT(mutex_owned(&ktrace_lock));
314 314
315 ktd->ktd_ref++; 315 ktd->ktd_ref++;
316 ktrace_on++; 316 ktrace_on++;
317} 317}
318 318
319struct ktr_desc * 319struct ktr_desc *
320ktd_lookup(file_t *fp) 320ktd_lookup(file_t *fp)
321{ 321{
322 struct ktr_desc *ktd; 322 struct ktr_desc *ktd;
323 323
324 KASSERT(mutex_owned(&ktrace_lock)); 324 KASSERT(mutex_owned(&ktrace_lock));
325 325
326 for (ktd = TAILQ_FIRST(&ktdq); ktd != NULL; 326 for (ktd = TAILQ_FIRST(&ktdq); ktd != NULL;
327 ktd = TAILQ_NEXT(ktd, ktd_list)) { 327 ktd = TAILQ_NEXT(ktd, ktd_list)) {
328 if (ktrsamefile(ktd->ktd_fp, fp)) { 328 if (ktrsamefile(ktd->ktd_fp, fp)) {
329 ktdref(ktd); 329 ktdref(ktd);
330 break; 330 break;
331 } 331 }
332 } 332 }
333 333
334 return (ktd); 334 return (ktd);
335} 335}
336 336
337void 337void
338ktraddentry(lwp_t *l, struct ktrace_entry *kte, int flags) 338ktraddentry(lwp_t *l, struct ktrace_entry *kte, int flags)
339{ 339{
340 struct proc *p = l->l_proc; 340 struct proc *p = l->l_proc;
341 struct ktr_desc *ktd; 341 struct ktr_desc *ktd;
342#ifdef DEBUG 342#ifdef DEBUG
343 struct timeval t1, t2; 343 struct timeval t1, t2;
344#endif 344#endif
345 345
346 mutex_enter(&ktrace_lock); 346 mutex_enter(&ktrace_lock);
347 347
348 if (p->p_traceflag & KTRFAC_TRC_EMUL) { 348 if (p->p_traceflag & KTRFAC_TRC_EMUL) {
349 /* Add emulation trace before first entry for this process */ 349 /* Add emulation trace before first entry for this process */
350 p->p_traceflag &= ~KTRFAC_TRC_EMUL; 350 p->p_traceflag &= ~KTRFAC_TRC_EMUL;
351 mutex_exit(&ktrace_lock); 351 mutex_exit(&ktrace_lock);
352 ktrexit(l); 352 ktrexit(l);
353 ktremul(); 353 ktremul();
354 (void)ktrenter(l); 354 (void)ktrenter(l);
355 mutex_enter(&ktrace_lock); 355 mutex_enter(&ktrace_lock);
356 } 356 }
357 357
358 /* Tracing may have been cancelled. */ 358 /* Tracing may have been cancelled. */
359 ktd = p->p_tracep; 359 ktd = p->p_tracep;
360 if (ktd == NULL) 360 if (ktd == NULL)
361 goto freekte; 361 goto freekte;
362 362
363 /* 363 /*
364 * Bump reference count so that the object will remain while 364 * Bump reference count so that the object will remain while
365 * we are here. Note that the trace is controlled by other 365 * we are here. Note that the trace is controlled by other
366 * process. 366 * process.
367 */ 367 */
368 ktdref(ktd); 368 ktdref(ktd);
369 369
370 if (ktd->ktd_flags & KTDF_DONE) 370 if (ktd->ktd_flags & KTDF_DONE)
371 goto relktd; 371 goto relktd;
372 372
373 if (ktd->ktd_qcount > ktd_maxentry) { 373 if (ktd->ktd_qcount > ktd_maxentry) {
374 ktd_logerrl(ktd, KTDE_ENOSPC); 374 ktd_logerrl(ktd, KTDE_ENOSPC);
375 goto relktd; 375 goto relktd;
376 } 376 }
377 TAILQ_INSERT_TAIL(&ktd->ktd_queue, kte, kte_list); 377 TAILQ_INSERT_TAIL(&ktd->ktd_queue, kte, kte_list);
378 ktd->ktd_qcount++; 378 ktd->ktd_qcount++;
379 if (ktd->ktd_flags & KTDF_BLOCKING) 379 if (ktd->ktd_flags & KTDF_BLOCKING)
380 goto skip_sync; 380 goto skip_sync;
381 381
382 if (flags & KTA_WAITOK && 382 if (flags & KTA_WAITOK &&
383 (/* flags & KTA_LARGE */0 || ktd->ktd_flags & KTDF_WAIT || 383 (/* flags & KTA_LARGE */0 || ktd->ktd_flags & KTDF_WAIT ||
384 ktd->ktd_qcount > ktd_maxentry >> 1)) 384 ktd->ktd_qcount > ktd_maxentry >> 1))
385 /* 385 /*
386 * Sync with writer thread since we're requesting rather 386 * Sync with writer thread since we're requesting rather
387 * big one or many requests are pending. 387 * big one or many requests are pending.
388 */ 388 */
389 do { 389 do {
390 ktd->ktd_flags |= KTDF_WAIT; 390 ktd->ktd_flags |= KTDF_WAIT;
391 ktd_wakeup(ktd); 391 ktd_wakeup(ktd);
392#ifdef DEBUG 392#ifdef DEBUG
393 getmicrouptime(&t1); 393 getmicrouptime(&t1);
394#endif 394#endif
395 if (cv_timedwait(&ktd->ktd_sync_cv, &ktrace_lock, 395 if (cv_timedwait(&ktd->ktd_sync_cv, &ktrace_lock,
396 ktd_timeout * hz) != 0) { 396 ktd_timeout * hz) != 0) {
397 ktd->ktd_flags |= KTDF_BLOCKING; 397 ktd->ktd_flags |= KTDF_BLOCKING;
398 /* 398 /*
399 * Maybe the writer thread is blocking 399 * Maybe the writer thread is blocking
400 * completely for some reason, but 400 * completely for some reason, but
401 * don't stop target process forever. 401 * don't stop target process forever.
402 */ 402 */
403 log(LOG_NOTICE, "ktrace timeout\n"); 403 log(LOG_NOTICE, "ktrace timeout\n");
404 break; 404 break;
405 } 405 }
406#ifdef DEBUG 406#ifdef DEBUG
407 getmicrouptime(&t2); 407 getmicrouptime(&t2);
408 timersub(&t2, &t1, &t2); 408 timersub(&t2, &t1, &t2);
409 if (t2.tv_sec > 0) 409 if (t2.tv_sec > 0)
410 log(LOG_NOTICE, 410 log(LOG_NOTICE,
411 "ktrace long wait: %lld.%06ld\n", 411 "ktrace long wait: %lld.%06ld\n",
412 (long long)t2.tv_sec, (long)t2.tv_usec); 412 (long long)t2.tv_sec, (long)t2.tv_usec);
413#endif 413#endif
414 } while (p->p_tracep == ktd && 414 } while (p->p_tracep == ktd &&
415 (ktd->ktd_flags & (KTDF_WAIT | KTDF_DONE)) == KTDF_WAIT); 415 (ktd->ktd_flags & (KTDF_WAIT | KTDF_DONE)) == KTDF_WAIT);
416 else { 416 else {
417 /* Schedule delayed wakeup */ 417 /* Schedule delayed wakeup */
418 if (ktd->ktd_qcount > ktd->ktd_delayqcnt) 418 if (ktd->ktd_qcount > ktd->ktd_delayqcnt)
419 ktd_wakeup(ktd); /* Wakeup now */ 419 ktd_wakeup(ktd); /* Wakeup now */
420 else if (!callout_pending(&ktd->ktd_wakch)) 420 else if (!callout_pending(&ktd->ktd_wakch))
421 callout_reset(&ktd->ktd_wakch, 421 callout_reset(&ktd->ktd_wakch,
422 ktd->ktd_flags & KTDF_INTERACTIVE ? 422 ktd->ktd_flags & KTDF_INTERACTIVE ?
423 ktd->ktd_intrwakdl : ktd->ktd_wakedelay, 423 ktd->ktd_intrwakdl : ktd->ktd_wakedelay,
424 ktd_callout, ktd); 424 ktd_callout, ktd);
425 } 425 }
426 426
427skip_sync: 427skip_sync:
428 ktdrel(ktd); 428 ktdrel(ktd);
429 mutex_exit(&ktrace_lock); 429 mutex_exit(&ktrace_lock);
430 ktrexit(l); 430 ktrexit(l);
431 return; 431 return;
432 432
433relktd: 433relktd:
434 ktdrel(ktd); 434 ktdrel(ktd);
435 435
436freekte: 436freekte:
437 mutex_exit(&ktrace_lock); 437 mutex_exit(&ktrace_lock);
438 ktefree(kte); 438 ktefree(kte);
439 ktrexit(l); 439 ktrexit(l);
440} 440}
441 441
442void 442void
443ktefree(struct ktrace_entry *kte) 443ktefree(struct ktrace_entry *kte)
444{ 444{
445 445
446 if (kte->kte_buf != kte->kte_space) 446 if (kte->kte_buf != kte->kte_space)
447 kmem_free(kte->kte_buf, kte->kte_bufsz); 447 kmem_free(kte->kte_buf, kte->kte_bufsz);
448 pool_cache_put(kte_cache, kte); 448 pool_cache_put(kte_cache, kte);
449} 449}
450 450
451/* 451/*
452 * "deep" compare of two files for the purposes of clearing a trace. 452 * "deep" compare of two files for the purposes of clearing a trace.
453 * Returns true if they're the same open file, or if they point at the 453 * Returns true if they're the same open file, or if they point at the
454 * same underlying vnode/socket. 454 * same underlying vnode/socket.
