Fri Dec 1 17:47:51 2017 UTC ()
More fixes for new emac bindings.


(jmcneill)
diff -r1.10 -r1.11 src/sys/arch/arm/sunxi/sunxi_emac.c

cvs diff -r1.10 -r1.11 src/sys/arch/arm/sunxi/sunxi_emac.c (switch to unified diff)

--- src/sys/arch/arm/sunxi/sunxi_emac.c 2017/11/30 21:36:11 1.10
+++ src/sys/arch/arm/sunxi/sunxi_emac.c 2017/12/01 17:47:51 1.11
@@ -1,1465 +1,1480 @@ @@ -1,1465 +1,1480 @@
1/* $NetBSD: sunxi_emac.c,v 1.10 2017/11/30 21:36:11 jmcneill Exp $ */ 1/* $NetBSD: sunxi_emac.c,v 1.11 2017/12/01 17:47:51 jmcneill Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 2016-2017 Jared McNeill <jmcneill@invisible.ca> 4 * Copyright (c) 2016-2017 Jared McNeill <jmcneill@invisible.ca>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions 8 * modification, are permitted provided that the following conditions
9 * are met: 9 * are met:
10 * 1. Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer. 11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright 12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the 13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution. 14 * documentation and/or other materials provided with the distribution.
15 * 15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE. 26 * SUCH DAMAGE.
27 */ 27 */
28 28
29/* 29/*
30 * Allwinner Gigabit Ethernet MAC (EMAC) controller 30 * Allwinner Gigabit Ethernet MAC (EMAC) controller
31 */ 31 */
32 32
33#include "opt_net_mpsafe.h" 33#include "opt_net_mpsafe.h"
34 34
35#include <sys/cdefs.h> 35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.10 2017/11/30 21:36:11 jmcneill Exp $"); 36__KERNEL_RCSID(0, "$NetBSD: sunxi_emac.c,v 1.11 2017/12/01 17:47:51 jmcneill Exp $");
37 37
38#include <sys/param.h> 38#include <sys/param.h>
39#include <sys/bus.h> 39#include <sys/bus.h>
40#include <sys/device.h> 40#include <sys/device.h>
41#include <sys/intr.h> 41#include <sys/intr.h>
42#include <sys/systm.h> 42#include <sys/systm.h>
43#include <sys/kernel.h> 43#include <sys/kernel.h>
44#include <sys/mutex.h> 44#include <sys/mutex.h>
45#include <sys/callout.h> 45#include <sys/callout.h>
46#include <sys/gpio.h> 46#include <sys/gpio.h>
47#include <sys/cprng.h> 47#include <sys/cprng.h>
48 48
49#include <net/if.h> 49#include <net/if.h>
50#include <net/if_dl.h> 50#include <net/if_dl.h>
51#include <net/if_ether.h> 51#include <net/if_ether.h>
52#include <net/if_media.h> 52#include <net/if_media.h>
53#include <net/bpf.h> 53#include <net/bpf.h>
54 54
55#include <dev/mii/miivar.h> 55#include <dev/mii/miivar.h>
56 56
57#include <dev/fdt/fdtvar.h> 57#include <dev/fdt/fdtvar.h>
58 58
59#include <arm/sunxi/sunxi_emac.h> 59#include <arm/sunxi/sunxi_emac.h>
60 60
61#ifdef NET_MPSAFE 61#ifdef NET_MPSAFE
62#define EMAC_MPSAFE 1 62#define EMAC_MPSAFE 1
63#define CALLOUT_FLAGS CALLOUT_MPSAFE 63#define CALLOUT_FLAGS CALLOUT_MPSAFE
64#define FDT_INTR_FLAGS FDT_INTR_MPSAFE 64#define FDT_INTR_FLAGS FDT_INTR_MPSAFE
65#else 65#else
66#define CALLOUT_FLAGS 0 66#define CALLOUT_FLAGS 0
67#define FDT_INTR_FLAGS 0 67#define FDT_INTR_FLAGS 0
68#endif 68#endif
69 69
70#define EMAC_IFNAME "emac%d" 70#define EMAC_IFNAME "emac%d"
71 71
72#define ETHER_ALIGN 2 72#define ETHER_ALIGN 2
73 73
74#define EMAC_LOCK(sc) mutex_enter(&(sc)->mtx) 74#define EMAC_LOCK(sc) mutex_enter(&(sc)->mtx)
75#define EMAC_UNLOCK(sc) mutex_exit(&(sc)->mtx) 75#define EMAC_UNLOCK(sc) mutex_exit(&(sc)->mtx)
76#define EMAC_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->mtx)) 76#define EMAC_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->mtx))
77 77
78#define DESC_ALIGN sizeof(struct sunxi_emac_desc) 78#define DESC_ALIGN sizeof(struct sunxi_emac_desc)
79#define TX_DESC_COUNT 1024 79#define TX_DESC_COUNT 1024
80#define TX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT) 80#define TX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * TX_DESC_COUNT)
81#define RX_DESC_COUNT 256 81#define RX_DESC_COUNT 256
82#define RX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT) 82#define RX_DESC_SIZE (sizeof(struct sunxi_emac_desc) * RX_DESC_COUNT)
83 83
84#define DESC_OFF(n) ((n) * sizeof(struct sunxi_emac_desc)) 84#define DESC_OFF(n) ((n) * sizeof(struct sunxi_emac_desc))
85#define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1)) 85#define TX_NEXT(n) (((n) + 1) & (TX_DESC_COUNT - 1))
86#define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1)) 86#define TX_SKIP(n, o) (((n) + (o)) & (TX_DESC_COUNT - 1))
87#define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1)) 87#define RX_NEXT(n) (((n) + 1) & (RX_DESC_COUNT - 1))
88 88
89#define TX_MAX_SEGS 128 89#define TX_MAX_SEGS 128
90 90
91#define SOFT_RST_RETRY 1000 91#define SOFT_RST_RETRY 1000
92#define MII_BUSY_RETRY 1000 92#define MII_BUSY_RETRY 1000
93#define MDIO_FREQ 2500000 93#define MDIO_FREQ 2500000
94 94
95#define BURST_LEN_DEFAULT 8 95#define BURST_LEN_DEFAULT 8
96#define RX_TX_PRI_DEFAULT 0 96#define RX_TX_PRI_DEFAULT 0
97#define PAUSE_TIME_DEFAULT 0x400 97#define PAUSE_TIME_DEFAULT 0x400
98 98
99/* syscon EMAC clock register */ 99/* syscon EMAC clock register */
100#define EMAC_CLK_REG 0x30 100#define EMAC_CLK_REG 0x30
101#define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */ 101#define EMAC_CLK_EPHY_ADDR (0x1f << 20) /* H3 */
102#define EMAC_CLK_EPHY_ADDR_SHIFT 20 102#define EMAC_CLK_EPHY_ADDR_SHIFT 20
103#define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */ 103#define EMAC_CLK_EPHY_LED_POL (1 << 17) /* H3 */
104#define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */ 104#define EMAC_CLK_EPHY_SHUTDOWN (1 << 16) /* H3 */
105#define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */ 105#define EMAC_CLK_EPHY_SELECT (1 << 15) /* H3 */
106#define EMAC_CLK_RMII_EN (1 << 13) 106#define EMAC_CLK_RMII_EN (1 << 13)
107#define EMAC_CLK_ETXDC (0x7 << 10) 107#define EMAC_CLK_ETXDC (0x7 << 10)
108#define EMAC_CLK_ETXDC_SHIFT 10 108#define EMAC_CLK_ETXDC_SHIFT 10
109#define EMAC_CLK_ERXDC (0x1f << 5) 109#define EMAC_CLK_ERXDC (0x1f << 5)
110#define EMAC_CLK_ERXDC_SHIFT 5 110#define EMAC_CLK_ERXDC_SHIFT 5
111#define EMAC_CLK_PIT (0x1 << 2) 111#define EMAC_CLK_PIT (0x1 << 2)
112#define EMAC_CLK_PIT_MII (0 << 2) 112#define EMAC_CLK_PIT_MII (0 << 2)
113#define EMAC_CLK_PIT_RGMII (1 << 2) 113#define EMAC_CLK_PIT_RGMII (1 << 2)
114#define EMAC_CLK_SRC (0x3 << 0) 114#define EMAC_CLK_SRC (0x3 << 0)
115#define EMAC_CLK_SRC_MII (0 << 0) 115#define EMAC_CLK_SRC_MII (0 << 0)
116#define EMAC_CLK_SRC_EXT_RGMII (1 << 0) 116#define EMAC_CLK_SRC_EXT_RGMII (1 << 0)
117#define EMAC_CLK_SRC_RGMII (2 << 0) 117#define EMAC_CLK_SRC_RGMII (2 << 0)
118 118
119/* Burst length of RX and TX DMA transfers */ 119/* Burst length of RX and TX DMA transfers */
120static int sunxi_emac_burst_len = BURST_LEN_DEFAULT; 120static int sunxi_emac_burst_len = BURST_LEN_DEFAULT;
121 121
122/* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */ 122/* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
123static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT; 123static int sunxi_emac_rx_tx_pri = RX_TX_PRI_DEFAULT;
124 124
125/* Pause time field in the transmitted control frame */ 125/* Pause time field in the transmitted control frame */
126static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT; 126static int sunxi_emac_pause_time = PAUSE_TIME_DEFAULT;
127 127
128enum sunxi_emac_type { 128enum sunxi_emac_type {
129 EMAC_A83T = 1, 129 EMAC_A83T = 1,
130 EMAC_H3, 130 EMAC_H3,
131 EMAC_A64, 131 EMAC_A64,
132}; 132};
133 133
134static const struct of_compat_data compat_data[] = { 134static const struct of_compat_data compat_data[] = {
135 { "allwinner,sun8i-a83t-emac", EMAC_A83T }, 135 { "allwinner,sun8i-a83t-emac", EMAC_A83T },
136 { "allwinner,sun8i-h3-emac", EMAC_H3 }, 136 { "allwinner,sun8i-h3-emac", EMAC_H3 },
137 { "allwinner,sun50i-a64-emac", EMAC_A64 }, 137 { "allwinner,sun50i-a64-emac", EMAC_A64 },
138 { NULL } 138 { NULL }
139}; 139};
140 140
141struct sunxi_emac_bufmap { 141struct sunxi_emac_bufmap {
142 bus_dmamap_t map; 142 bus_dmamap_t map;
143 struct mbuf *mbuf; 143 struct mbuf *mbuf;
144}; 144};
145 145
146struct sunxi_emac_txring { 146struct sunxi_emac_txring {
147 bus_dma_tag_t desc_tag; 147 bus_dma_tag_t desc_tag;
148 bus_dmamap_t desc_map; 148 bus_dmamap_t desc_map;
149 bus_dma_segment_t desc_dmaseg; 149 bus_dma_segment_t desc_dmaseg;
150 struct sunxi_emac_desc *desc_ring; 150 struct sunxi_emac_desc *desc_ring;
151 bus_addr_t desc_ring_paddr; 151 bus_addr_t desc_ring_paddr;
152 bus_dma_tag_t buf_tag; 152 bus_dma_tag_t buf_tag;
153 struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT]; 153 struct sunxi_emac_bufmap buf_map[TX_DESC_COUNT];
154 u_int cur, next, queued; 154 u_int cur, next, queued;
155}; 155};
156 156
157struct sunxi_emac_rxring { 157struct sunxi_emac_rxring {
158 bus_dma_tag_t desc_tag; 158 bus_dma_tag_t desc_tag;
159 bus_dmamap_t desc_map; 159 bus_dmamap_t desc_map;
160 bus_dma_segment_t desc_dmaseg; 160 bus_dma_segment_t desc_dmaseg;
161 struct sunxi_emac_desc *desc_ring; 161 struct sunxi_emac_desc *desc_ring;
162 bus_addr_t desc_ring_paddr; 162 bus_addr_t desc_ring_paddr;
163 bus_dma_tag_t buf_tag; 163 bus_dma_tag_t buf_tag;
164 struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT]; 164 struct sunxi_emac_bufmap buf_map[RX_DESC_COUNT];
165 u_int cur; 165 u_int cur;
166}; 166};
167 167
168enum { 168enum {
169 _RES_EMAC, 169 _RES_EMAC,
170 _RES_SYSCON, 170 _RES_SYSCON,
171 _RES_NITEMS 171 _RES_NITEMS
172}; 172};
173 173
174struct sunxi_emac_softc { 174struct sunxi_emac_softc {
175 device_t dev; 175 device_t dev;
176 int phandle; 176 int phandle;
177 enum sunxi_emac_type type; 177 enum sunxi_emac_type type;
178 bus_space_tag_t bst; 178 bus_space_tag_t bst;
179 bus_dma_tag_t dmat; 179 bus_dma_tag_t dmat;
180 180
181 bus_space_handle_t bsh[_RES_NITEMS]; 181 bus_space_handle_t bsh[_RES_NITEMS];
182 struct clk *clk_ahb; 182 struct clk *clk_ahb;
183 struct clk *clk_ephy; 183 struct clk *clk_ephy;
184 struct fdtbus_reset *rst_ahb; 184 struct fdtbus_reset *rst_ahb;
185 struct fdtbus_reset *rst_ephy; 185 struct fdtbus_reset *rst_ephy;
186 struct fdtbus_regulator *reg_phy; 186 struct fdtbus_regulator *reg_phy;
187 struct fdtbus_gpio_pin *pin_reset; 187 struct fdtbus_gpio_pin *pin_reset;
188 188
189 int phy_id; 189 int phy_id;
190 190
191 kmutex_t mtx; 191 kmutex_t mtx;
192 struct ethercom ec; 192 struct ethercom ec;
193 struct mii_data mii; 193 struct mii_data mii;
194 callout_t stat_ch; 194 callout_t stat_ch;
195 void *ih; 195 void *ih;
196 u_int mdc_div_ratio_m; 196 u_int mdc_div_ratio_m;
197 197
198 struct sunxi_emac_txring tx; 198 struct sunxi_emac_txring tx;
199 struct sunxi_emac_rxring rx; 199 struct sunxi_emac_rxring rx;
200}; 200};
201 201
202#define RD4(sc, reg) \ 202#define RD4(sc, reg) \
203 bus_space_read_4((sc)->bst, (sc)->bsh[_RES_EMAC], (reg)) 203 bus_space_read_4((sc)->bst, (sc)->bsh[_RES_EMAC], (reg))
204#define WR4(sc, reg, val) \ 204#define WR4(sc, reg, val) \
205 bus_space_write_4((sc)->bst, (sc)->bsh[_RES_EMAC], (reg), (val)) 205 bus_space_write_4((sc)->bst, (sc)->bsh[_RES_EMAC], (reg), (val))
206 206
207#define SYSCONRD4(sc, reg) \ 207#define SYSCONRD4(sc, reg) \
208 bus_space_read_4((sc)->bst, (sc)->bsh[_RES_SYSCON], (reg)) 208 bus_space_read_4((sc)->bst, (sc)->bsh[_RES_SYSCON], (reg))
209#define SYSCONWR4(sc, reg, val) \ 209#define SYSCONWR4(sc, reg, val) \
210 bus_space_write_4((sc)->bst, (sc)->bsh[_RES_SYSCON], (reg), (val)) 210 bus_space_write_4((sc)->bst, (sc)->bsh[_RES_SYSCON], (reg), (val))
211 211
212static int 212static int
213sunxi_emac_mii_readreg(device_t dev, int phy, int reg) 213sunxi_emac_mii_readreg(device_t dev, int phy, int reg)
214{ 214{
215 struct sunxi_emac_softc *sc = device_private(dev); 215 struct sunxi_emac_softc *sc = device_private(dev);
216 int retry, val; 216 int retry, val;
217 217
218 val = 0; 218 val = 0;
219 219
220 WR4(sc, EMAC_MII_CMD, 220 WR4(sc, EMAC_MII_CMD,
221 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) | 221 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
222 (phy << PHY_ADDR_SHIFT) | 222 (phy << PHY_ADDR_SHIFT) |
223 (reg << PHY_REG_ADDR_SHIFT) | 223 (reg << PHY_REG_ADDR_SHIFT) |
224 MII_BUSY); 224 MII_BUSY);
225 for (retry = MII_BUSY_RETRY; retry > 0; retry--) { 225 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
226 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) { 226 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
227 val = RD4(sc, EMAC_MII_DATA); 227 val = RD4(sc, EMAC_MII_DATA);
228 break; 228 break;
229 } 229 }
230 delay(10); 230 delay(10);
231 } 231 }
232 232
233 if (retry == 0) 233 if (retry == 0)
234 device_printf(dev, "phy read timeout, phy=%d reg=%d\n", 234 device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
235 phy, reg); 235 phy, reg);
236 236
237 return val; 237 return val;
238} 238}
239 239
240static void 240static void
241sunxi_emac_mii_writereg(device_t dev, int phy, int reg, int val) 241sunxi_emac_mii_writereg(device_t dev, int phy, int reg, int val)
242{ 242{
243 struct sunxi_emac_softc *sc = device_private(dev); 243 struct sunxi_emac_softc *sc = device_private(dev);
244 int retry; 244 int retry;
245 245
246 WR4(sc, EMAC_MII_DATA, val); 246 WR4(sc, EMAC_MII_DATA, val);
247 WR4(sc, EMAC_MII_CMD, 247 WR4(sc, EMAC_MII_CMD,
248 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) | 248 (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
249 (phy << PHY_ADDR_SHIFT) | 249 (phy << PHY_ADDR_SHIFT) |
250 (reg << PHY_REG_ADDR_SHIFT) | 250 (reg << PHY_REG_ADDR_SHIFT) |
251 MII_WR | MII_BUSY); 251 MII_WR | MII_BUSY);
252 for (retry = MII_BUSY_RETRY; retry > 0; retry--) { 252 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
253 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) 253 if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
254 break; 254 break;
255 delay(10); 255 delay(10);
256 } 256 }
257 257
258 if (retry == 0) 258 if (retry == 0)
259 device_printf(dev, "phy write timeout, phy=%d reg=%d\n", 259 device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
260 phy, reg); 260 phy, reg);
261} 261}
262 262
263static void 263static void
264sunxi_emac_update_link(struct sunxi_emac_softc *sc) 264sunxi_emac_update_link(struct sunxi_emac_softc *sc)
265{ 265{
266 struct mii_data *mii = &sc->mii; 266 struct mii_data *mii = &sc->mii;
267 uint32_t val; 267 uint32_t val;
268 268
269 val = RD4(sc, EMAC_BASIC_CTL_0); 269 val = RD4(sc, EMAC_BASIC_CTL_0);
270 val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX); 270 val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
271 271
272 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 272 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
273 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 273 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
274 val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT; 274 val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
275 else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) 275 else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
276 val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT; 276 val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
277 else 277 else
278 val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT; 278 val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
279 279
280 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 280 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
281 val |= BASIC_CTL_DUPLEX; 281 val |= BASIC_CTL_DUPLEX;
282 282
283 WR4(sc, EMAC_BASIC_CTL_0, val); 283 WR4(sc, EMAC_BASIC_CTL_0, val);
284 284
285 val = RD4(sc, EMAC_RX_CTL_0); 285 val = RD4(sc, EMAC_RX_CTL_0);
286 val &= ~RX_FLOW_CTL_EN; 286 val &= ~RX_FLOW_CTL_EN;
287 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 287 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
288 val |= RX_FLOW_CTL_EN; 288 val |= RX_FLOW_CTL_EN;
289 WR4(sc, EMAC_RX_CTL_0, val); 289 WR4(sc, EMAC_RX_CTL_0, val);
290 290
291 val = RD4(sc, EMAC_TX_FLOW_CTL); 291 val = RD4(sc, EMAC_TX_FLOW_CTL);
292 val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN); 292 val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
293 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 293 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
294 val |= TX_FLOW_CTL_EN; 294 val |= TX_FLOW_CTL_EN;
295 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) 295 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
296 val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT; 296 val |= sunxi_emac_pause_time << PAUSE_TIME_SHIFT;
297 WR4(sc, EMAC_TX_FLOW_CTL, val); 297 WR4(sc, EMAC_TX_FLOW_CTL, val);
298} 298}
299 299
300static void 300static void
301sunxi_emac_mii_statchg(struct ifnet *ifp) 301sunxi_emac_mii_statchg(struct ifnet *ifp)
302{ 302{
303 struct sunxi_emac_softc * const sc = ifp->if_softc; 303 struct sunxi_emac_softc * const sc = ifp->if_softc;
304 304
305 sunxi_emac_update_link(sc); 305 sunxi_emac_update_link(sc);
306} 306}
307 307
308static void 308static void
309sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat, 309sunxi_emac_dma_sync(struct sunxi_emac_softc *sc, bus_dma_tag_t dmat,
310 bus_dmamap_t map, int start, int end, int total, int flags) 310 bus_dmamap_t map, int start, int end, int total, int flags)
311{ 311{
312 if (end > start) { 312 if (end > start) {
313 bus_dmamap_sync(dmat, map, DESC_OFF(start), 313 bus_dmamap_sync(dmat, map, DESC_OFF(start),
314 DESC_OFF(end) - DESC_OFF(start), flags); 314 DESC_OFF(end) - DESC_OFF(start), flags);
315 } else { 315 } else {
316 bus_dmamap_sync(dmat, map, DESC_OFF(start), 316 bus_dmamap_sync(dmat, map, DESC_OFF(start),
317 DESC_OFF(total) - DESC_OFF(start), flags); 317 DESC_OFF(total) - DESC_OFF(start), flags);
318 if (DESC_OFF(end) - DESC_OFF(0) > 0) 318 if (DESC_OFF(end) - DESC_OFF(0) > 0)
319 bus_dmamap_sync(dmat, map, DESC_OFF(0), 319 bus_dmamap_sync(dmat, map, DESC_OFF(0),
320 DESC_OFF(end) - DESC_OFF(0), flags); 320 DESC_OFF(end) - DESC_OFF(0), flags);
321 } 321 }
322} 322}
323 323
324static void 324static void
325sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags, 325sunxi_emac_setup_txdesc(struct sunxi_emac_softc *sc, int index, int flags,