455 */ 455 */
456 456
457int 457int
458ktrsamefile(file_t *f1, file_t *f2) 458ktrsamefile(file_t *f1, file_t *f2)
459{ 459{
460 460
461 return ((f1 == f2) || 461 return ((f1 == f2) ||
462 ((f1 != NULL) && (f2 != NULL) && 462 ((f1 != NULL) && (f2 != NULL) &&
463 (f1->f_type == f2->f_type) && 463 (f1->f_type == f2->f_type) &&
464 (f1->f_data == f2->f_data))); 464 (f1->f_data == f2->f_data)));
465} 465}
466 466
467void 467void
468ktrderef(struct proc *p) 468ktrderef(struct proc *p)
469{ 469{
470 struct ktr_desc *ktd = p->p_tracep; 470 struct ktr_desc *ktd = p->p_tracep;
471 471
472 KASSERT(mutex_owned(&ktrace_lock)); 472 KASSERT(mutex_owned(&ktrace_lock));
473 473
474 p->p_traceflag = 0; 474 p->p_traceflag = 0;
475 if (ktd == NULL) 475 if (ktd == NULL)
476 return; 476 return;
477 p->p_tracep = NULL; 477 p->p_tracep = NULL;
478 478
479 cv_broadcast(&ktd->ktd_sync_cv); 479 cv_broadcast(&ktd->ktd_sync_cv);
480 ktdrel(ktd); 480 ktdrel(ktd);
481} 481}
482 482
483void 483void
484ktradref(struct proc *p) 484ktradref(struct proc *p)
485{ 485{
486 struct ktr_desc *ktd = p->p_tracep; 486 struct ktr_desc *ktd = p->p_tracep;
487 487
488 KASSERT(mutex_owned(&ktrace_lock)); 488 KASSERT(mutex_owned(&ktrace_lock));
489 489
490 ktdref(ktd); 490 ktdref(ktd);
491} 491}
492 492
493int 493int
494ktrderefall(struct ktr_desc *ktd, int auth) 494ktrderefall(struct ktr_desc *ktd, int auth)
495{ 495{
496 lwp_t *curl = curlwp; 496 lwp_t *curl = curlwp;
497 struct proc *p; 497 struct proc *p;
498 int error = 0; 498 int error = 0;
499 499
500 mutex_enter(proc_lock); 500 mutex_enter(proc_lock);
501 PROCLIST_FOREACH(p, &allproc) { 501 PROCLIST_FOREACH(p, &allproc) {
502 if (p->p_tracep != ktd) 502 if (p->p_tracep != ktd)
503 continue; 503 continue;
504 mutex_enter(p->p_lock); 504 mutex_enter(p->p_lock);
505 mutex_enter(&ktrace_lock); 505 mutex_enter(&ktrace_lock);
506 if (p->p_tracep == ktd) { 506 if (p->p_tracep == ktd) {
507 if (!auth || ktrcanset(curl, p)) 507 if (!auth || ktrcanset(curl, p))
508 ktrderef(p); 508 ktrderef(p);
509 else 509 else
510 error = EPERM; 510 error = EPERM;
511 } 511 }
512 mutex_exit(&ktrace_lock); 512 mutex_exit(&ktrace_lock);
513 mutex_exit(p->p_lock); 513 mutex_exit(p->p_lock);
514 } 514 }
515 mutex_exit(proc_lock); 515 mutex_exit(proc_lock);
516 516
517 return error; 517 return error;
518} 518}
519 519
520int 520int
521ktealloc(struct ktrace_entry **ktep, void **bufp, lwp_t *l, int type, 521ktealloc(struct ktrace_entry **ktep, void **bufp, lwp_t *l, int type,
522 size_t sz) 522 size_t sz)
523{ 523{
524 struct proc *p = l->l_proc; 524 struct proc *p = l->l_proc;
525 struct ktrace_entry *kte; 525 struct ktrace_entry *kte;
526 struct ktr_header *kth; 526 struct ktr_header *kth;
527 void *buf; 527 void *buf;
528 528
529 if (ktrenter(l)) 529 if (ktrenter(l))
530 return EAGAIN; 530 return EAGAIN;
531 531
532 kte = pool_cache_get(kte_cache, PR_WAITOK); 532 kte = pool_cache_get(kte_cache, PR_WAITOK);
533 if (sz > sizeof(kte->kte_space)) { 533 if (sz > sizeof(kte->kte_space)) {
534 if ((buf = kmem_alloc(sz, KM_SLEEP)) == NULL) { 534 if ((buf = kmem_alloc(sz, KM_SLEEP)) == NULL) {
535 pool_cache_put(kte_cache, kte); 535 pool_cache_put(kte_cache, kte);
536 ktrexit(l); 536 ktrexit(l);
537 return ENOMEM; 537 return ENOMEM;
538 } 538 }
539 } else 539 } else
540 buf = kte->kte_space; 540 buf = kte->kte_space;
541 541
542 kte->kte_bufsz = sz; 542 kte->kte_bufsz = sz;
543 kte->kte_buf = buf; 543 kte->kte_buf = buf;
544 544
545 kth = &kte->kte_kth; 545 kth = &kte->kte_kth;
546 (void)memset(kth, 0, sizeof(*kth)); 546 (void)memset(kth, 0, sizeof(*kth));
547 kth->ktr_len = sz; 547 kth->ktr_len = sz;
548 kth->ktr_type = type; 548 kth->ktr_type = type;
549 kth->ktr_pid = p->p_pid; 549 kth->ktr_pid = p->p_pid;
550 memcpy(kth->ktr_comm, p->p_comm, MAXCOMLEN); 550 memcpy(kth->ktr_comm, p->p_comm, MAXCOMLEN);
551 kth->ktr_version = KTRFAC_VERSION(p->p_traceflag); 551 kth->ktr_version = KTRFAC_VERSION(p->p_traceflag);
552 kth->ktr_lid = l->l_lid; 552 kth->ktr_lid = l->l_lid;
553 nanotime(&kth->ktr_ts); 553 nanotime(&kth->ktr_ts);
554 554
555 *ktep = kte; 555 *ktep = kte;
556 *bufp = buf; 556 *bufp = buf;
557 557
558 return 0; 558 return 0;
559} 559}
560 560
561void 561void
562ktr_syscall(register_t code, const register_t args[], int narg) 562ktr_syscall(register_t code, const register_t args[], int narg)
563{ 563{
564 lwp_t *l = curlwp; 564 lwp_t *l = curlwp;
565 struct proc *p = l->l_proc; 565 struct proc *p = l->l_proc;
566 struct ktrace_entry *kte; 566 struct ktrace_entry *kte;
567 struct ktr_syscall *ktp; 567 struct ktr_syscall *ktp;
568 register_t *argp; 568 register_t *argp;
569 size_t len; 569 size_t len;
570 u_int i; 570 u_int i;
571 571
572 if (!KTRPOINT(p, KTR_SYSCALL)) 572 if (!KTRPOINT(p, KTR_SYSCALL))
573 return; 573 return;
574 574
575 len = sizeof(struct ktr_syscall) + narg * sizeof argp[0]; 575 len = sizeof(struct ktr_syscall) + narg * sizeof argp[0];
576 576
577 if (ktealloc(&kte, (void *)&ktp, l, KTR_SYSCALL, len)) 577 if (ktealloc(&kte, (void *)&ktp, l, KTR_SYSCALL, len))
578 return; 578 return;
579 579
580 ktp->ktr_code = code; 580 ktp->ktr_code = code;
581 ktp->ktr_argsize = narg * sizeof argp[0]; 581 ktp->ktr_argsize = narg * sizeof argp[0];
582 argp = (register_t *)(ktp + 1); 582 argp = (register_t *)(ktp + 1);
583 for (i = 0; i < narg; i++) 583 for (i = 0; i < narg; i++)
584 *argp++ = args[i]; 584 *argp++ = args[i];
585 585
586 ktraddentry(l, kte, KTA_WAITOK); 586 ktraddentry(l, kte, KTA_WAITOK);
587} 587}
588 588
589void 589void
590ktr_sysret(register_t code, int error, register_t *retval) 590ktr_sysret(register_t code, int error, register_t *retval)
591{ 591{
592 lwp_t *l = curlwp; 592 lwp_t *l = curlwp;
593 struct ktrace_entry *kte; 593 struct ktrace_entry *kte;
594 struct ktr_sysret *ktp; 594 struct ktr_sysret *ktp;
595 595
596 if (!KTRPOINT(l->l_proc, KTR_SYSRET)) 596 if (!KTRPOINT(l->l_proc, KTR_SYSRET))
597 return; 597 return;
598 598
599 if (ktealloc(&kte, (void *)&ktp, l, KTR_SYSRET, 599 if (ktealloc(&kte, (void *)&ktp, l, KTR_SYSRET,
600 sizeof(struct ktr_sysret))) 600 sizeof(struct ktr_sysret)))
601 return; 601 return;
602 602
603 ktp->ktr_code = code; 603 ktp->ktr_code = code;
604 ktp->ktr_eosys = 0; /* XXX unused */ 604 ktp->ktr_eosys = 0; /* XXX unused */
605 ktp->ktr_error = error; 605 ktp->ktr_error = error;
606 ktp->ktr_retval = retval && error == 0 ? retval[0] : 0; 606 ktp->ktr_retval = retval && error == 0 ? retval[0] : 0;
607 ktp->ktr_retval_1 = retval && error == 0 ? retval[1] : 0; 607 ktp->ktr_retval_1 = retval && error == 0 ? retval[1] : 0;
608 608
609 ktraddentry(l, kte, KTA_WAITOK); 609 ktraddentry(l, kte, KTA_WAITOK);
610} 610}
611 611
612void 612void
613ktr_namei(const char *path, size_t pathlen) 613ktr_namei(const char *path, size_t pathlen)
614{ 614{
615 lwp_t *l = curlwp; 615 lwp_t *l = curlwp;
616 616
617 if (!KTRPOINT(l->l_proc, KTR_NAMEI)) 617 if (!KTRPOINT(l->l_proc, KTR_NAMEI))
618 return; 618 return;
619 619
620 ktr_kmem(l, KTR_NAMEI, path, pathlen); 620 ktr_kmem(l, KTR_NAMEI, path, pathlen);
621} 621}
622 622
623void 623void
624ktr_namei2(const char *eroot, size_t erootlen, 624ktr_namei2(const char *eroot, size_t erootlen,
625 const char *path, size_t pathlen) 625 const char *path, size_t pathlen)
626{ 626{
627 lwp_t *l = curlwp; 627 lwp_t *l = curlwp;
628 struct ktrace_entry *kte; 628 struct ktrace_entry *kte;
629 void *buf; 629 void *buf;
630 630
631 if (!KTRPOINT(l->l_proc, KTR_NAMEI)) 631 if (!KTRPOINT(l->l_proc, KTR_NAMEI))
632 return; 632 return;
633 633
634 if (ktealloc(&kte, &buf, l, KTR_NAMEI, erootlen + pathlen)) 634 if (ktealloc(&kte, &buf, l, KTR_NAMEI, erootlen + pathlen))
635 return; 635 return;
636 memcpy(buf, eroot, erootlen); 636 memcpy(buf, eroot, erootlen);
637 buf = (char *)buf + erootlen; 637 buf = (char *)buf + erootlen;
638 memcpy(buf, path, pathlen); 638 memcpy(buf, path, pathlen);
639 ktraddentry(l, kte, KTA_WAITOK); 639 ktraddentry(l, kte, KTA_WAITOK);
640} 640}
641 641
642void 642void
643ktr_emul(void) 643ktr_emul(void)
644{ 644{
645 lwp_t *l = curlwp; 645 lwp_t *l = curlwp;
646 const char *emul = l->l_proc->p_emul->e_name; 646 const char *emul = l->l_proc->p_emul->e_name;
647 647
648 if (!KTRPOINT(l->l_proc, KTR_EMUL)) 648 if (!KTRPOINT(l->l_proc, KTR_EMUL))
649 return; 649 return;
650 650
651 ktr_kmem(l, KTR_EMUL, emul, strlen(emul)); 651 ktr_kmem(l, KTR_EMUL, emul, strlen(emul));
652} 652}
653 653
654void 654void