326 bus_addr_t paddr, u_int len) 326 bus_addr_t paddr, u_int len)
327{ 327{
328 uint32_t status, size; 328 uint32_t status, size;
329 329
330 if (paddr == 0 || len == 0) { 330 if (paddr == 0 || len == 0) {
331 status = 0; 331 status = 0;
332 size = 0; 332 size = 0;
333 --sc->tx.queued; 333 --sc->tx.queued;
334 } else { 334 } else {
335 status = TX_DESC_CTL; 335 status = TX_DESC_CTL;
336 size = flags | len; 336 size = flags | len;
337 ++sc->tx.queued; 337 ++sc->tx.queued;
338 } 338 }
339 339
340 sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr); 340 sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
341 sc->tx.desc_ring[index].size = htole32(size); 341 sc->tx.desc_ring[index].size = htole32(size);
342 sc->tx.desc_ring[index].status = htole32(status); 342 sc->tx.desc_ring[index].status = htole32(status);
343} 343}
344 344
345static int 345static int
346sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m) 346sunxi_emac_setup_txbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
347{ 347{
348 bus_dma_segment_t *segs; 348 bus_dma_segment_t *segs;
349 int error, nsegs, cur, i, flags; 349 int error, nsegs, cur, i, flags;
350 u_int csum_flags; 350 u_int csum_flags;
351 351
352 error = bus_dmamap_load_mbuf(sc->tx.buf_tag, 352 error = bus_dmamap_load_mbuf(sc->tx.buf_tag,
353 sc->tx.buf_map[index].map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 353 sc->tx.buf_map[index].map, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
354 if (error == EFBIG) { 354 if (error == EFBIG) {
355 device_printf(sc->dev, 355 device_printf(sc->dev,
356 "TX packet needs too many DMA segments, dropping...\n"); 356 "TX packet needs too many DMA segments, dropping...\n");
357 m_freem(m); 357 m_freem(m);
358 return 0; 358 return 0;
359 } 359 }
360 if (error != 0) 360 if (error != 0)
361 return 0; 361 return 0;
362 362
363 segs = sc->tx.buf_map[index].map->dm_segs; 363 segs = sc->tx.buf_map[index].map->dm_segs;
364 nsegs = sc->tx.buf_map[index].map->dm_nsegs; 364 nsegs = sc->tx.buf_map[index].map->dm_nsegs;
365 365
366 flags = TX_FIR_DESC; 366 flags = TX_FIR_DESC;
367 if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) { 367 if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) {
368 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0) 368 if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
369 csum_flags = TX_CHECKSUM_CTL_FULL; 369 csum_flags = TX_CHECKSUM_CTL_FULL;
370 else 370 else
371 csum_flags = TX_CHECKSUM_CTL_IP; 371 csum_flags = TX_CHECKSUM_CTL_IP;
372 flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT); 372 flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
373 } 373 }
374 374
375 for (cur = index, i = 0; i < nsegs; i++) { 375 for (cur = index, i = 0; i < nsegs; i++) {
376 sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL); 376 sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
377 if (i == nsegs - 1) 377 if (i == nsegs - 1)
378 flags |= TX_LAST_DESC | TX_INT_CTL; 378 flags |= TX_LAST_DESC | TX_INT_CTL;
379 379
380 sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr, 380 sunxi_emac_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
381 segs[i].ds_len); 381 segs[i].ds_len);
382 flags &= ~TX_FIR_DESC; 382 flags &= ~TX_FIR_DESC;
383 cur = TX_NEXT(cur); 383 cur = TX_NEXT(cur);
384 } 384 }
385 385
386 bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map, 386 bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
387 0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE); 387 0, sc->tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
388 388
389 return nsegs; 389 return nsegs;
390} 390}
391 391
392static void 392static void
393sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index, 393sunxi_emac_setup_rxdesc(struct sunxi_emac_softc *sc, int index,
394 bus_addr_t paddr) 394 bus_addr_t paddr)
395{ 395{
396 uint32_t status, size; 396 uint32_t status, size;
397 397
398 status = RX_DESC_CTL; 398 status = RX_DESC_CTL;
399 size = MCLBYTES - 1; 399 size = MCLBYTES - 1;
400 400
401 sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr); 401 sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
402 sc->rx.desc_ring[index].size = htole32(size); 402 sc->rx.desc_ring[index].size = htole32(size);
403 sc->rx.desc_ring[index].next = 403 sc->rx.desc_ring[index].next =
404 htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index))); 404 htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
405 sc->rx.desc_ring[index].status = htole32(status); 405 sc->rx.desc_ring[index].status = htole32(status);
406} 406}
407 407
408static int 408static int
409sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m) 409sunxi_emac_setup_rxbuf(struct sunxi_emac_softc *sc, int index, struct mbuf *m)
410{ 410{
411 int error; 411 int error;
412 412
413 m_adj(m, ETHER_ALIGN); 413 m_adj(m, ETHER_ALIGN);
414 414
415 error = bus_dmamap_load_mbuf(sc->rx.buf_tag, 415 error = bus_dmamap_load_mbuf(sc->rx.buf_tag,
416 sc->rx.buf_map[index].map, m, BUS_DMA_READ|BUS_DMA_NOWAIT); 416 sc->rx.buf_map[index].map, m, BUS_DMA_READ|BUS_DMA_NOWAIT);
417 if (error != 0) 417 if (error != 0)
418 return error; 418 return error;
419 419
420 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map, 420 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
421 0, sc->rx.buf_map[index].map->dm_mapsize, 421 0, sc->rx.buf_map[index].map->dm_mapsize,
422 BUS_DMASYNC_PREREAD); 422 BUS_DMASYNC_PREREAD);
423 423
424 sc->rx.buf_map[index].mbuf = m; 424 sc->rx.buf_map[index].mbuf = m;
425 sunxi_emac_setup_rxdesc(sc, index, 425 sunxi_emac_setup_rxdesc(sc, index,
426 sc->rx.buf_map[index].map->dm_segs[0].ds_addr); 426 sc->rx.buf_map[index].map->dm_segs[0].ds_addr);
427 427
428 return 0; 428 return 0;
429} 429}
430 430
431static struct mbuf * 431static struct mbuf *
432sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc) 432sunxi_emac_alloc_mbufcl(struct sunxi_emac_softc *sc)
433{ 433{
434 struct mbuf *m; 434 struct mbuf *m;
435 435
436 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 436 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
437 if (m != NULL) 437 if (m != NULL)
438 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 438 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
439 439
440 return m; 440 return m;
441} 441}
442 442
443static void 443static void
444sunxi_emac_start_locked(struct sunxi_emac_softc *sc) 444sunxi_emac_start_locked(struct sunxi_emac_softc *sc)
445{ 445{
446 struct ifnet *ifp = &sc->ec.ec_if; 446 struct ifnet *ifp = &sc->ec.ec_if;
447 struct mbuf *m; 447 struct mbuf *m;
448 uint32_t val; 448 uint32_t val;
449 int cnt, nsegs, start; 449 int cnt, nsegs, start;
450 450
451 EMAC_ASSERT_LOCKED(sc); 451 EMAC_ASSERT_LOCKED(sc);
452 452
453 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 453 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
454 return; 454 return;
455 455
456 for (cnt = 0, start = sc->tx.cur; ; cnt++) { 456 for (cnt = 0, start = sc->tx.cur; ; cnt++) {
457 if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) { 457 if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
458 ifp->if_flags |= IFF_OACTIVE; 458 ifp->if_flags |= IFF_OACTIVE;
459 break; 459 break;
460 } 460 }
461 461
462 IFQ_POLL(&ifp->if_snd, m); 462 IFQ_POLL(&ifp->if_snd, m);
463 if (m == NULL) 463 if (m == NULL)
464 break; 464 break;
465 465
466 nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m); 466 nsegs = sunxi_emac_setup_txbuf(sc, sc->tx.cur, m);
467 if (nsegs == 0) { 467 if (nsegs == 0) {
468 ifp->if_flags |= IFF_OACTIVE; 468 ifp->if_flags |= IFF_OACTIVE;
469 break; 469 break;
470 } 470 }
471 IFQ_DEQUEUE(&ifp->if_snd, m); 471 IFQ_DEQUEUE(&ifp->if_snd, m);
472 bpf_mtap(ifp, m); 472 bpf_mtap(ifp, m);
473 473
474 sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs); 474 sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
475 } 475 }
476 476
477 if (cnt != 0) { 477 if (cnt != 0) {
478 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map, 478 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
479 start, sc->tx.cur, TX_DESC_COUNT, 479 start, sc->tx.cur, TX_DESC_COUNT,
480 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 480 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
481 481
482 /* Start and run TX DMA */ 482 /* Start and run TX DMA */
483 val = RD4(sc, EMAC_TX_CTL_1); 483 val = RD4(sc, EMAC_TX_CTL_1);
484 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START); 484 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
485 } 485 }
486} 486}
487 487
488static void 488static void
489sunxi_emac_start(struct ifnet *ifp) 489sunxi_emac_start(struct ifnet *ifp)
490{ 490{
491 struct sunxi_emac_softc *sc = ifp->if_softc; 491 struct sunxi_emac_softc *sc = ifp->if_softc;
492 492
493 EMAC_LOCK(sc); 493 EMAC_LOCK(sc);
494 sunxi_emac_start_locked(sc); 494 sunxi_emac_start_locked(sc);
495 EMAC_UNLOCK(sc); 495 EMAC_UNLOCK(sc);
496} 496}
497 497
498static void 498static void
499sunxi_emac_tick(void *softc) 499sunxi_emac_tick(void *softc)
500{ 500{
501 struct sunxi_emac_softc *sc = softc; 501 struct sunxi_emac_softc *sc = softc;
502 struct mii_data *mii = &sc->mii; 502 struct mii_data *mii = &sc->mii;
503#ifndef EMAC_MPSAFE 503#ifndef EMAC_MPSAFE
504 int s = splnet(); 504 int s = splnet();
505#endif 505#endif
506 506
507 EMAC_LOCK(sc); 507 EMAC_LOCK(sc);
508 mii_tick(mii); 508 mii_tick(mii);
509 callout_schedule(&sc->stat_ch, hz); 509 callout_schedule(&sc->stat_ch, hz);
510 EMAC_UNLOCK(sc); 510 EMAC_UNLOCK(sc);
511 511
512#ifndef EMAC_MPSAFE 512#ifndef EMAC_MPSAFE
513 splx(s); 513 splx(s);
514#endif 514#endif
515} 515}
516 516
517/* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */ 517/* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
518static uint32_t 518static uint32_t
519bitrev32(uint32_t x) 519bitrev32(uint32_t x)
520{ 520{
521 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); 521 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
522 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); 522 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
523 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); 523 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
524 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); 524 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
525 525
526 return (x >> 16) | (x << 16); 526 return (x >> 16) | (x << 16);
527} 527}
528 528
529static void 529static void
530sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc) 530sunxi_emac_setup_rxfilter(struct sunxi_emac_softc *sc)
531{ 531{
532 struct ifnet *ifp = &sc->ec.ec_if; 532 struct ifnet *ifp = &sc->ec.ec_if;
533 uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo; 533 uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
534 struct ether_multi *enm; 534 struct ether_multi *enm;
535 struct ether_multistep step; 535 struct ether_multistep step;
536 const uint8_t *eaddr; 536 const uint8_t *eaddr;
537 537
538 EMAC_ASSERT_LOCKED(sc); 538 EMAC_ASSERT_LOCKED(sc);
539 539
540 val = 0; 540 val = 0;
541 hash[0] = hash[1] = 0; 541 hash[0] = hash[1] = 0;
542 542
543 if ((ifp->if_flags & IFF_PROMISC) != 0) 543 if ((ifp->if_flags & IFF_PROMISC) != 0)
544 val |= DIS_ADDR_FILTER; 544 val |= DIS_ADDR_FILTER;
545 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 545 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
546 val |= RX_ALL_MULTICAST; 546 val |= RX_ALL_MULTICAST;
547 hash[0] = hash[1] = ~0; 547 hash[0] = hash[1] = ~0;
548 } else { 548 } else {
549 val |= HASH_MULTICAST; 549 val |= HASH_MULTICAST;
550 ETHER_FIRST_MULTI(step, &sc->ec, enm); 550 ETHER_FIRST_MULTI(step, &sc->ec, enm);
551 while (enm != NULL) { 551 while (enm != NULL) {
552 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 552 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
553 crc &= 0x7f; 553 crc &= 0x7f;
554 crc = bitrev32(~crc) >> 26; 554 crc = bitrev32(~crc) >> 26;
555 hashreg = (crc >> 5); 555 hashreg = (crc >> 5);
556 hashbit = (crc & 0x1f); 556 hashbit = (crc & 0x1f);
557 hash[hashreg] |= (1 << hashbit); 557 hash[hashreg] |= (1 << hashbit);
558 ETHER_NEXT_MULTI(step, enm); 558 ETHER_NEXT_MULTI(step, enm);
559 } 559 }
560 } 560 }
561 561
562 /* Write our unicast address */ 562 /* Write our unicast address */
563 eaddr = CLLADDR(ifp->if_sadl); 563 eaddr = CLLADDR(ifp->if_sadl);
564 machi = (eaddr[5] << 8) | eaddr[4]; 564 machi = (eaddr[5] << 8) | eaddr[4];
565 maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) | 565 maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
566 (eaddr[0] << 0); 566 (eaddr[0] << 0);
567 WR4(sc, EMAC_ADDR_HIGH(0), machi); 567 WR4(sc, EMAC_ADDR_HIGH(0), machi);
568 WR4(sc, EMAC_ADDR_LOW(0), maclo); 568 WR4(sc, EMAC_ADDR_LOW(0), maclo);
569 569
570 /* Multicast hash filters */ 570 /* Multicast hash filters */
571 WR4(sc, EMAC_RX_HASH_0, hash[1]); 571 WR4(sc, EMAC_RX_HASH_0, hash[1]);
572 WR4(sc, EMAC_RX_HASH_1, hash[0]); 572 WR4(sc, EMAC_RX_HASH_1, hash[0]);
573 573
574 /* RX frame filter config */ 574 /* RX frame filter config */
575 WR4(sc, EMAC_RX_FRM_FLT, val); 575 WR4(sc, EMAC_RX_FRM_FLT, val);
576} 576}
577 577
578static void 578static void
579sunxi_emac_enable_intr(struct sunxi_emac_softc *sc) 579sunxi_emac_enable_intr(struct sunxi_emac_softc *sc)
580{ 580{
581 /* Enable interrupts */ 581 /* Enable interrupts */
582 WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN); 582 WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
583} 583}
584 584
585static void 585static void
586sunxi_emac_disable_intr(struct sunxi_emac_softc *sc) 586sunxi_emac_disable_intr(struct sunxi_emac_softc *sc)
587{ 587{
588 /* Disable interrupts */ 588 /* Disable interrupts */
589 WR4(sc, EMAC_INT_EN, 0); 589 WR4(sc, EMAC_INT_EN, 0);
590} 590}
591 591
592static int 592static int
593sunxi_emac_init_locked(struct sunxi_emac_softc *sc) 593sunxi_emac_init_locked(struct sunxi_emac_softc *sc)
594{ 594{
595 struct ifnet *ifp = &sc->ec.ec_if; 595 struct ifnet *ifp = &sc->ec.ec_if;
596 struct mii_data *mii = &sc->mii; 596 struct mii_data *mii = &sc->mii;
597 uint32_t val; 597 uint32_t val;
598 598
599 EMAC_ASSERT_LOCKED(sc); 599 EMAC_ASSERT_LOCKED(sc);
600 600
601 if ((ifp->if_flags & IFF_RUNNING) != 0) 601 if ((ifp->if_flags & IFF_RUNNING) != 0)
602 return 0; 602 return 0;
603 603
604 sunxi_emac_setup_rxfilter(sc); 604 sunxi_emac_setup_rxfilter(sc);
605 605
606 /* Configure DMA burst length and priorities */ 606 /* Configure DMA burst length and priorities */
607 val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT; 607 val = sunxi_emac_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
608 if (sunxi_emac_rx_tx_pri) 608 if (sunxi_emac_rx_tx_pri)
609 val |= BASIC_CTL_RX_TX_PRI; 609 val |= BASIC_CTL_RX_TX_PRI;
610 WR4(sc, EMAC_BASIC_CTL_1, val); 610 WR4(sc, EMAC_BASIC_CTL_1, val);
611 611
612 /* Enable interrupts */ 612 /* Enable interrupts */
613 sunxi_emac_enable_intr(sc); 613 sunxi_emac_enable_intr(sc);
614 614
615 /* Enable transmit DMA */ 615 /* Enable transmit DMA */
616 val = RD4(sc, EMAC_TX_CTL_1); 616 val = RD4(sc, EMAC_TX_CTL_1);
617 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME); 617 WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD | TX_NEXT_FRAME);
618 618
619 /* Enable receive DMA */ 619 /* Enable receive DMA */
620 val = RD4(sc, EMAC_RX_CTL_1); 620 val = RD4(sc, EMAC_RX_CTL_1);
621 WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD); 621 WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
622 622
623 /* Enable transmitter */ 623 /* Enable transmitter */
624 val = RD4(sc, EMAC_TX_CTL_0); 624 val = RD4(sc, EMAC_TX_CTL_0);
625 WR4(sc, EMAC_TX_CTL_0, val | TX_EN); 625 WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
626 626
627 /* Enable receiver */ 627 /* Enable receiver */
628 val = RD4(sc, EMAC_RX_CTL_0); 628 val = RD4(sc, EMAC_RX_CTL_0);
629 WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC); 629 WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
630 630
631 ifp->if_flags |= IFF_RUNNING; 631 ifp->if_flags |= IFF_RUNNING;
632 ifp->if_flags &= ~IFF_OACTIVE; 632 ifp->if_flags &= ~IFF_OACTIVE;
633 633
634 mii_mediachg(mii); 634 mii_mediachg(mii);
635 callout_schedule(&sc->stat_ch, hz); 635 callout_schedule(&sc->stat_ch, hz);
636 636
637 return 0; 637 return 0;
638} 638}
639 639
640static int 640static int
641sunxi_emac_init(struct ifnet *ifp) 641sunxi_emac_init(struct ifnet *ifp)
642{ 642{
643 struct sunxi_emac_softc *sc = ifp->if_softc; 643 struct sunxi_emac_softc *sc = ifp->if_softc;
644 int error; 644 int error;
645 645
646 EMAC_LOCK(sc); 646 EMAC_LOCK(sc);
647 error = sunxi_emac_init_locked(sc); 647 error = sunxi_emac_init_locked(sc);
648 EMAC_UNLOCK(sc); 648 EMAC_UNLOCK(sc);
649 649
650 return error; 650 return error;
651} 651}
652 652
653static void 653static void
654sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable) 654sunxi_emac_stop_locked(struct sunxi_emac_softc *sc, int disable)
655{ 655{
656 struct ifnet *ifp = &sc->ec.ec_if; 656 struct ifnet *ifp = &sc->ec.ec_if;
657 uint32_t val; 657 uint32_t val;
658 658
659 EMAC_ASSERT_LOCKED(sc); 659 EMAC_ASSERT_LOCKED(sc);
660 660
661 callout_stop(&sc->stat_ch); 661 callout_stop(&sc->stat_ch);
662 662
663 mii_down(&sc->mii); 663 mii_down(&sc->mii);
664 664
665 /* Stop transmit DMA and flush data in the TX FIFO */ 665 /* Stop transmit DMA and flush data in the TX FIFO */
666 val = RD4(sc, EMAC_TX_CTL_1); 666 val = RD4(sc, EMAC_TX_CTL_1);
667 val &= ~TX_DMA_EN; 667 val &= ~TX_DMA_EN;
668 val |= FLUSH_TX_FIFO; 668 val |= FLUSH_TX_FIFO;
669 WR4(sc, EMAC_TX_CTL_1, val); 669 WR4(sc, EMAC_TX_CTL_1, val);
670 670
671 /* Disable transmitter */ 671 /* Disable transmitter */
672 val = RD4(sc, EMAC_TX_CTL_0); 672 val = RD4(sc, EMAC_TX_CTL_0);
673 WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN); 673 WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
674 674
675 /* Disable receiver */ 675 /* Disable receiver */
676 val = RD4(sc, EMAC_RX_CTL_0); 676 val = RD4(sc, EMAC_RX_CTL_0);
677 WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN); 677 WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
678 678