655ktr_execarg(const void *bf, size_t len) 655ktr_execarg(const void *bf, size_t len)
656{ 656{
657 lwp_t *l = curlwp; 657 lwp_t *l = curlwp;
658 658
659 if (!KTRPOINT(l->l_proc, KTR_EXEC_ARG)) 659 if (!KTRPOINT(l->l_proc, KTR_EXEC_ARG))
660 return; 660 return;
661 661
662 ktr_kmem(l, KTR_EXEC_ARG, bf, len); 662 ktr_kmem(l, KTR_EXEC_ARG, bf, len);
663} 663}
664 664
665void 665void
666ktr_execenv(const void *bf, size_t len) 666ktr_execenv(const void *bf, size_t len)
667{ 667{
668 lwp_t *l = curlwp; 668 lwp_t *l = curlwp;
669 669
670 if (!KTRPOINT(l->l_proc, KTR_EXEC_ENV)) 670 if (!KTRPOINT(l->l_proc, KTR_EXEC_ENV))
671 return; 671 return;
672 672
673 ktr_kmem(l, KTR_EXEC_ENV, bf, len); 673 ktr_kmem(l, KTR_EXEC_ENV, bf, len);
674} 674}
675 675
676void 676void
677ktr_execfd(int fd, u_int dtype) 677ktr_execfd(int fd, u_int dtype)
678{ 678{
679 struct ktrace_entry *kte; 679 struct ktrace_entry *kte;
680 struct ktr_execfd* ktp; 680 struct ktr_execfd* ktp;
681 681
682 lwp_t *l = curlwp; 682 lwp_t *l = curlwp;
683 683
684 if (!KTRPOINT(l->l_proc, KTR_EXEC_FD)) 684 if (!KTRPOINT(l->l_proc, KTR_EXEC_FD))
685 return; 685 return;
686 686
687 if (ktealloc(&kte, (void *)&ktp, l, KTR_EXEC_FD, sizeof(*ktp))) 687 if (ktealloc(&kte, (void *)&ktp, l, KTR_EXEC_FD, sizeof(*ktp)))
688 return; 688 return;
689 689
690 ktp->ktr_fd = fd; 690 ktp->ktr_fd = fd;
691 ktp->ktr_dtype = dtype; 691 ktp->ktr_dtype = dtype;
692 ktraddentry(l, kte, KTA_WAITOK); 692 ktraddentry(l, kte, KTA_WAITOK);
693} 693}
694 694
695static void 695static void
696ktr_kmem(lwp_t *l, int type, const void *bf, size_t len) 696ktr_kmem(lwp_t *l, int type, const void *bf, size_t len)
697{ 697{
698 struct ktrace_entry *kte; 698 struct ktrace_entry *kte;
699 void *buf; 699 void *buf;
700 700
701 if (ktealloc(&kte, &buf, l, type, len)) 701 if (ktealloc(&kte, &buf, l, type, len))
702 return; 702 return;
703 memcpy(buf, bf, len); 703 memcpy(buf, bf, len);
704 ktraddentry(l, kte, KTA_WAITOK); 704 ktraddentry(l, kte, KTA_WAITOK);
705} 705}
706 706
707static void 707static void
708ktr_io(lwp_t *l, int fd, enum uio_rw rw, struct iovec *iov, size_t len) 708ktr_io(lwp_t *l, int fd, enum uio_rw rw, struct iovec *iov, size_t len)
709{ 709{
710 struct ktrace_entry *kte; 710 struct ktrace_entry *kte;
711 struct ktr_genio *ktp; 711 struct ktr_genio *ktp;
712 size_t resid = len, cnt, buflen; 712 size_t resid = len, cnt, buflen;
713 char *cp; 713 char *cp;
714 714
715 next: 715 next:
716 buflen = min(PAGE_SIZE, resid + sizeof(struct ktr_genio)); 716 buflen = min(PAGE_SIZE, resid + sizeof(struct ktr_genio));
717 717
718 if (ktealloc(&kte, (void *)&ktp, l, KTR_GENIO, buflen)) 718 if (ktealloc(&kte, (void *)&ktp, l, KTR_GENIO, buflen))
719 return; 719 return;
720 720
721 ktp->ktr_fd = fd; 721 ktp->ktr_fd = fd;
722 ktp->ktr_rw = rw; 722 ktp->ktr_rw = rw;
723 723
724 cp = (void *)(ktp + 1); 724 cp = (void *)(ktp + 1);
725 buflen -= sizeof(struct ktr_genio); 725 buflen -= sizeof(struct ktr_genio);
726 kte->kte_kth.ktr_len = sizeof(struct ktr_genio); 726 kte->kte_kth.ktr_len = sizeof(struct ktr_genio);
727 727
728 while (buflen > 0) { 728 while (buflen > 0) {
729 cnt = min(iov->iov_len, buflen); 729 cnt = min(iov->iov_len, buflen);
730 if (copyin(iov->iov_base, cp, cnt) != 0) 730 if (copyin(iov->iov_base, cp, cnt) != 0)
731 goto out; 731 goto out;
732 kte->kte_kth.ktr_len += cnt; 732 kte->kte_kth.ktr_len += cnt;
733 cp += cnt; 733 cp += cnt;
734 buflen -= cnt; 734 buflen -= cnt;
735 resid -= cnt; 735 resid -= cnt;
736 iov->iov_len -= cnt; 736 iov->iov_len -= cnt;
737 if (iov->iov_len == 0) 737 if (iov->iov_len == 0)
738 iov++; 738 iov++;
739 else 739 else
740 iov->iov_base = (char *)iov->iov_base + cnt; 740 iov->iov_base = (char *)iov->iov_base + cnt;
741 } 741 }
742 742
743 /* 743 /*
744 * Don't push so many entry at once. It will cause kmem map 744 * Don't push so many entry at once. It will cause kmem map
745 * shortage. 745 * shortage.
746 */ 746 */
747 ktraddentry(l, kte, KTA_WAITOK | KTA_LARGE); 747 ktraddentry(l, kte, KTA_WAITOK | KTA_LARGE);
748 if (resid > 0) { 748 if (resid > 0) {
749 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) { 749 if (curcpu()->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) {
750 (void)ktrenter(l); 750 (void)ktrenter(l);
751 preempt(); 751 preempt();
752 ktrexit(l); 752 ktrexit(l);
753 } 753 }
754 754
755 goto next; 755 goto next;
756 } 756 }
757 757
758 return; 758 return;
759 759
760out: 760out:
761 ktefree(kte); 761 ktefree(kte);
762 ktrexit(l); 762 ktrexit(l);
763} 763}
764 764
765void 765void
766ktr_genio(int fd, enum uio_rw rw, const void *addr, size_t len, int error) 766ktr_genio(int fd, enum uio_rw rw, const void *addr, size_t len, int error)
767{ 767{
768 lwp_t *l = curlwp; 768 lwp_t *l = curlwp;
769 struct iovec iov; 769 struct iovec iov;
770 770
771 if (!KTRPOINT(l->l_proc, KTR_GENIO) || error != 0) 771 if (!KTRPOINT(l->l_proc, KTR_GENIO) || error != 0)
772 return; 772 return;
773 iov.iov_base = __UNCONST(addr); 773 iov.iov_base = __UNCONST(addr);
774 iov.iov_len = len; 774 iov.iov_len = len;
775 ktr_io(l, fd, rw, &iov, len); 775 ktr_io(l, fd, rw, &iov, len);
776} 776}
777 777
778void 778void
779ktr_geniov(int fd, enum uio_rw rw, struct iovec *iov, size_t len, int error) 779ktr_geniov(int fd, enum uio_rw rw, struct iovec *iov, size_t len, int error)
780{ 780{
781 lwp_t *l = curlwp; 781 lwp_t *l = curlwp;
782 782
783 if (!KTRPOINT(l->l_proc, KTR_GENIO) || error != 0) 783 if (!KTRPOINT(l->l_proc, KTR_GENIO) || error != 0)
784 return; 784 return;
785 ktr_io(l, fd, rw, iov, len); 785 ktr_io(l, fd, rw, iov, len);
786} 786}
787 787
788void 788void
789ktr_mibio(int fd, enum uio_rw rw, const void *addr, size_t len, int error) 789ktr_mibio(int fd, enum uio_rw rw, const void *addr, size_t len, int error)
790{ 790{
791 lwp_t *l = curlwp; 791 lwp_t *l = curlwp;
792 struct iovec iov; 792 struct iovec iov;
793 793
794 if (!KTRPOINT(l->l_proc, KTR_MIB) || error != 0) 794 if (!KTRPOINT(l->l_proc, KTR_MIB) || error != 0)
795 return; 795 return;
796 iov.iov_base = __UNCONST(addr); 796 iov.iov_base = __UNCONST(addr);
797 iov.iov_len = len; 797 iov.iov_len = len;
798 ktr_io(l, fd, rw, &iov, len); 798 ktr_io(l, fd, rw, &iov, len);
799} 799}
800 800
801void 801void
802ktr_psig(int sig, sig_t action, const sigset_t *mask, 802ktr_psig(int sig, sig_t action, const sigset_t *mask,
803 const ksiginfo_t *ksi) 803 const ksiginfo_t *ksi)
804{ 804{
805 struct ktrace_entry *kte; 805 struct ktrace_entry *kte;
806 lwp_t *l = curlwp; 806 lwp_t *l = curlwp;
807 struct { 807 struct {
808 struct ktr_psig kp; 808 struct ktr_psig kp;
809 siginfo_t si; 809 siginfo_t si;
810 } *kbuf; 810 } *kbuf;
811 811
812 if (!KTRPOINT(l->l_proc, KTR_PSIG)) 812 if (!KTRPOINT(l->l_proc, KTR_PSIG))
813 return; 813 return;
814 814
815 if (ktealloc(&kte, (void *)&kbuf, l, KTR_PSIG, sizeof(*kbuf))) 815 if (ktealloc(&kte, (void *)&kbuf, l, KTR_PSIG, sizeof(*kbuf)))
816 return; 816 return;
817 817
818 kbuf->kp.signo = (char)sig; 818 kbuf->kp.signo = (char)sig;
819 kbuf->kp.action = action; 819 kbuf->kp.action = action;
820 kbuf->kp.mask = *mask; 820 kbuf->kp.mask = *mask;
821 821
822 if (ksi) { 822 if (ksi) {
823 kbuf->kp.code = KSI_TRAPCODE(ksi); 823 kbuf->kp.code = KSI_TRAPCODE(ksi);
824 (void)memset(&kbuf->si, 0, sizeof(kbuf->si)); 824 (void)memset(&kbuf->si, 0, sizeof(kbuf->si));
825 kbuf->si._info = ksi->ksi_info; 825 kbuf->si._info = ksi->ksi_info;
826 kte->kte_kth.ktr_len = sizeof(*kbuf); 826 kte->kte_kth.ktr_len = sizeof(*kbuf);
827 } else { 827 } else {
828 kbuf->kp.code = 0; 828 kbuf->kp.code = 0;
829 kte->kte_kth.ktr_len = sizeof(struct ktr_psig); 829 kte->kte_kth.ktr_len = sizeof(struct ktr_psig);
830 } 830 }
831 831
832 ktraddentry(l, kte, KTA_WAITOK); 832 ktraddentry(l, kte, KTA_WAITOK);
833} 833}
834 834
835void 835void
836ktr_csw(int out, int user) 836ktr_csw(int out, int user)
837{ 837{
838 lwp_t *l = curlwp; 838 lwp_t *l = curlwp;
839 struct proc *p = l->l_proc; 839 struct proc *p = l->l_proc;
840 struct ktrace_entry *kte; 840 struct ktrace_entry *kte;
841 struct ktr_csw *kc; 841 struct ktr_csw *kc;
842 842
843 if (!KTRPOINT(p, KTR_CSW)) 843 if (!KTRPOINT(p, KTR_CSW))
844 return; 844 return;
845 845
846 /* 846 /*
847 * Don't record context switches resulting from blocking on  847 * Don't record context switches resulting from blocking on
848 * locks; it's too easy to get duff results. 848 * locks; it's too easy to get duff results.