679 /* Disable interrupts */ 679 /* Disable interrupts */
680 sunxi_emac_disable_intr(sc); 680 sunxi_emac_disable_intr(sc);
681 681
682 /* Disable transmit DMA */ 682 /* Disable transmit DMA */
683 val = RD4(sc, EMAC_TX_CTL_1); 683 val = RD4(sc, EMAC_TX_CTL_1);
684 WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN); 684 WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
685 685
686 /* Disable receive DMA */ 686 /* Disable receive DMA */
687 val = RD4(sc, EMAC_RX_CTL_1); 687 val = RD4(sc, EMAC_RX_CTL_1);
688 WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN); 688 WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
689 689
690 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 690 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
691} 691}
692 692
693static void 693static void
694sunxi_emac_stop(struct ifnet *ifp, int disable) 694sunxi_emac_stop(struct ifnet *ifp, int disable)
695{ 695{
696 struct sunxi_emac_softc * const sc = ifp->if_softc; 696 struct sunxi_emac_softc * const sc = ifp->if_softc;
697 697
698 EMAC_LOCK(sc); 698 EMAC_LOCK(sc);
699 sunxi_emac_stop_locked(sc, disable); 699 sunxi_emac_stop_locked(sc, disable);
700 EMAC_UNLOCK(sc); 700 EMAC_UNLOCK(sc);
701} 701}
702 702
703static int 703static int
704sunxi_emac_rxintr(struct sunxi_emac_softc *sc) 704sunxi_emac_rxintr(struct sunxi_emac_softc *sc)
705{ 705{
706 struct ifnet *ifp = &sc->ec.ec_if; 706 struct ifnet *ifp = &sc->ec.ec_if;
707 int error, index, len, npkt; 707 int error, index, len, npkt;
708 struct mbuf *m, *m0; 708 struct mbuf *m, *m0;
709 uint32_t status; 709 uint32_t status;
710 710
711 npkt = 0; 711 npkt = 0;
712 712
713 for (index = sc->rx.cur; ; index = RX_NEXT(index)) { 713 for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
714 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map, 714 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
715 index, index + 1, 715 index, index + 1,
716 RX_DESC_COUNT, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 716 RX_DESC_COUNT, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
717 717
718 status = le32toh(sc->rx.desc_ring[index].status); 718 status = le32toh(sc->rx.desc_ring[index].status);
719 if ((status & RX_DESC_CTL) != 0) 719 if ((status & RX_DESC_CTL) != 0)
720 break; 720 break;
721 721
722 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map, 722 bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
723 0, sc->rx.buf_map[index].map->dm_mapsize, 723 0, sc->rx.buf_map[index].map->dm_mapsize,
724 BUS_DMASYNC_POSTREAD); 724 BUS_DMASYNC_POSTREAD);
725 bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map); 725 bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
726 726
727 len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT; 727 len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
728 if (len != 0) { 728 if (len != 0) {
729 m = sc->rx.buf_map[index].mbuf; 729 m = sc->rx.buf_map[index].mbuf;
730 m_set_rcvif(m, ifp); 730 m_set_rcvif(m, ifp);
731 m->m_flags |= M_HASFCS; 731 m->m_flags |= M_HASFCS;
732 m->m_pkthdr.len = len; 732 m->m_pkthdr.len = len;
733 m->m_len = len; 733 m->m_len = len;
734 m->m_nextpkt = NULL; 734 m->m_nextpkt = NULL;
735 735
736 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 && 736 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0 &&
737 (status & RX_FRM_TYPE) != 0) { 737 (status & RX_FRM_TYPE) != 0) {
738 m->m_pkthdr.csum_flags = M_CSUM_IPv4 | 738 m->m_pkthdr.csum_flags = M_CSUM_IPv4 |
739 M_CSUM_TCPv4 | M_CSUM_UDPv4; 739 M_CSUM_TCPv4 | M_CSUM_UDPv4;
740 if ((status & RX_HEADER_ERR) != 0) 740 if ((status & RX_HEADER_ERR) != 0)
741 m->m_pkthdr.csum_flags |= 741 m->m_pkthdr.csum_flags |=
742 M_CSUM_IPv4_BAD; 742 M_CSUM_IPv4_BAD;
743 if ((status & RX_PAYLOAD_ERR) != 0) 743 if ((status & RX_PAYLOAD_ERR) != 0)
744 m->m_pkthdr.csum_flags |= 744 m->m_pkthdr.csum_flags |=
745 M_CSUM_TCP_UDP_BAD; 745 M_CSUM_TCP_UDP_BAD;
746 } 746 }
747 747
748 ++npkt; 748 ++npkt;
749 749
750 if_percpuq_enqueue(ifp->if_percpuq, m); 750 if_percpuq_enqueue(ifp->if_percpuq, m);
751 } 751 }
752 752
753 if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) { 753 if ((m0 = sunxi_emac_alloc_mbufcl(sc)) != NULL) {
754 error = sunxi_emac_setup_rxbuf(sc, index, m0); 754 error = sunxi_emac_setup_rxbuf(sc, index, m0);
755 if (error != 0) { 755 if (error != 0) {
756 /* XXX hole in RX ring */ 756 /* XXX hole in RX ring */
757 } 757 }
758 } else 758 } else
759 ifp->if_ierrors++; 759 ifp->if_ierrors++;
760 760
761 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map, 761 sunxi_emac_dma_sync(sc, sc->rx.desc_tag, sc->rx.desc_map,
762 index, index + 1, 762 index, index + 1,
763 RX_DESC_COUNT, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 763 RX_DESC_COUNT, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
764 } 764 }
765 765
766 sc->rx.cur = index; 766 sc->rx.cur = index;
767 767
768 return npkt; 768 return npkt;
769} 769}
770 770
771static void 771static void
772sunxi_emac_txintr(struct sunxi_emac_softc *sc) 772sunxi_emac_txintr(struct sunxi_emac_softc *sc)
773{ 773{
774 struct ifnet *ifp = &sc->ec.ec_if; 774 struct ifnet *ifp = &sc->ec.ec_if;
775 struct sunxi_emac_bufmap *bmap; 775 struct sunxi_emac_bufmap *bmap;
776 struct sunxi_emac_desc *desc; 776 struct sunxi_emac_desc *desc;
777 uint32_t status; 777 uint32_t status;
778 int i; 778 int i;
779 779
780 EMAC_ASSERT_LOCKED(sc); 780 EMAC_ASSERT_LOCKED(sc);
781 781
782 for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) { 782 for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
783 KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT); 783 KASSERT(sc->tx.queued > 0 && sc->tx.queued <= TX_DESC_COUNT);
784 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map, 784 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
785 i, i + 1, TX_DESC_COUNT, 785 i, i + 1, TX_DESC_COUNT,
786 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 786 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
787 desc = &sc->tx.desc_ring[i]; 787 desc = &sc->tx.desc_ring[i];
788 status = le32toh(desc->status); 788 status = le32toh(desc->status);
789 if ((status & TX_DESC_CTL) != 0) 789 if ((status & TX_DESC_CTL) != 0)
790 break; 790 break;
791 bmap = &sc->tx.buf_map[i]; 791 bmap = &sc->tx.buf_map[i];
792 if (bmap->mbuf != NULL) { 792 if (bmap->mbuf != NULL) {
793 bus_dmamap_sync(sc->tx.buf_tag, bmap->map, 793 bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
794 0, bmap->map->dm_mapsize, 794 0, bmap->map->dm_mapsize,
795 BUS_DMASYNC_POSTWRITE); 795 BUS_DMASYNC_POSTWRITE);
796 bus_dmamap_unload(sc->tx.buf_tag, bmap->map); 796 bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
797 m_freem(bmap->mbuf); 797 m_freem(bmap->mbuf);
798 bmap->mbuf = NULL; 798 bmap->mbuf = NULL;
799 } 799 }
800 800
801 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0); 801 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
802 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map, 802 sunxi_emac_dma_sync(sc, sc->tx.desc_tag, sc->tx.desc_map,
803 i, i + 1, TX_DESC_COUNT, 803 i, i + 1, TX_DESC_COUNT,
804 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 804 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
805 805
806 ifp->if_flags &= ~IFF_OACTIVE; 806 ifp->if_flags &= ~IFF_OACTIVE;
807 ifp->if_opackets++; 807 ifp->if_opackets++;
808 } 808 }
809 809
810 sc->tx.next = i; 810 sc->tx.next = i;
811} 811}
812 812
813static int 813static int
814sunxi_emac_intr(void *arg) 814sunxi_emac_intr(void *arg)
815{ 815{
816 struct sunxi_emac_softc *sc = arg; 816 struct sunxi_emac_softc *sc = arg;
817 struct ifnet *ifp = &sc->ec.ec_if; 817 struct ifnet *ifp = &sc->ec.ec_if;
818 uint32_t val; 818 uint32_t val;
819 819
820 EMAC_LOCK(sc); 820 EMAC_LOCK(sc);
821 821
822 val = RD4(sc, EMAC_INT_STA); 822 val = RD4(sc, EMAC_INT_STA);
823 WR4(sc, EMAC_INT_STA, val); 823 WR4(sc, EMAC_INT_STA, val);
824 824
825 if (val & RX_INT) 825 if (val & RX_INT)
826 sunxi_emac_rxintr(sc); 826 sunxi_emac_rxintr(sc);
827 827
828 if (val & (TX_INT|TX_BUF_UA_INT)) { 828 if (val & (TX_INT|TX_BUF_UA_INT)) {
829 sunxi_emac_txintr(sc); 829 sunxi_emac_txintr(sc);
830 if_schedule_deferred_start(ifp); 830 if_schedule_deferred_start(ifp);
831 } 831 }
832 832
833 EMAC_UNLOCK(sc); 833 EMAC_UNLOCK(sc);
834 834
835 return 1; 835 return 1;
836} 836}
837 837
838static int 838static int
839sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data) 839sunxi_emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
840{ 840{
841 struct sunxi_emac_softc *sc = ifp->if_softc; 841 struct sunxi_emac_softc *sc = ifp->if_softc;
842 struct mii_data *mii = &sc->mii; 842 struct mii_data *mii = &sc->mii;
843 struct ifreq *ifr = data; 843 struct ifreq *ifr = data;
844 int error, s; 844 int error, s;
845 845
846#ifndef EMAC_MPSAFE 846#ifndef EMAC_MPSAFE
847 s = splnet(); 847 s = splnet();
848#endif 848#endif
849 849
850 switch (cmd) { 850 switch (cmd) {
851 case SIOCSIFMEDIA: 851 case SIOCSIFMEDIA:
852 case SIOCGIFMEDIA: 852 case SIOCGIFMEDIA:
853#ifdef EMAC_MPSAFE 853#ifdef EMAC_MPSAFE
854 s = splnet(); 854 s = splnet();
855#endif 855#endif
856 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 856 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
857#ifdef EMAC_MPSAFE 857#ifdef EMAC_MPSAFE
858 splx(s); 858 splx(s);
859#endif 859#endif
860 break; 860 break;
861 default: 861 default:
862#ifdef EMAC_MPSAFE 862#ifdef EMAC_MPSAFE
863 s = splnet(); 863 s = splnet();
864#endif 864#endif
865 error = ether_ioctl(ifp, cmd, data); 865 error = ether_ioctl(ifp, cmd, data);
866#ifdef EMAC_MPSAFE 866#ifdef EMAC_MPSAFE
867 splx(s); 867 splx(s);
868#endif 868#endif
869 if (error != ENETRESET) 869 if (error != ENETRESET)
870 break; 870 break;
871 871
872 error = 0; 872 error = 0;
873 873
874 if (cmd == SIOCSIFCAP) 874 if (cmd == SIOCSIFCAP)
875 error = (*ifp->if_init)(ifp); 875 error = (*ifp->if_init)(ifp);
876 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 876 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
877 ; 877 ;
878 else if ((ifp->if_flags & IFF_RUNNING) != 0) { 878 else if ((ifp->if_flags & IFF_RUNNING) != 0) {
879 EMAC_LOCK(sc); 879 EMAC_LOCK(sc);
880 sunxi_emac_setup_rxfilter(sc); 880 sunxi_emac_setup_rxfilter(sc);
881 EMAC_UNLOCK(sc); 881 EMAC_UNLOCK(sc);
882 } 882 }
883 break; 883 break;
884 } 884 }
885 885
886#ifndef EMAC_MPSAFE 886#ifndef EMAC_MPSAFE
887 splx(s); 887 splx(s);
888#endif 888#endif
889 889
890 return error; 890 return error;
891} 891}
892 892
893static bool 893static bool
894sunxi_emac_has_internal_phy(struct sunxi_emac_softc *sc) 894sunxi_emac_has_internal_phy(struct sunxi_emac_softc *sc)
895{ 895{
896 const char * mdio_internal_compat[] = { 896 const char * mdio_internal_compat[] = {
897 "allwinner,sun8i-h3-mdio-internal", 897 "allwinner,sun8i-h3-mdio-internal",
898 NULL 898 NULL
899 }; 899 };
900 int phy; 900 int phy;
901 901
902 /* Non-standard property, for compatible with old dts files */ 902 /* Non-standard property, for compatible with old dts files */
903 if (of_hasprop(sc->phandle, "allwinner,use-internal-phy")) 903 if (of_hasprop(sc->phandle, "allwinner,use-internal-phy"))
904 return true; 904 return true;
905 905
906 phy = fdtbus_get_phandle(sc->phandle, "phy-handle"); 906 phy = fdtbus_get_phandle(sc->phandle, "phy-handle");
907 if (phy == -1) 907 if (phy == -1)
908 return false; 908 return false;
909 909
910 /* For internal PHY, check compatible string of parent node */ 910 /* For internal PHY, check compatible string of parent node */
911 return of_compatible(OF_parent(phy), mdio_internal_compat) >= 0; 911 return of_compatible(OF_parent(phy), mdio_internal_compat) >= 0;
912} 912}
913 913
914static int 914static int
915sunxi_emac_setup_phy(struct sunxi_emac_softc *sc) 915sunxi_emac_setup_phy(struct sunxi_emac_softc *sc)
916{ 916{
917 uint32_t reg, tx_delay, rx_delay; 917 uint32_t reg, tx_delay, rx_delay;
918 const char *phy_type; 918 const char *phy_type;
919 919
920 phy_type = fdtbus_get_string(sc->phandle, "phy-mode"); 920 phy_type = fdtbus_get_string(sc->phandle, "phy-mode");
921 if (phy_type == NULL) 921 if (phy_type == NULL)
922 return 0; 922 return 0;
923 923
924 aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type); 924 aprint_debug_dev(sc->dev, "PHY type: %s\n", phy_type);
925 925
926 reg = SYSCONRD4(sc, 0); 926 reg = SYSCONRD4(sc, 0);
927 927
928 reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN); 928 reg &= ~(EMAC_CLK_PIT | EMAC_CLK_SRC | EMAC_CLK_RMII_EN);
929 if (strcmp(phy_type, "rgmii") == 0) 929 if (strcmp(phy_type, "rgmii") == 0)
930 reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII; 930 reg |= EMAC_CLK_PIT_RGMII | EMAC_CLK_SRC_RGMII;
931 else if (strcmp(phy_type, "rmii") == 0) 931 else if (strcmp(phy_type, "rmii") == 0)
932 reg |= EMAC_CLK_RMII_EN; 932 reg |= EMAC_CLK_RMII_EN;
933 else 933 else
934 reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII; 934 reg |= EMAC_CLK_PIT_MII | EMAC_CLK_SRC_MII;
935 935
936 if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) { 936 if (of_getprop_uint32(sc->phandle, "tx-delay", &tx_delay) == 0) {
937 reg &= ~EMAC_CLK_ETXDC; 937 reg &= ~EMAC_CLK_ETXDC;
938 reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT); 938 reg |= (tx_delay << EMAC_CLK_ETXDC_SHIFT);
939 } 939 }
940 if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) { 940 if (of_getprop_uint32(sc->phandle, "rx-delay", &rx_delay) == 0) {
941 reg &= ~EMAC_CLK_ERXDC; 941 reg &= ~EMAC_CLK_ERXDC;
942 reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT); 942 reg |= (rx_delay << EMAC_CLK_ERXDC_SHIFT);
943 } 943 }
944 944
945 if (sc->type == EMAC_H3) { 945 if (sc->type == EMAC_H3) {
946 if (sunxi_emac_has_internal_phy(sc)) { 946 if (sunxi_emac_has_internal_phy(sc)) {
947 reg |= EMAC_CLK_EPHY_SELECT; 947 reg |= EMAC_CLK_EPHY_SELECT;
948 reg &= ~EMAC_CLK_EPHY_SHUTDOWN; 948 reg &= ~EMAC_CLK_EPHY_SHUTDOWN;
949 if (of_hasprop(sc->phandle, 949 if (of_hasprop(sc->phandle,
950 "allwinner,leds-active-low")) 950 "allwinner,leds-active-low"))
951 reg |= EMAC_CLK_EPHY_LED_POL; 951 reg |= EMAC_CLK_EPHY_LED_POL;
952 else 952 else
953 reg &= ~EMAC_CLK_EPHY_LED_POL; 953 reg &= ~EMAC_CLK_EPHY_LED_POL;
954 954
955 /* Set internal PHY addr to 1 */ 955 /* Set internal PHY addr to 1 */
956 reg &= ~EMAC_CLK_EPHY_ADDR; 956 reg &= ~EMAC_CLK_EPHY_ADDR;
957 reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT); 957 reg |= (1 << EMAC_CLK_EPHY_ADDR_SHIFT);
958 } else { 958 } else {
959 reg &= ~EMAC_CLK_EPHY_SELECT; 959 reg &= ~EMAC_CLK_EPHY_SELECT;
960 } 960 }
961 } 961 }
962 962
963 aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg); 963 aprint_debug_dev(sc->dev, "EMAC clock: 0x%08x\n", reg);
964 964
965 SYSCONWR4(sc, 0, reg); 965 SYSCONWR4(sc, 0, reg);
966 966
967 return 0; 967 return 0;
968} 968}
969 969
970static int 970static int
971sunxi_emac_setup_resources(struct sunxi_emac_softc *sc) 971sunxi_emac_setup_resources(struct sunxi_emac_softc *sc)
972{ 972{
973 u_int freq; 973 u_int freq;
974 int error, div; 974 int error, div;
975 975
976 /* Configure PHY for MII or RGMII mode */ 976 /* Configure PHY for MII or RGMII mode */
977 if (sunxi_emac_setup_phy(sc) != 0) 977 if (sunxi_emac_setup_phy(sc) != 0)
978 return ENXIO; 978 return ENXIO;
979 979
980 /* Enable clocks */ 980 /* Enable clocks */
981 error = clk_enable(sc->clk_ahb); 981 error = clk_enable(sc->clk_ahb);
982 if (error != 0) { 982 if (error != 0) {
983 aprint_error_dev(sc->dev, "cannot enable ahb clock\n"); 983 aprint_error_dev(sc->dev, "cannot enable ahb clock\n");
984 return error; 984 return error;
985 } 985 }
986 986
987 if (sc->clk_ephy != NULL) { 987 if (sc->clk_ephy != NULL) {
988 error = clk_enable(sc->clk_ephy); 988 error = clk_enable(sc->clk_ephy);
989 if (error != 0) { 989 if (error != 0) {
990 aprint_error_dev(sc->dev, "cannot enable ephy clock\n"); 990 aprint_error_dev(sc->dev, "cannot enable ephy clock\n");
991 return error; 991 return error;
992 } 992 }
993 } 993 }
994 994
995 /* De-assert reset */ 995 /* De-assert reset */
996 error = fdtbus_reset_deassert(sc->rst_ahb); 996 error = fdtbus_reset_deassert(sc->rst_ahb);
997 if (error != 0) { 997 if (error != 0) {
998 aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n"); 998 aprint_error_dev(sc->dev, "cannot de-assert ahb reset\n");
999 return error; 999 return error;
1000 } 1000 }
1001 if (sc->rst_ephy != NULL) { 1001 if (sc->rst_ephy != NULL) {
1002 error = fdtbus_reset_deassert(sc->rst_ephy); 1002 error = fdtbus_reset_deassert(sc->rst_ephy);
1003 if (error != 0) { 1003 if (error != 0) {
1004 aprint_error_dev(sc->dev, 1004 aprint_error_dev(sc->dev,
1005 "cannot de-assert ephy reset\n"); 1005 "cannot de-assert ephy reset\n");
1006 return error; 1006 return error;
1007 } 1007 }
1008 } 1008 }
1009 1009
1010 /* Enable PHY regulator if applicable */ 1010 /* Enable PHY regulator if applicable */
1011 if (sc->reg_phy != NULL) { 1011 if (sc->reg_phy != NULL) {
1012 error = fdtbus_regulator_enable(sc->reg_phy); 1012 error = fdtbus_regulator_enable(sc->reg_phy);
1013 if (error != 0) { 1013 if (error != 0) {
1014 aprint_error_dev(sc->dev, 1014 aprint_error_dev(sc->dev,
1015 "cannot enable PHY regulator\n"); 1015 "cannot enable PHY regulator\n");
1016 return error; 1016 return error;
1017 } 1017 }
1018 } 1018 }
1019 1019
1020 /* Determine MDC clock divide ratio based on AHB clock */ 1020 /* Determine MDC clock divide ratio based on AHB clock */
1021 freq = clk_get_rate(sc->clk_ahb); 1021 freq = clk_get_rate(sc->clk_ahb);
1022 if (freq == 0) { 1022 if (freq == 0) {
1023 aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n"); 1023 aprint_error_dev(sc->dev, "cannot get AHB clock frequency\n");
1024 return ENXIO; 1024 return ENXIO;
1025 } 1025 }
1026 div = freq / MDIO_FREQ; 1026 div = freq / MDIO_FREQ;
1027 if (div <= 16) 1027 if (div <= 16)
1028 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16; 1028 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1029 else if (div <= 32) 1029 else if (div <= 32)
1030 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32; 1030 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1031 else if (div <= 64) 1031 else if (div <= 64)