849 */ 849 */
850 if (l->l_syncobj == &mutex_syncobj || l->l_syncobj == &rw_syncobj) 850 if (l->l_syncobj == &mutex_syncobj || l->l_syncobj == &rw_syncobj)
851 return; 851 return;
852 852
853 /* 853 /*
854 * We can't sleep if we're already going to sleep (if original 854 * We can't sleep if we're already going to sleep (if original
855 * condition is met during sleep, we hang up). 855 * condition is met during sleep, we hang up).
856 * 856 *
857 * XXX This is not ideal: it would be better to maintain a pool 857 * XXX This is not ideal: it would be better to maintain a pool
858 * of ktes and actually push this to the kthread when context 858 * of ktes and actually push this to the kthread when context
859 * switch happens, however given the points where we are called 859 * switch happens, however given the points where we are called
860 * from that is difficult to do.  860 * from that is difficult to do.
861 */ 861 */
862 if (out) { 862 if (out) {
863 if (ktrenter(l)) 863 if (ktrenter(l))
864 return; 864 return;
865 865
866 nanotime(&l->l_ktrcsw); 866 nanotime(&l->l_ktrcsw);
867 l->l_pflag |= LP_KTRCSW; 867 l->l_pflag |= LP_KTRCSW;
868 if (user) 868 if (user)
869 l->l_pflag |= LP_KTRCSWUSER; 869 l->l_pflag |= LP_KTRCSWUSER;
870 else 870 else
871 l->l_pflag &= ~LP_KTRCSWUSER; 871 l->l_pflag &= ~LP_KTRCSWUSER;
872 872
873 ktrexit(l); 873 ktrexit(l);
874 return; 874 return;
875 } 875 }
876 876
877 /* 877 /*
878 * On the way back in, we need to record twice: once for entry, and 878 * On the way back in, we need to record twice: once for entry, and
879 * once for exit. 879 * once for exit.
880 */ 880 */
881 if ((l->l_pflag & LP_KTRCSW) != 0) { 881 if ((l->l_pflag & LP_KTRCSW) != 0) {
882 struct timespec *ts; 882 struct timespec *ts;
883 l->l_pflag &= ~LP_KTRCSW; 883 l->l_pflag &= ~LP_KTRCSW;
884 884
885 if (ktealloc(&kte, (void *)&kc, l, KTR_CSW, sizeof(*kc))) 885 if (ktealloc(&kte, (void *)&kc, l, KTR_CSW, sizeof(*kc)))
886 return; 886 return;
887 887
888 kc->out = 1; 888 kc->out = 1;
889 kc->user = ((l->l_pflag & LP_KTRCSWUSER) != 0); 889 kc->user = ((l->l_pflag & LP_KTRCSWUSER) != 0);
890 890
891 ts = &l->l_ktrcsw; 891 ts = &l->l_ktrcsw;
892 switch (KTRFAC_VERSION(p->p_traceflag)) { 892 switch (KTRFAC_VERSION(p->p_traceflag)) {
893 case 0: 893 case 0:
894 kte->kte_kth.ktr_otv.tv_sec = ts->tv_sec; 894 kte->kte_kth.ktr_otv.tv_sec = ts->tv_sec;
895 kte->kte_kth.ktr_otv.tv_usec = ts->tv_nsec / 1000; 895 kte->kte_kth.ktr_otv.tv_usec = ts->tv_nsec / 1000;
896 break; 896 break;
897 case 1:  897 case 1:
898 kte->kte_kth.ktr_ots.tv_sec = ts->tv_sec; 898 kte->kte_kth.ktr_ots.tv_sec = ts->tv_sec;
899 kte->kte_kth.ktr_ots.tv_nsec = ts->tv_nsec;  899 kte->kte_kth.ktr_ots.tv_nsec = ts->tv_nsec;
900 break;  900 break;
901 case 2: 901 case 2:
902 kte->kte_kth.ktr_ts.tv_sec = ts->tv_sec; 902 kte->kte_kth.ktr_ts.tv_sec = ts->tv_sec;
903 kte->kte_kth.ktr_ts.tv_nsec = ts->tv_nsec;  903 kte->kte_kth.ktr_ts.tv_nsec = ts->tv_nsec;
904 break;  904 break;
905 default: 905 default:
906 break;  906 break;
907 } 907 }
908 908
909 ktraddentry(l, kte, KTA_WAITOK); 909 ktraddentry(l, kte, KTA_WAITOK);
910 } 910 }
911 911
912 if (ktealloc(&kte, (void *)&kc, l, KTR_CSW, sizeof(*kc))) 912 if (ktealloc(&kte, (void *)&kc, l, KTR_CSW, sizeof(*kc)))
913 return; 913 return;
914 914
915 kc->out = 0; 915 kc->out = 0;
916 kc->user = user; 916 kc->user = user;
917 917
918 ktraddentry(l, kte, KTA_WAITOK); 918 ktraddentry(l, kte, KTA_WAITOK);
919} 919}
920 920
921bool 921bool
922ktr_point(int fac_bit) 922ktr_point(int fac_bit)
923{ 923{
924 return curlwp->l_proc->p_traceflag & fac_bit; 924 return curlwp->l_proc->p_traceflag & fac_bit;
925} 925}
926 926
927int 927int
928ktruser(const char *id, void *addr, size_t len, int ustr) 928ktruser(const char *id, void *addr, size_t len, int ustr)
929{ 929{
930 struct ktrace_entry *kte; 930 struct ktrace_entry *kte;
931 struct ktr_user *ktp; 931 struct ktr_user *ktp;
932 lwp_t *l = curlwp; 932 lwp_t *l = curlwp;
933 void *user_dta; 933 void *user_dta;
934 int error; 934 int error;
935 935
936 if (!KTRPOINT(l->l_proc, KTR_USER)) 936 if (!KTRPOINT(l->l_proc, KTR_USER))
937 return 0; 937 return 0;
938 938
939 if (len > KTR_USER_MAXLEN) 939 if (len > KTR_USER_MAXLEN)
940 return ENOSPC; 940 return ENOSPC;
941 941
942 error = ktealloc(&kte, (void *)&ktp, l, KTR_USER, sizeof(*ktp) + len); 942 error = ktealloc(&kte, (void *)&ktp, l, KTR_USER, sizeof(*ktp) + len);
943 if (error != 0) 943 if (error != 0)
944 return error; 944 return error;
945 945
946 if (ustr) { 946 if (ustr) {
947 if (copyinstr(id, ktp->ktr_id, KTR_USER_MAXIDLEN, NULL) != 0) 947 if (copyinstr(id, ktp->ktr_id, KTR_USER_MAXIDLEN, NULL) != 0)
948 ktp->ktr_id[0] = '\0'; 948 ktp->ktr_id[0] = '\0';
949 } else 949 } else
950 strncpy(ktp->ktr_id, id, KTR_USER_MAXIDLEN); 950 strncpy(ktp->ktr_id, id, KTR_USER_MAXIDLEN);
951 ktp->ktr_id[KTR_USER_MAXIDLEN-1] = '\0'; 951 ktp->ktr_id[KTR_USER_MAXIDLEN-1] = '\0';
952 952
953 user_dta = (void *)(ktp + 1); 953 user_dta = (void *)(ktp + 1);
954 if ((error = copyin(addr, (void *)user_dta, len)) != 0) 954 if ((error = copyin(addr, (void *)user_dta, len)) != 0)
955 len = 0; 955 kte->kte_kth.ktr_len = 0;
956 956
957 ktraddentry(l, kte, KTA_WAITOK); 957 ktraddentry(l, kte, KTA_WAITOK);
958 return error; 958 return error;
959} 959}
960 960
961void 961void
962ktr_kuser(const char *id, void *addr, size_t len) 962ktr_kuser(const char *id, void *addr, size_t len)
963{ 963{
964 struct ktrace_entry *kte; 964 struct ktrace_entry *kte;
965 struct ktr_user *ktp; 965 struct ktr_user *ktp;
966 lwp_t *l = curlwp; 966 lwp_t *l = curlwp;
967 int error; 967 int error;
968 968
969 if (!KTRPOINT(l->l_proc, KTR_USER)) 969 if (!KTRPOINT(l->l_proc, KTR_USER))
970 return; 970 return;
971 971
972 if (len > KTR_USER_MAXLEN) 972 if (len > KTR_USER_MAXLEN)
973 return; 973 return;
974 974
975 error = ktealloc(&kte, (void *)&ktp, l, KTR_USER, sizeof(*ktp) + len); 975 error = ktealloc(&kte, (void *)&ktp, l, KTR_USER, sizeof(*ktp) + len);
976 if (error != 0) 976 if (error != 0)
977 return; 977 return;
978 978
979 strlcpy(ktp->ktr_id, id, KTR_USER_MAXIDLEN); 979 strlcpy(ktp->ktr_id, id, KTR_USER_MAXIDLEN);
980 980
981 memcpy(ktp + 1, addr, len); 981 memcpy(ktp + 1, addr, len);
982 982
983 ktraddentry(l, kte, KTA_WAITOK); 983 ktraddentry(l, kte, KTA_WAITOK);
984} 984}
985 985
986void 986void
987ktr_saupcall(struct lwp *l, int type, int nevent, int nint, void *sas, 987ktr_saupcall(struct lwp *l, int type, int nevent, int nint, void *sas,
988 void *ap, void *ksas) 988 void *ap, void *ksas)
989{ 989{
990 struct ktrace_entry *kte; 990 struct ktrace_entry *kte;
991 struct ktr_saupcall *ktp; 991 struct ktr_saupcall *ktp;
992 size_t len, sz; 992 size_t len, sz;
993 struct sa_t **sapp; 993 struct sa_t **sapp;
994 int i; 994 int i;
995 995
996 if (!KTRPOINT(l->l_proc, KTR_SAUPCALL)) 996 if (!KTRPOINT(l->l_proc, KTR_SAUPCALL))
997 return; 997 return;
998 998
999 len = sizeof(struct ktr_saupcall); 999 len = sizeof(struct ktr_saupcall);