1032 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64; 1032 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1033 else if (div <= 128) 1033 else if (div <= 128)
1034 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128; 1034 sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1035 else { 1035 else {
1036 aprint_error_dev(sc->dev, 1036 aprint_error_dev(sc->dev,
1037 "cannot determine MDC clock divide ratio\n"); 1037 "cannot determine MDC clock divide ratio\n");
1038 return ENXIO; 1038 return ENXIO;
1039 } 1039 }
1040 1040
1041 aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n", 1041 aprint_debug_dev(sc->dev, "AHB frequency %u Hz, MDC div: 0x%x\n",
1042 freq, sc->mdc_div_ratio_m); 1042 freq, sc->mdc_div_ratio_m);
1043 1043
1044 return 0; 1044 return 0;
1045} 1045}
1046 1046
1047static void  1047static void
1048sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr) 1048sunxi_emac_get_eaddr(struct sunxi_emac_softc *sc, uint8_t *eaddr)
1049{ 1049{
1050 uint32_t maclo, machi; 1050 uint32_t maclo, machi;
1051#if notyet 1051#if notyet
1052 u_char rootkey[16]; 1052 u_char rootkey[16];
1053#endif 1053#endif
1054 1054
1055 machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff; 1055 machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1056 maclo = RD4(sc, EMAC_ADDR_LOW(0)); 1056 maclo = RD4(sc, EMAC_ADDR_LOW(0));
1057 1057
1058 if (maclo == 0xffffffff && machi == 0xffff) { 1058 if (maclo == 0xffffffff && machi == 0xffff) {
1059#if notyet 1059#if notyet
1060 /* MAC address in hardware is invalid, create one */ 1060 /* MAC address in hardware is invalid, create one */
1061 if (aw_sid_get_rootkey(rootkey) == 0 && 1061 if (aw_sid_get_rootkey(rootkey) == 0 &&
1062 (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] | 1062 (rootkey[3] | rootkey[12] | rootkey[13] | rootkey[14] |
1063 rootkey[15]) != 0) { 1063 rootkey[15]) != 0) {
1064 /* MAC address is derived from the root key in SID */ 1064 /* MAC address is derived from the root key in SID */
1065 maclo = (rootkey[13] << 24) | (rootkey[12] << 16) | 1065 maclo = (rootkey[13] << 24) | (rootkey[12] << 16) |
1066 (rootkey[3] << 8) | 0x02; 1066 (rootkey[3] << 8) | 0x02;
1067 machi = (rootkey[15] << 8) | rootkey[14]; 1067 machi = (rootkey[15] << 8) | rootkey[14];
1068 } else { 1068 } else {
1069#endif 1069#endif
1070 /* Create one */ 1070 /* Create one */
1071 maclo = 0x00f2 | (cprng_strong32() & 0xffff0000); 1071 maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1072 machi = cprng_strong32() & 0xffff; 1072 machi = cprng_strong32() & 0xffff;
1073#if notyet 1073#if notyet
1074 } 1074 }
1075#endif 1075#endif
1076 } 1076 }
1077 1077
1078 eaddr[0] = maclo & 0xff; 1078 eaddr[0] = maclo & 0xff;
1079 eaddr[1] = (maclo >> 8) & 0xff; 1079 eaddr[1] = (maclo >> 8) & 0xff;
1080 eaddr[2] = (maclo >> 16) & 0xff; 1080 eaddr[2] = (maclo >> 16) & 0xff;
1081 eaddr[3] = (maclo >> 24) & 0xff; 1081 eaddr[3] = (maclo >> 24) & 0xff;
1082 eaddr[4] = machi & 0xff; 1082 eaddr[4] = machi & 0xff;
1083 eaddr[5] = (machi >> 8) & 0xff; 1083 eaddr[5] = (machi >> 8) & 0xff;
1084} 1084}
1085 1085
1086#ifdef SUNXI_EMAC_DEBUG 1086#ifdef SUNXI_EMAC_DEBUG
1087static void 1087static void
1088sunxi_emac_dump_regs(struct sunxi_emac_softc *sc) 1088sunxi_emac_dump_regs(struct sunxi_emac_softc *sc)
1089{ 1089{
1090 static const struct { 1090 static const struct {
1091 const char *name; 1091 const char *name;
1092 u_int reg; 1092 u_int reg;
1093 } regs[] = { 1093 } regs[] = {
1094 { "BASIC_CTL_0", EMAC_BASIC_CTL_0 }, 1094 { "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1095 { "BASIC_CTL_1", EMAC_BASIC_CTL_1 }, 1095 { "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1096 { "INT_STA", EMAC_INT_STA }, 1096 { "INT_STA", EMAC_INT_STA },
1097 { "INT_EN", EMAC_INT_EN }, 1097 { "INT_EN", EMAC_INT_EN },
1098 { "TX_CTL_0", EMAC_TX_CTL_0 }, 1098 { "TX_CTL_0", EMAC_TX_CTL_0 },
1099 { "TX_CTL_1", EMAC_TX_CTL_1 }, 1099 { "TX_CTL_1", EMAC_TX_CTL_1 },
1100 { "TX_FLOW_CTL", EMAC_TX_FLOW_CTL }, 1100 { "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1101 { "TX_DMA_LIST", EMAC_TX_DMA_LIST }, 1101 { "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1102 { "RX_CTL_0", EMAC_RX_CTL_0 }, 1102 { "RX_CTL_0", EMAC_RX_CTL_0 },
1103 { "RX_CTL_1", EMAC_RX_CTL_1 }, 1103 { "RX_CTL_1", EMAC_RX_CTL_1 },
1104 { "RX_DMA_LIST", EMAC_RX_DMA_LIST }, 1104 { "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1105 { "RX_FRM_FLT", EMAC_RX_FRM_FLT }, 1105 { "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1106 { "RX_HASH_0", EMAC_RX_HASH_0 }, 1106 { "RX_HASH_0", EMAC_RX_HASH_0 },
1107 { "RX_HASH_1", EMAC_RX_HASH_1 }, 1107 { "RX_HASH_1", EMAC_RX_HASH_1 },
1108 { "MII_CMD", EMAC_MII_CMD }, 1108 { "MII_CMD", EMAC_MII_CMD },
1109 { "ADDR_HIGH0", EMAC_ADDR_HIGH(0) }, 1109 { "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1110 { "ADDR_LOW0", EMAC_ADDR_LOW(0) }, 1110 { "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1111 { "TX_DMA_STA", EMAC_TX_DMA_STA }, 1111 { "TX_DMA_STA", EMAC_TX_DMA_STA },
1112 { "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC }, 1112 { "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1113 { "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF }, 1113 { "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1114 { "RX_DMA_STA", EMAC_RX_DMA_STA }, 1114 { "RX_DMA_STA", EMAC_RX_DMA_STA },
1115 { "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC }, 1115 { "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1116 { "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF }, 1116 { "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1117 { "RGMII_STA", EMAC_RGMII_STA }, 1117 { "RGMII_STA", EMAC_RGMII_STA },
1118 }; 1118 };
1119 u_int n; 1119 u_int n;
1120 1120
1121 for (n = 0; n < __arraycount(regs); n++) 1121 for (n = 0; n < __arraycount(regs); n++)
1122 device_printf(dev, " %-20s %08x\n", regs[n].name, 1122 device_printf(dev, " %-20s %08x\n", regs[n].name,
1123 RD4(sc, regs[n].reg)); 1123 RD4(sc, regs[n].reg));
1124} 1124}
1125#endif 1125#endif
1126 1126
1127static int 1127static int
1128sunxi_emac_phy_reset(struct sunxi_emac_softc *sc) 1128sunxi_emac_phy_reset(struct sunxi_emac_softc *sc)
1129{ 1129{
1130 uint32_t delay_prop[3]; 1130 uint32_t delay_prop[3];
1131 int pin_value; 1131 int pin_value;
1132 1132
1133 if (sc->pin_reset == NULL) 1133 if (sc->pin_reset == NULL)
1134 return 0; 1134 return 0;
1135 1135
1136 if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop, 1136 if (OF_getprop(sc->phandle, "allwinner,reset-delays-us", delay_prop,
1137 sizeof(delay_prop)) <= 0) 1137 sizeof(delay_prop)) <= 0)
1138 return ENXIO; 1138 return ENXIO;
1139 1139
1140 pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low"); 1140 pin_value = of_hasprop(sc->phandle, "allwinner,reset-active-low");
1141 1141
1142 fdtbus_gpio_write(sc->pin_reset, pin_value); 1142 fdtbus_gpio_write(sc->pin_reset, pin_value);
1143 delay(htole32(delay_prop[0])); 1143 delay(htole32(delay_prop[0]));
1144 fdtbus_gpio_write(sc->pin_reset, !pin_value); 1144 fdtbus_gpio_write(sc->pin_reset, !pin_value);
1145 delay(htole32(delay_prop[1])); 1145 delay(htole32(delay_prop[1]));
1146 fdtbus_gpio_write(sc->pin_reset, pin_value); 1146 fdtbus_gpio_write(sc->pin_reset, pin_value);
1147 delay(htole32(delay_prop[2])); 1147 delay(htole32(delay_prop[2]));
1148 1148
1149 return 0; 1149 return 0;
1150} 1150}
1151 1151
1152static int 1152static int
1153sunxi_emac_reset(struct sunxi_emac_softc *sc) 1153sunxi_emac_reset(struct sunxi_emac_softc *sc)
1154{ 1154{
1155 int retry; 1155 int retry;
1156 1156
1157 /* Reset PHY if necessary */ 1157 /* Reset PHY if necessary */
1158 if (sunxi_emac_phy_reset(sc) != 0) { 1158 if (sunxi_emac_phy_reset(sc) != 0) {
1159 aprint_error_dev(sc->dev, "failed to reset PHY\n"); 1159 aprint_error_dev(sc->dev, "failed to reset PHY\n");
1160 return ENXIO; 1160 return ENXIO;
1161 } 1161 }
1162 1162
1163 /* Soft reset all registers and logic */ 1163 /* Soft reset all registers and logic */
1164 WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST); 1164 WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1165 1165
1166 /* Wait for soft reset bit to self-clear */ 1166 /* Wait for soft reset bit to self-clear */
1167 for (retry = SOFT_RST_RETRY; retry > 0; retry--) { 1167 for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1168 if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0) 1168 if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1169 break; 1169 break;
1170 delay(10); 1170 delay(10);
1171 } 1171 }
1172 if (retry == 0) { 1172 if (retry == 0) {
1173 aprint_error_dev(sc->dev, "soft reset timed out\n"); 1173 aprint_error_dev(sc->dev, "soft reset timed out\n");
1174#ifdef SUNXI_EMAC_DEBUG 1174#ifdef SUNXI_EMAC_DEBUG
1175 sunxi_emac_dump_regs(sc); 1175 sunxi_emac_dump_regs(sc);
1176#endif 1176#endif
1177 return ETIMEDOUT; 1177 return ETIMEDOUT;
1178 } 1178 }
1179 1179
1180 return 0; 1180 return 0;
1181} 1181}
1182 1182
1183static int 1183static int
1184sunxi_emac_setup_dma(struct sunxi_emac_softc *sc) 1184sunxi_emac_setup_dma(struct sunxi_emac_softc *sc)