1000 sz = len + sizeof(struct sa_t) * (nevent + nint + 1); 1000 sz = len + sizeof(struct sa_t) * (nevent + nint + 1);
1001 1001
1002 if (ktealloc(&kte, (void *)&ktp, l, KTR_SAUPCALL, sz)) 1002 if (ktealloc(&kte, (void *)&ktp, l, KTR_SAUPCALL, sz))
1003 return; 1003 return;
1004 1004
1005 ktp->ktr_type = type; 1005 ktp->ktr_type = type;
1006 ktp->ktr_nevent = nevent; 1006 ktp->ktr_nevent = nevent;
1007 ktp->ktr_nint = nint; 1007 ktp->ktr_nint = nint;
1008 ktp->ktr_sas = sas; 1008 ktp->ktr_sas = sas;
1009 ktp->ktr_ap = ap; 1009 ktp->ktr_ap = ap;
1010 1010
1011 /* Copy the sa_t's */ 1011 /* Copy the sa_t's */
1012 sapp = (struct sa_t **) ksas; 1012 sapp = (struct sa_t **) ksas;
1013 1013
1014 for (i = nevent + nint; i >= 0; i--) { 1014 for (i = nevent + nint; i >= 0; i--) {
1015 memcpy((char *)ktp + len, *sapp, sizeof(struct sa_t)); 1015 memcpy((char *)ktp + len, *sapp, sizeof(struct sa_t));
1016 len += sizeof(struct sa_t); 1016 len += sizeof(struct sa_t);
1017 sapp++; 1017 sapp++;
1018 } 1018 }
1019 1019
1020 kte->kte_kth.ktr_len = len; 1020 kte->kte_kth.ktr_len = len;
1021 ktraddentry(l, kte, KTA_WAITOK); 1021 ktraddentry(l, kte, KTA_WAITOK);
1022} 1022}
1023 1023
1024void 1024void
1025ktr_mib(const int *name, u_int namelen) 1025ktr_mib(const int *name, u_int namelen)
1026{ 1026{
1027 struct ktrace_entry *kte; 1027 struct ktrace_entry *kte;
1028 int *namep; 1028 int *namep;
1029 size_t size; 1029 size_t size;
1030 lwp_t *l = curlwp; 1030 lwp_t *l = curlwp;
1031 1031
1032 if (!KTRPOINT(l->l_proc, KTR_MIB)) 1032 if (!KTRPOINT(l->l_proc, KTR_MIB))
1033 return; 1033 return;
1034 1034
1035 size = namelen * sizeof(*name); 1035 size = namelen * sizeof(*name);
1036 1036
1037 if (ktealloc(&kte, (void *)&namep, l, KTR_MIB, size)) 1037 if (ktealloc(&kte, (void *)&namep, l, KTR_MIB, size))
1038 return; 1038 return;
1039 1039
1040 (void)memcpy(namep, name, namelen * sizeof(*name)); 1040 (void)memcpy(namep, name, namelen * sizeof(*name));
1041 1041
1042 ktraddentry(l, kte, KTA_WAITOK); 1042 ktraddentry(l, kte, KTA_WAITOK);
1043} 1043}
1044 1044
1045/* Interface and common routines */ 1045/* Interface and common routines */
1046 1046
1047int 1047int
1048ktrace_common(lwp_t *curl, int ops, int facs, int pid, file_t **fpp) 1048ktrace_common(lwp_t *curl, int ops, int facs, int pid, file_t **fpp)
1049{ 1049{
1050 struct proc *curp; 1050 struct proc *curp;
1051 struct proc *p; 1051 struct proc *p;
1052 struct pgrp *pg; 1052 struct pgrp *pg;
1053 struct ktr_desc *ktd = NULL; 1053 struct ktr_desc *ktd = NULL;
1054 file_t *fp = *fpp; 1054 file_t *fp = *fpp;
1055 int ret = 0; 1055 int ret = 0;
1056 int error = 0; 1056 int error = 0;
1057 int descend; 1057 int descend;
1058 1058
1059 curp = curl->l_proc; 1059 curp = curl->l_proc;
1060 descend = ops & KTRFLAG_DESCEND; 1060 descend = ops & KTRFLAG_DESCEND;
1061 facs = facs & ~((unsigned) KTRFAC_PERSISTENT); 1061 facs = facs & ~((unsigned) KTRFAC_PERSISTENT);
1062 1062
1063 (void)ktrenter(curl); 1063 (void)ktrenter(curl);
1064 1064
1065 switch (KTROP(ops)) { 1065 switch (KTROP(ops)) {
1066 1066
1067 case KTROP_CLEARFILE: 1067 case KTROP_CLEARFILE:
1068 /* 1068 /*
1069 * Clear all uses of the tracefile 1069 * Clear all uses of the tracefile
1070 */ 1070 */
1071 mutex_enter(&ktrace_lock); 1071 mutex_enter(&ktrace_lock);
1072 ktd = ktd_lookup(fp); 1072 ktd = ktd_lookup(fp);
1073 mutex_exit(&ktrace_lock); 1073 mutex_exit(&ktrace_lock);
1074 if (ktd == NULL) 1074 if (ktd == NULL)
1075 goto done; 1075 goto done;
1076 error = ktrderefall(ktd, 1); 1076 error = ktrderefall(ktd, 1);
1077 goto done; 1077 goto done;
1078 1078
1079 case KTROP_SET: 1079 case KTROP_SET:
1080 mutex_enter(&ktrace_lock); 1080 mutex_enter(&ktrace_lock);
1081 ktd = ktd_lookup(fp); 1081 ktd = ktd_lookup(fp);
1082 mutex_exit(&ktrace_lock); 1082 mutex_exit(&ktrace_lock);
1083 if (ktd == NULL) { 1083 if (ktd == NULL) {
1084 ktd = kmem_alloc(sizeof(*ktd), KM_SLEEP); 1084 ktd = kmem_alloc(sizeof(*ktd), KM_SLEEP);
1085 TAILQ_INIT(&ktd->ktd_queue); 1085 TAILQ_INIT(&ktd->ktd_queue);
1086 callout_init(&ktd->ktd_wakch, CALLOUT_MPSAFE); 1086 callout_init(&ktd->ktd_wakch, CALLOUT_MPSAFE);
1087 cv_init(&ktd->ktd_cv, "ktrwait"); 1087 cv_init(&ktd->ktd_cv, "ktrwait");
1088 cv_init(&ktd->ktd_sync_cv, "ktrsync"); 1088 cv_init(&ktd->ktd_sync_cv, "ktrsync");
1089 ktd->ktd_flags = 0; 1089 ktd->ktd_flags = 0;
1090 ktd->ktd_qcount = 0; 1090 ktd->ktd_qcount = 0;
1091 ktd->ktd_error = 0; 1091 ktd->ktd_error = 0;
1092 ktd->ktd_errcnt = 0; 1092 ktd->ktd_errcnt = 0;
1093 ktd->ktd_delayqcnt = ktd_delayqcnt; 1093 ktd->ktd_delayqcnt = ktd_delayqcnt;
1094 ktd->ktd_wakedelay = mstohz(ktd_wakedelay); 1094 ktd->ktd_wakedelay = mstohz(ktd_wakedelay);
1095 ktd->ktd_intrwakdl = mstohz(ktd_intrwakdl); 1095 ktd->ktd_intrwakdl = mstohz(ktd_intrwakdl);
1096 ktd->ktd_ref = 0; 1096 ktd->ktd_ref = 0;
1097 ktd->ktd_fp = fp; 1097 ktd->ktd_fp = fp;
1098 mutex_enter(&ktrace_lock); 1098 mutex_enter(&ktrace_lock);
1099 ktdref(ktd); 1099 ktdref(ktd);
1100 mutex_exit(&ktrace_lock); 1100 mutex_exit(&ktrace_lock);
1101 1101
1102 /* 1102 /*
1103 * XXX: not correct. needs an way to detect 1103 * XXX: not correct. needs an way to detect
1104 * whether ktruss or ktrace. 1104 * whether ktruss or ktrace.
1105 */ 1105 */
1106 if (fp->f_type == DTYPE_PIPE) 1106 if (fp->f_type == DTYPE_PIPE)
1107 ktd->ktd_flags |= KTDF_INTERACTIVE; 1107 ktd->ktd_flags |= KTDF_INTERACTIVE;
1108 1108
1109 mutex_enter(&fp->f_lock); 1109 mutex_enter(&fp->f_lock);
1110 fp->f_count++; 1110 fp->f_count++;
1111 mutex_exit(&fp->f_lock); 1111 mutex_exit(&fp->f_lock);
1112 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 1112 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
1113 ktrace_thread, ktd, &ktd->ktd_lwp, "ktrace"); 1113 ktrace_thread, ktd, &ktd->ktd_lwp, "ktrace");
1114 if (error != 0) { 1114 if (error != 0) {
1115 kmem_free(ktd, sizeof(*ktd)); 1115 kmem_free(ktd, sizeof(*ktd));
1116 ktd = NULL; 1116 ktd = NULL;
1117 mutex_enter(&fp->f_lock); 1117 mutex_enter(&fp->f_lock);
1118 fp->f_count--; 1118 fp->f_count--;
1119 mutex_exit(&fp->f_lock); 1119 mutex_exit(&fp->f_lock);
1120 goto done; 1120 goto done;
1121 } 1121 }
1122 1122
1123 mutex_enter(&ktrace_lock); 1123 mutex_enter(&ktrace_lock);
1124 if (ktd_lookup(fp) != NULL) { 1124 if (ktd_lookup(fp) != NULL) {
1125 ktdrel(ktd); 1125 ktdrel(ktd);
1126 ktd = NULL; 1126 ktd = NULL;
1127 } else 1127 } else
1128 TAILQ_INSERT_TAIL(&ktdq, ktd, ktd_list); 1128 TAILQ_INSERT_TAIL(&ktdq, ktd, ktd_list);
1129 if (ktd == NULL) 1129 if (ktd == NULL)
1130 cv_wait(&lbolt, &ktrace_lock); 1130 cv_wait(&lbolt, &ktrace_lock);
1131 mutex_exit(&ktrace_lock); 1131 mutex_exit(&ktrace_lock);
1132 if (ktd == NULL) 1132 if (ktd == NULL)
1133 goto done; 1133 goto done;
1134 } 1134 }
1135 break; 1135 break;
1136 1136
1137 case KTROP_CLEAR: 1137 case KTROP_CLEAR:
1138 break; 1138 break;
1139 } 1139 }
1140 1140
1141 /* 1141 /*
1142 * need something to (un)trace (XXX - why is this here?) 1142 * need something to (un)trace (XXX - why is this here?)
1143 */ 1143 */
1144 if (!facs) { 1144 if (!facs) {
1145 error = EINVAL; 1145 error = EINVAL;
1146 *fpp = NULL; 1146 *fpp = NULL;
1147 goto done; 1147 goto done;
1148 } 1148 }
1149 1149
1150 /* 1150 /*
1151 * do it 1151 * do it
1152 */ 1152 */
1153 mutex_enter(proc_lock); 1153 mutex_enter(proc_lock);
1154 if (pid < 0) { 1154 if (pid < 0) {
1155 /* 1155 /*
1156 * by process group 1156 * by process group
1157 */ 1157 */
1158 pg = pgrp_find(-pid); 1158 pg = pgrp_find(-pid);
1159 if (pg == NULL) 1159 if (pg == NULL)
1160 error = ESRCH; 1160 error = ESRCH;
1161 else { 1161 else {
1162 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1162 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1163 if (descend) 1163 if (descend)
1164 ret |= ktrsetchildren(curl, p, ops, 1164 ret |= ktrsetchildren(curl, p, ops,
1165 facs, ktd); 1165 facs, ktd);
1166 else 1166 else
1167 ret |= ktrops(curl, p, ops, facs, 1167 ret |= ktrops(curl, p, ops, facs,
1168 ktd); 1168 ktd);
1169 } 1169 }
1170 } 1170 }
1171 1171
1172 } else { 1172 } else {
1173 /* 1173 /*
1174 * by pid 1174 * by pid
1175 */ 1175 */
1176 p = proc_find(pid); 1176 p = proc_find(pid);
1177 if (p == NULL) 1177 if (p == NULL)
1178 error = ESRCH; 1178 error = ESRCH;
1179 else if (descend) 1179 else if (descend)
1180 ret |= ktrsetchildren(curl, p, ops, facs, ktd); 1180 ret |= ktrsetchildren(curl, p, ops, facs, ktd);
1181 else 1181 else
1182 ret |= ktrops(curl, p, ops, facs, ktd); 1182 ret |= ktrops(curl, p, ops, facs, ktd);
1183 } 1183 }
1184 mutex_exit(proc_lock); 1184 mutex_exit(proc_lock);
1185 if (error == 0 && !ret) 1185 if (error == 0 && !ret)
1186 error = EPERM; 1186 error = EPERM;
1187 *fpp = NULL; 1187 *fpp = NULL;
1188done: 1188done:
1189 if (ktd != NULL) { 1189 if (ktd != NULL) {
1190 mutex_enter(&ktrace_lock); 1190 mutex_enter(&ktrace_lock);
1191 if (error != 0) { 1191 if (error != 0) {
1192 /* 1192 /*
1193 * Wakeup the thread so that it can be die if we 1193 * Wakeup the thread so that it can be die if we
1194 * can't trace any process. 1194 * can't trace any process.
1195 */ 1195 */
1196 ktd_wakeup(ktd); 1196 ktd_wakeup(ktd);
1197 } 1197 }
1198 if (KTROP(ops) == KTROP_SET || KTROP(ops) == KTROP_CLEARFILE) 1198 if (KTROP(ops) == KTROP_SET || KTROP(ops) == KTROP_CLEARFILE)
1199 ktdrel(ktd); 1199 ktdrel(ktd);
1200 mutex_exit(&ktrace_lock); 1200 mutex_exit(&ktrace_lock);
1201 } 1201 }
1202 ktrexit(curl); 1202 ktrexit(curl);
1203 return (error); 1203 return (error);
1204} 1204}
1205 1205
1206/* 1206/*
1207 * fktrace system call 1207 * fktrace system call
1208 */ 1208 */
1209/* ARGSUSED */ 1209/* ARGSUSED */
1210int 1210int
1211sys_fktrace(struct lwp *l, const struct sys_fktrace_args *uap, register_t *retval) 1211sys_fktrace(struct lwp *l, const struct sys_fktrace_args *uap, register_t *retval)
1212{ 1212{
1213 /* { 1213 /* {
1214 syscallarg(int) fd; 1214 syscallarg(int) fd;
1215 syscallarg(int) ops; 1215 syscallarg(int) ops;
1216 syscallarg(int) facs; 1216 syscallarg(int) facs;
1217 syscallarg(int) pid; 1217 syscallarg(int) pid;
1218 } */ 1218 } */
1219 file_t *fp; 1219 file_t *fp;
1220 int error, fd; 1220 int error, fd;
1221 1221
1222 fd = SCARG(uap, fd); 1222 fd = SCARG(uap, fd);
1223 if ((fp = fd_getfile(fd)) == NULL) 1223 if ((fp = fd_getfile(fd)) == NULL)
1224 return (EBADF); 1224 return (EBADF);
1225 if ((fp->f_flag & FWRITE) == 0) 1225 if ((fp->f_flag & FWRITE) == 0)
1226 error = EBADF; 1226 error = EBADF;
1227 else 1227 else
1228 error = ktrace_common(l, SCARG(uap, ops), 1228 error = ktrace_common(l, SCARG(uap, ops),
1229 SCARG(uap, facs), SCARG(uap, pid), &fp); 1229 SCARG(uap, facs), SCARG(uap, pid), &fp);
1230 fd_putfile(fd); 1230 fd_putfile(fd);
1231 return error; 1231 return error;
1232} 1232}
1233 1233
1234/* 1234/*
1235 * ktrace system call 1235 * ktrace system call
1236 */ 1236 */
1237/* ARGSUSED */ 1237/* ARGSUSED */
1238int 1238int
1239sys_ktrace(struct lwp *l, const struct sys_ktrace_args *uap, register_t *retval) 1239sys_ktrace(struct lwp *l, const struct sys_ktrace_args *uap, register_t *retval)
1240{ 1240{
1241 /* { 1241 /* {
1242 syscallarg(const char *) fname; 1242 syscallarg(const char *) fname;
1243 syscallarg(int) ops; 1243 syscallarg(int) ops;
1244 syscallarg(int) facs; 1244 syscallarg(int) facs;
1245 syscallarg(int) pid; 1245 syscallarg(int) pid;
1246 } */ 1246 } */
1247 struct vnode *vp = NULL; 1247 struct vnode *vp = NULL;
1248 file_t *fp = NULL; 1248 file_t *fp = NULL;
1249 struct pathbuf *pb; 1249 struct pathbuf *pb;
1250 struct nameidata nd; 1250 struct nameidata nd;
1251 int error = 0; 1251 int error = 0;
1252 int fd; 1252 int fd;
1253 1253
1254 if (ktrenter(l)) 1254 if (ktrenter(l))
1255 return EAGAIN; 1255 return EAGAIN;
1256 1256
1257 if (KTROP(SCARG(uap, ops)) != KTROP_CLEAR) { 1257 if (KTROP(SCARG(uap, ops)) != KTROP_CLEAR) {
1258 /* 1258 /*
1259 * an operation which requires a file argument. 1259 * an operation which requires a file argument.
1260 */ 1260 */
1261 error = pathbuf_copyin(SCARG(uap, fname), &pb); 1261 error = pathbuf_copyin(SCARG(uap, fname), &pb);
1262 if (error) { 1262 if (error) {
1263 ktrexit(l); 1263 ktrexit(l);
1264 return (error); 1264 return (error);
1265 } 1265 }
1266 NDINIT(&nd, LOOKUP, FOLLOW, pb); 1266 NDINIT(&nd, LOOKUP, FOLLOW, pb);
1267 if ((error = vn_open(&nd, FREAD|FWRITE, 0)) != 0) { 1267 if ((error = vn_open(&nd, FREAD|FWRITE, 0)) != 0) {
1268 pathbuf_destroy(pb); 1268 pathbuf_destroy(pb);
1269 ktrexit(l); 1269 ktrexit(l);
1270 return (error); 1270 return (error);
1271 } 1271 }
1272 vp = nd.ni_vp; 1272 vp = nd.ni_vp;
1273 pathbuf_destroy(pb); 1273 pathbuf_destroy(pb);
1274 VOP_UNLOCK(vp); 1274 VOP_UNLOCK(vp);
1275 if (vp->v_type != VREG) { 1275 if (vp->v_type != VREG) {
1276 vn_close(vp, FREAD|FWRITE, l->l_cred); 1276 vn_close(vp, FREAD|FWRITE, l->l_cred);
1277 ktrexit(l); 1277 ktrexit(l);
1278 return (EACCES); 1278 return (EACCES);
1279 } 1279 }
1280 /* 1280 /*
1281 * This uses up a file descriptor slot in the 1281 * This uses up a file descriptor slot in the
1282 * tracing process for the duration of this syscall. 1282 * tracing process for the duration of this syscall.
1283 * This is not expected to be a problem. 1283 * This is not expected to be a problem.
1284 */ 1284 */
1285 if ((error = fd_allocfile(&fp, &fd)) != 0) { 1285 if ((error = fd_allocfile(&fp, &fd)) != 0) {
1286 vn_close(vp, FWRITE, l->l_cred); 1286 vn_close(vp, FWRITE, l->l_cred);
1287 ktrexit(l); 1287 ktrexit(l);
1288 return error; 1288 return error;
1289 } 1289 }
1290 fp->f_flag = FWRITE; 1290 fp->f_flag = FWRITE;
1291 fp->f_type = DTYPE_VNODE; 1291 fp->f_type = DTYPE_VNODE;
1292 fp->f_ops = &vnops; 1292 fp->f_ops = &vnops;
1293 fp->f_data = (void *)vp; 1293 fp->f_data = (void *)vp;
1294 vp = NULL; 1294 vp = NULL;
1295 } 1295 }
1296 error = ktrace_common(l, SCARG(uap, ops), SCARG(uap, facs), 1296 error = ktrace_common(l, SCARG(uap, ops), SCARG(uap, facs),
1297 SCARG(uap, pid), &fp); 1297 SCARG(uap, pid), &fp);
1298 if (KTROP(SCARG(uap, ops)) != KTROP_CLEAR) 1298 if (KTROP(SCARG(uap, ops)) != KTROP_CLEAR)
1299 fd_abort(curproc, fp, fd); 1299 fd_abort(curproc, fp, fd);
1300 return (error); 1300 return (error);
1301} 1301}
1302 1302
1303int 1303int
1304ktrops(lwp_t *curl, struct proc *p, int ops, int facs, 1304ktrops(lwp_t *curl, struct proc *p, int ops, int facs,
1305 struct ktr_desc *ktd) 1305 struct ktr_desc *ktd)
1306{ 1306{
1307 int vers = ops & KTRFAC_VER_MASK; 1307 int vers = ops & KTRFAC_VER_MASK;
1308 int error = 0; 1308 int error = 0;
1309 1309
1310 mutex_enter(p->p_lock); 1310 mutex_enter(p->p_lock);
1311 mutex_enter(&ktrace_lock); 1311 mutex_enter(&ktrace_lock);
1312 1312
1313 if (!ktrcanset(curl, p)) 1313 if (!ktrcanset(curl, p))
1314 goto out; 1314 goto out;
1315 1315
1316 switch (vers) { 1316 switch (vers) {
1317 case KTRFACv0: 1317 case KTRFACv0:
1318 case KTRFACv1: 1318 case KTRFACv1:
1319 case KTRFACv2: 1319 case KTRFACv2:
1320 break; 1320 break;
1321 default: 1321 default:
1322 error = EINVAL; 1322 error = EINVAL;
1323 goto out; 1323 goto out;
1324 } 1324 }
1325 1325
1326 if (KTROP(ops) == KTROP_SET) { 1326 if (KTROP(ops) == KTROP_SET) {
1327 if (p->p_tracep != ktd) { 1327 if (p->p_tracep != ktd) {
1328 /* 1328 /*
1329 * if trace file already in use, relinquish 1329 * if trace file already in use, relinquish
1330 */ 1330 */
1331 ktrderef(p); 1331 ktrderef(p);
1332 p->p_tracep = ktd; 1332 p->p_tracep = ktd;
1333 ktradref(p); 1333 ktradref(p);
1334 } 1334 }
1335 p->p_traceflag |= facs; 1335 p->p_traceflag |= facs;
1336 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KTRACE, 1336 if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KTRACE,
1337 p, KAUTH_ARG(KAUTH_REQ_PROCESS_KTRACE_PERSISTENT), NULL, 1337 p, KAUTH_ARG(KAUTH_REQ_PROCESS_KTRACE_PERSISTENT), NULL,
1338 NULL) == 0) 1338 NULL) == 0)
1339 p->p_traceflag |= KTRFAC_PERSISTENT; 1339 p->p_traceflag |= KTRFAC_PERSISTENT;
1340 } else { 1340 } else {
1341 /* KTROP_CLEAR */ 1341 /* KTROP_CLEAR */
1342 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) { 1342 if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) {
1343 /* no more tracing */ 1343 /* no more tracing */
1344 ktrderef(p); 1344 ktrderef(p);
1345 } 1345 }
1346 } 1346 }
1347 1347
1348 if (p->p_traceflag) 1348 if (p->p_traceflag)
1349 p->p_traceflag |= vers; 1349 p->p_traceflag |= vers;
1350 /* 1350 /*
1351 * Emit an emulation record, every time there is a ktrace 1351 * Emit an emulation record, every time there is a ktrace
1352 * change/attach request. 1352 * change/attach request.
1353 */ 1353 */
1354 if (KTRPOINT(p, KTR_EMUL)) 1354 if (KTRPOINT(p, KTR_EMUL))
1355 p->p_traceflag |= KTRFAC_TRC_EMUL; 1355 p->p_traceflag |= KTRFAC_TRC_EMUL;
1356 1356
1357 p->p_trace_enabled = trace_is_enabled(p); 1357 p->p_trace_enabled = trace_is_enabled(p);
1358#ifdef __HAVE_SYSCALL_INTERN 1358#ifdef __HAVE_SYSCALL_INTERN
1359 (*p->p_emul->e_syscall_intern)(p); 1359 (*p->p_emul->e_syscall_intern)(p);
1360#endif 1360#endif
1361 1361
1362 out: 1362 out:
1363 mutex_exit(&ktrace_lock); 1363 mutex_exit(&ktrace_lock);
1364 mutex_exit(p->p_lock); 1364 mutex_exit(p->p_lock);
1365 1365
1366 return (1); 1366 return (1);
1367} 1367}
1368 1368
1369int 1369int
1370ktrsetchildren(lwp_t *curl, struct proc *top, int ops, int facs, 1370ktrsetchildren(lwp_t *curl, struct proc *top, int ops, int facs,
1371 struct ktr_desc *ktd) 1371 struct ktr_desc *ktd)
1372{ 1372{
1373 struct proc *p; 1373 struct proc *p;
1374 int ret = 0; 1374 int ret = 0;
1375 1375
1376 KASSERT(mutex_owned(proc_lock)); 1376 KASSERT(mutex_owned(proc_lock));
1377 1377
1378 p = top; 1378 p = top;
1379 for (;;) { 1379 for (;;) {
1380 ret |= ktrops(curl, p, ops, facs, ktd); 1380 ret |= ktrops(curl, p, ops, facs, ktd);
1381 /* 1381 /*
1382 * If this process has children, descend to them next, 1382 * If this process has children, descend to them next,
1383 * otherwise do any siblings, and if done with this level, 1383 * otherwise do any siblings, and if done with this level,
1384 * follow back up the tree (but not past top). 1384 * follow back up the tree (but not past top).
1385 */ 1385 */
1386 if (LIST_FIRST(&p->p_children) != NULL) { 1386 if (LIST_FIRST(&p->p_children) != NULL) {
1387 p = LIST_FIRST(&p->p_children); 1387 p = LIST_FIRST(&p->p_children);
1388 continue; 1388 continue;
1389 } 1389 }
1390 for (;;) { 1390 for (;;) {
1391 if (p == top) 1391 if (p == top)
1392 return (ret); 1392 return (ret);
1393 if (LIST_NEXT(p, p_sibling) != NULL) { 1393 if (LIST_NEXT(p, p_sibling) != NULL) {
1394 p = LIST_NEXT(p, p_sibling); 1394 p = LIST_NEXT(p, p_sibling);
1395 break; 1395 break;
1396 } 1396 }
1397 p = p->p_pptr; 1397 p = p->p_pptr;
1398 } 1398 }
1399 } 1399 }
1400 /*NOTREACHED*/ 1400 /*NOTREACHED*/
1401} 1401}
1402 1402
1403void 1403void
1404ktrwrite(struct ktr_desc *ktd, struct ktrace_entry *kte) 1404ktrwrite(struct ktr_desc *ktd, struct ktrace_entry *kte)
1405{ 1405{
1406 size_t hlen; 1406 size_t hlen;
1407 struct uio auio; 1407 struct uio auio;
1408 struct iovec aiov[64], *iov; 1408 struct iovec aiov[64], *iov;
1409 struct ktrace_entry *top = kte; 1409 struct ktrace_entry *top = kte;
1410 struct ktr_header *kth; 1410 struct ktr_header *kth;
1411 file_t *fp = ktd->ktd_fp; 1411 file_t *fp = ktd->ktd_fp;
1412 int error; 1412 int error;
1413next: 1413next:
1414 auio.uio_iov = iov = &aiov[0]; 1414 auio.uio_iov = iov = &aiov[0];
1415 auio.uio_offset = 0; 1415 auio.uio_offset = 0;
1416 auio.uio_rw = UIO_WRITE; 1416 auio.uio_rw = UIO_WRITE;
1417 auio.uio_resid = 0; 1417 auio.uio_resid = 0;
1418 auio.uio_iovcnt = 0; 1418 auio.uio_iovcnt = 0;
1419 UIO_SETUP_SYSSPACE(&auio); 1419 UIO_SETUP_SYSSPACE(&auio);
1420 do { 1420 do {
1421 struct timespec ts; 1421 struct timespec ts;
1422 lwpid_t lid; 1422 lwpid_t lid;
1423 kth = &kte->kte_kth; 1423 kth = &kte->kte_kth;
1424 1424
1425 hlen = sizeof(struct ktr_header); 1425 hlen = sizeof(struct ktr_header);
1426 switch (kth->ktr_version) { 1426 switch (kth->ktr_version) {
1427 case 0: 1427 case 0:
1428 ts = kth->ktr_time; 1428 ts = kth->ktr_time;
1429 1429
1430 kth->ktr_otv.tv_sec = ts.tv_sec; 1430 kth->ktr_otv.tv_sec = ts.tv_sec;
1431 kth->ktr_otv.tv_usec = ts.tv_nsec / 1000; 1431 kth->ktr_otv.tv_usec = ts.tv_nsec / 1000;
1432 kth->ktr_unused = NULL; 1432 kth->ktr_unused = NULL;
1433 hlen -= sizeof(kth->_v) - 1433 hlen -= sizeof(kth->_v) -
1434 MAX(sizeof(kth->_v._v0), sizeof(kth->_v._v1)); 1434 MAX(sizeof(kth->_v._v0), sizeof(kth->_v._v1));
1435 break; 1435 break;
1436 case 1: 1436 case 1:
1437 ts = kth->ktr_time; 1437 ts = kth->ktr_time;
1438 lid = kth->ktr_lid; 1438 lid = kth->ktr_lid;
1439 1439
1440 kth->ktr_ots.tv_sec = ts.tv_sec; 1440 kth->ktr_ots.tv_sec = ts.tv_sec;
1441 kth->ktr_ots.tv_nsec = ts.tv_nsec; 1441 kth->ktr_ots.tv_nsec = ts.tv_nsec;
1442 kth->ktr_olid = lid; 1442 kth->ktr_olid = lid;
1443 hlen -= sizeof(kth->_v) - 1443 hlen -= sizeof(kth->_v) -
1444 MAX(sizeof(kth->_v._v0), sizeof(kth->_v._v1)); 1444 MAX(sizeof(kth->_v._v0), sizeof(kth->_v._v1));
1445 break; 1445 break;
1446 } 1446 }
1447 iov->iov_base = (void *)kth; 1447 iov->iov_base = (void *)kth;
1448 iov++->iov_len = hlen; 1448 iov++->iov_len = hlen;
1449 auio.uio_resid += hlen; 1449 auio.uio_resid += hlen;
1450 auio.uio_iovcnt++; 1450 auio.uio_iovcnt++;
1451 if (kth->ktr_len > 0) { 1451 if (kth->ktr_len > 0) {
1452 iov->iov_base = kte->kte_buf; 1452 iov->iov_base = kte->kte_buf;
1453 iov++->iov_len = kth->ktr_len; 1453 iov++->iov_len = kth->ktr_len;
1454 auio.uio_resid += kth->ktr_len; 1454 auio.uio_resid += kth->ktr_len;
1455 auio.uio_iovcnt++; 1455 auio.uio_iovcnt++;
1456 } 1456 }
1457 } while ((kte = TAILQ_NEXT(kte, kte_list)) != NULL && 1457 } while ((kte = TAILQ_NEXT(kte, kte_list)) != NULL &&
1458 auio.uio_iovcnt < sizeof(aiov) / sizeof(aiov[0]) - 1); 1458 auio.uio_iovcnt < sizeof(aiov) / sizeof(aiov[0]) - 1);
1459 1459
1460again: 1460again:
1461 error = (*fp->f_ops->fo_write)(fp, &fp->f_offset, &auio, 1461 error = (*fp->f_ops->fo_write)(fp, &fp->f_offset, &auio,
1462 fp->f_cred, FOF_UPDATE_OFFSET); 1462 fp->f_cred, FOF_UPDATE_OFFSET);
1463 switch (error) { 1463 switch (error) {
1464 1464
1465 case 0: 1465 case 0:
1466 if (auio.uio_resid > 0) 1466 if (auio.uio_resid > 0)
1467 goto again; 1467 goto again;
1468 if (kte != NULL) 1468 if (kte != NULL)
1469 goto next; 1469 goto next;
1470 break; 1470 break;
1471 1471
1472 case EWOULDBLOCK: 1472 case EWOULDBLOCK:
1473 kpause("ktrzzz", false, 1, NULL); 1473 kpause("ktrzzz", false, 1, NULL);
1474 goto again; 1474 goto again;
1475 1475
1476 default: 1476 default:
1477 /* 1477 /*
1478 * If error encountered, give up tracing on this 1478 * If error encountered, give up tracing on this
1479 * vnode. Don't report EPIPE as this can easily 1479 * vnode. Don't report EPIPE as this can easily
1480 * happen with fktrace()/ktruss. 1480 * happen with fktrace()/ktruss.
1481 */ 1481 */
1482#ifndef DEBUG 1482#ifndef DEBUG
1483 if (error != EPIPE) 1483 if (error != EPIPE)
1484#endif 1484#endif
1485 log(LOG_NOTICE, 1485 log(LOG_NOTICE,
1486 "ktrace write failed, errno %d, tracing stopped\n", 1486 "ktrace write failed, errno %d, tracing stopped\n",
1487 error); 1487 error);
1488 (void)ktrderefall(ktd, 0); 1488 (void)ktrderefall(ktd, 0);
1489 } 1489 }
1490 1490
1491 while ((kte = top) != NULL) { 1491 while ((kte = top) != NULL) {
1492 top = TAILQ_NEXT(top, kte_list); 1492 top = TAILQ_NEXT(top, kte_list);
1493 ktefree(kte); 1493 ktefree(kte);
1494 } 1494 }
1495} 1495}
1496 1496
1497void 1497void
1498ktrace_thread(void *arg) 1498ktrace_thread(void *arg)
1499{ 1499{
1500 struct ktr_desc *ktd = arg; 1500 struct ktr_desc *ktd = arg;
1501 file_t *fp = ktd->ktd_fp; 1501 file_t *fp = ktd->ktd_fp;
1502 struct ktrace_entry *kte; 1502 struct ktrace_entry *kte;
1503 int ktrerr, errcnt; 1503 int ktrerr, errcnt;
1504 1504
1505 mutex_enter(&ktrace_lock); 1505 mutex_enter(&ktrace_lock);
1506 for (;;) { 1506 for (;;) {
1507 kte = TAILQ_FIRST(&ktd->ktd_queue); 1507 kte = TAILQ_FIRST(&ktd->ktd_queue);
1508 if (kte == NULL) { 1508 if (kte == NULL) {
1509 if (ktd->ktd_flags & KTDF_WAIT) { 1509 if (ktd->ktd_flags & KTDF_WAIT) {
1510 ktd->ktd_flags &= ~(KTDF_WAIT | KTDF_BLOCKING); 1510 ktd->ktd_flags &= ~(KTDF_WAIT | KTDF_BLOCKING);
1511 cv_broadcast(&ktd->ktd_sync_cv); 1511 cv_broadcast(&ktd->ktd_sync_cv);
1512 } 1512 }
1513 if (ktd->ktd_ref == 0) 1513 if (ktd->ktd_ref == 0)
1514 break; 1514 break;
1515 cv_wait(&ktd->ktd_cv, &ktrace_lock); 1515 cv_wait(&ktd->ktd_cv, &ktrace_lock);
1516 continue; 1516 continue;
1517 } 1517 }
1518 TAILQ_INIT(&ktd->ktd_queue); 1518 TAILQ_INIT(&ktd->ktd_queue);
1519 ktd->ktd_qcount = 0; 1519 ktd->ktd_qcount = 0;
1520 ktrerr = ktd->ktd_error; 1520 ktrerr = ktd->ktd_error;
1521 errcnt = ktd->ktd_errcnt; 1521 errcnt = ktd->ktd_errcnt;
1522 ktd->ktd_error = ktd->ktd_errcnt = 0; 1522 ktd->ktd_error = ktd->ktd_errcnt = 0;
1523 mutex_exit(&ktrace_lock); 1523 mutex_exit(&ktrace_lock);
1524 1524
1525 if (ktrerr) { 1525 if (ktrerr) {
1526 log(LOG_NOTICE, 1526 log(LOG_NOTICE,
1527 "ktrace failed, fp %p, error 0x%x, total %d\n", 1527 "ktrace failed, fp %p, error 0x%x, total %d\n",
1528 fp, ktrerr, errcnt); 1528 fp, ktrerr, errcnt);
1529 } 1529 }
1530 ktrwrite(ktd, kte); 1530 ktrwrite(ktd, kte);
1531 mutex_enter(&ktrace_lock); 1531 mutex_enter(&ktrace_lock);
1532 } 1532 }
1533 1533
1534 TAILQ_REMOVE(&ktdq, ktd, ktd_list); 1534 TAILQ_REMOVE(&ktdq, ktd, ktd_list);
1535 mutex_exit(&ktrace_lock); 1535 mutex_exit(&ktrace_lock);
1536 1536
1537 /* 1537 /*
1538 * ktrace file descriptor can't be watched (are not visible to 1538 * ktrace file descriptor can't be watched (are not visible to
1539 * userspace), so no kqueue stuff here 1539 * userspace), so no kqueue stuff here
1540 * XXX: The above comment is wrong, because the fktrace file 1540 * XXX: The above comment is wrong, because the fktrace file
1541 * descriptor is available in userland. 1541 * descriptor is available in userland.
1542 */ 1542 */
1543 closef(fp); 1543 closef(fp);
1544 1544
1545 cv_destroy(&ktd->ktd_sync_cv); 1545 cv_destroy(&ktd->ktd_sync_cv);
1546 cv_destroy(&ktd->ktd_cv); 1546 cv_destroy(&ktd->ktd_cv);
1547 1547
1548 callout_stop(&ktd->ktd_wakch); 1548 callout_stop(&ktd->ktd_wakch);
1549 callout_destroy(&ktd->ktd_wakch); 1549 callout_destroy(&ktd->ktd_wakch);
1550 kmem_free(ktd, sizeof(*ktd)); 1550 kmem_free(ktd, sizeof(*ktd));
1551 1551
1552 kthread_exit(0); 1552 kthread_exit(0);
1553} 1553}
1554 1554
1555/* 1555/*
1556 * Return true if caller has permission to set the ktracing state 1556 * Return true if caller has permission to set the ktracing state
1557 * of target. Essentially, the target can't possess any 1557 * of target. Essentially, the target can't possess any
1558 * more permissions than the caller. KTRFAC_PERSISTENT signifies that 1558 * more permissions than the caller. KTRFAC_PERSISTENT signifies that
1559 * the tracing will persist on sugid processes during exec; it is only 1559 * the tracing will persist on sugid processes during exec; it is only
1560 * settable by a process with appropriate credentials. 1560 * settable by a process with appropriate credentials.
1561 * 1561 *
1562 * TODO: check groups. use caller effective gid. 1562 * TODO: check groups. use caller effective gid.
1563 */ 1563 */
1564int 1564int
1565ktrcanset(lwp_t *calll, struct proc *targetp) 1565ktrcanset(lwp_t *calll, struct proc *targetp)
1566{ 1566{
1567 KASSERT(mutex_owned(targetp->p_lock)); 1567 KASSERT(mutex_owned(targetp->p_lock));
1568 KASSERT(mutex_owned(&ktrace_lock)); 1568 KASSERT(mutex_owned(&ktrace_lock));
1569 1569
1570 if (kauth_authorize_process(calll->l_cred, KAUTH_PROCESS_KTRACE, 1570 if (kauth_authorize_process(calll->l_cred, KAUTH_PROCESS_KTRACE,
1571 targetp, NULL, NULL, NULL) == 0) 1571 targetp, NULL, NULL, NULL) == 0)
1572 return (1); 1572 return (1);
1573 1573
1574 return (0); 1574 return (0);
1575} 1575}
1576 1576
1577/* 1577/*
1578 * Put user defined entry to ktrace records. 1578 * Put user defined entry to ktrace records.
1579 */ 1579 */
1580int 1580int
1581sys_utrace(struct lwp *l, const struct sys_utrace_args *uap, register_t *retval) 1581sys_utrace(struct lwp *l, const struct sys_utrace_args *uap, register_t *retval)
1582{ 1582{
1583 /* { 1583 /* {
1584 syscallarg(const char *) label; 1584 syscallarg(const char *) label;
1585 syscallarg(void *) addr; 1585 syscallarg(void *) addr;
1586 syscallarg(size_t) len; 1586 syscallarg(size_t) len;
1587 } */ 1587 } */
1588 1588
1589 return ktruser(SCARG(uap, label), SCARG(uap, addr), 1589 return ktruser(SCARG(uap, label), SCARG(uap, addr),
1590 SCARG(uap, len), 1); 1590 SCARG(uap, len), 1);
1591} 1591}