1185{ 1185{
1186 struct mbuf *m; 1186 struct mbuf *m;
1187 int error, nsegs, i; 1187 int error, nsegs, i;
1188 1188
1189 /* Setup TX ring */ 1189 /* Setup TX ring */
1190 sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat; 1190 sc->tx.buf_tag = sc->tx.desc_tag = sc->dmat;
1191 error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0, 1191 error = bus_dmamap_create(sc->dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 0,
1192 BUS_DMA_WAITOK, &sc->tx.desc_map); 1192 BUS_DMA_WAITOK, &sc->tx.desc_map);
1193 if (error) 1193 if (error)
1194 return error; 1194 return error;
1195 error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0, 1195 error = bus_dmamem_alloc(sc->dmat, TX_DESC_SIZE, DESC_ALIGN, 0,
1196 &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK); 1196 &sc->tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1197 if (error) 1197 if (error)
1198 return error; 1198 return error;
1199 error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs, 1199 error = bus_dmamem_map(sc->dmat, &sc->tx.desc_dmaseg, nsegs,
1200 TX_DESC_SIZE, (void *)&sc->tx.desc_ring, 1200 TX_DESC_SIZE, (void *)&sc->tx.desc_ring,
1201 BUS_DMA_WAITOK); 1201 BUS_DMA_WAITOK);
1202 if (error) 1202 if (error)
1203 return error; 1203 return error;
1204 error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring, 1204 error = bus_dmamap_load(sc->dmat, sc->tx.desc_map, sc->tx.desc_ring,
1205 TX_DESC_SIZE, NULL, BUS_DMA_WAITOK); 1205 TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1206 if (error) 1206 if (error)
1207 return error; 1207 return error;
1208 sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr; 1208 sc->tx.desc_ring_paddr = sc->tx.desc_map->dm_segs[0].ds_addr;
1209 1209
1210 memset(sc->tx.desc_ring, 0, TX_DESC_SIZE); 1210 memset(sc->tx.desc_ring, 0, TX_DESC_SIZE);
1211 bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE, 1211 bus_dmamap_sync(sc->dmat, sc->tx.desc_map, 0, TX_DESC_SIZE,
1212 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1212 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1213 1213
1214 for (i = 0; i < TX_DESC_COUNT; i++) 1214 for (i = 0; i < TX_DESC_COUNT; i++)
1215 sc->tx.desc_ring[i].next = 1215 sc->tx.desc_ring[i].next =
1216 htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i))); 1216 htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1217 1217
1218 sc->tx.queued = TX_DESC_COUNT; 1218 sc->tx.queued = TX_DESC_COUNT;
1219 for (i = 0; i < TX_DESC_COUNT; i++) { 1219 for (i = 0; i < TX_DESC_COUNT; i++) {
1220 error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES, 1220 error = bus_dmamap_create(sc->tx.buf_tag, MCLBYTES,
1221 TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK, 1221 TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1222 &sc->tx.buf_map[i].map); 1222 &sc->tx.buf_map[i].map);
1223 if (error != 0) { 1223 if (error != 0) {
1224 device_printf(sc->dev, "cannot create TX buffer map\n"); 1224 device_printf(sc->dev, "cannot create TX buffer map\n");
1225 return error; 1225 return error;
1226 } 1226 }
1227 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0); 1227 sunxi_emac_setup_txdesc(sc, i, 0, 0, 0);
1228 } 1228 }
1229 1229
1230 /* Setup RX ring */ 1230 /* Setup RX ring */
1231 sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat; 1231 sc->rx.buf_tag = sc->rx.desc_tag = sc->dmat;
1232 error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0, 1232 error = bus_dmamap_create(sc->dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 0,
1233 BUS_DMA_WAITOK, &sc->rx.desc_map); 1233 BUS_DMA_WAITOK, &sc->rx.desc_map);
1234 if (error) 1234 if (error)
1235 return error; 1235 return error;
1236 error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0, 1236 error = bus_dmamem_alloc(sc->dmat, RX_DESC_SIZE, DESC_ALIGN, 0,
1237 &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK); 1237 &sc->rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1238 if (error) 1238 if (error)
1239 return error; 1239 return error;
1240 error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs, 1240 error = bus_dmamem_map(sc->dmat, &sc->rx.desc_dmaseg, nsegs,
1241 RX_DESC_SIZE, (void *)&sc->rx.desc_ring, 1241 RX_DESC_SIZE, (void *)&sc->rx.desc_ring,
1242 BUS_DMA_WAITOK); 1242 BUS_DMA_WAITOK);
1243 if (error) 1243 if (error)
1244 return error; 1244 return error;
1245 error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring, 1245 error = bus_dmamap_load(sc->dmat, sc->rx.desc_map, sc->rx.desc_ring,
1246 RX_DESC_SIZE, NULL, BUS_DMA_WAITOK); 1246 RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1247 if (error) 1247 if (error)
1248 return error; 1248 return error;
1249 sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr; 1249 sc->rx.desc_ring_paddr = sc->rx.desc_map->dm_segs[0].ds_addr;
1250 1250
1251 memset(sc->rx.desc_ring, 0, RX_DESC_SIZE); 1251 memset(sc->rx.desc_ring, 0, RX_DESC_SIZE);
1252 1252
1253 for (i = 0; i < RX_DESC_COUNT; i++) { 1253 for (i = 0; i < RX_DESC_COUNT; i++) {
1254 error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES, 1254 error = bus_dmamap_create(sc->rx.buf_tag, MCLBYTES,
1255 RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK, 1255 RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1256 &sc->rx.buf_map[i].map); 1256 &sc->rx.buf_map[i].map);
1257 if (error != 0) { 1257 if (error != 0) {
1258 device_printf(sc->dev, "cannot create RX buffer map\n"); 1258 device_printf(sc->dev, "cannot create RX buffer map\n");
1259 return error; 1259 return error;
1260 } 1260 }
1261 if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) { 1261 if ((m = sunxi_emac_alloc_mbufcl(sc)) == NULL) {
1262 device_printf(sc->dev, "cannot allocate RX mbuf\n"); 1262 device_printf(sc->dev, "cannot allocate RX mbuf\n");
1263 return ENOMEM; 1263 return ENOMEM;
1264 } 1264 }
1265 error = sunxi_emac_setup_rxbuf(sc, i, m); 1265 error = sunxi_emac_setup_rxbuf(sc, i, m);
1266 if (error != 0) { 1266 if (error != 0) {
1267 device_printf(sc->dev, "cannot create RX buffer\n"); 1267 device_printf(sc->dev, "cannot create RX buffer\n");
1268 return error; 1268 return error;
1269 } 1269 }
1270 } 1270 }
1271 bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map, 1271 bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1272 0, sc->rx.desc_map->dm_mapsize, 1272 0, sc->rx.desc_map->dm_mapsize,
1273 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1273 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1274 1274
1275 /* Write transmit and receive descriptor base address registers */ 1275 /* Write transmit and receive descriptor base address registers */
1276 WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr); 1276 WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1277 WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr); 1277 WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1278 1278
1279 return 0; 1279 return 0;
1280} 1280}
1281 1281
1282static int 1282static int
1283sunxi_emac_get_resources(struct sunxi_emac_softc *sc) 1283sunxi_emac_get_resources(struct sunxi_emac_softc *sc)
1284{ 1284{
1285 const int phandle = sc->phandle; 1285 const int phandle = sc->phandle;
1286 bus_addr_t addr, size; 1286 bus_addr_t addr, size;
1287 1287
1288 /* Map EMAC registers */ 1288 /* Map EMAC registers */
1289 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) 1289 if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0)
1290 return ENXIO; 1290 return ENXIO;
1291 if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh[_RES_EMAC]) != 0) 1291 if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh[_RES_EMAC]) != 0)
1292 return ENXIO; 1292 return ENXIO;
1293 1293
1294 /* Map SYSCON registers */ 1294 /* Map SYSCON registers */
1295 if (of_hasprop(phandle, "syscon")) { 1295 if (of_hasprop(phandle, "syscon")) {
1296 const int syscon_phandle = fdtbus_get_phandle(phandle, 1296 const int syscon_phandle = fdtbus_get_phandle(phandle,
1297 "syscon"); 1297 "syscon");
1298 if (syscon_phandle == -1) 1298 if (syscon_phandle == -1)
1299 return ENXIO; 1299 return ENXIO;
1300 if (fdtbus_get_reg(syscon_phandle, 0, &addr, &size) != 0) 1300 if (fdtbus_get_reg(syscon_phandle, 0, &addr, &size) != 0)
1301 return ENXIO; 1301 return ENXIO;
1302 if (size < EMAC_CLK_REG + 4) 1302 if (size < EMAC_CLK_REG + 4)
1303 return ENXIO; 1303 return ENXIO;
1304 addr += EMAC_CLK_REG; 1304 addr += EMAC_CLK_REG;
1305 size -= EMAC_CLK_REG; 1305 size -= EMAC_CLK_REG;
1306 } else { 1306 } else {
1307 if (fdtbus_get_reg(phandle, 1, &addr, &size) != 0) 1307 if (fdtbus_get_reg(phandle, 1, &addr, &size) != 0)
1308 return ENXIO; 1308 return ENXIO;
1309 } 1309 }
1310 if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh[_RES_SYSCON]) != 0) 1310 if (bus_space_map(sc->bst, addr, size, 0, &sc->bsh[_RES_SYSCON]) != 0)
1311 return ENXIO; 1311 return ENXIO;
1312 1312
1313 /* Get clocks and resets. "ahb" is required, "ephy" is optional. */ 1313 /* The "ahb"/"stmmaceth" clock and reset is required */
1314 1314 if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL &&
1315 if ((sc->clk_ahb = fdtbus_clock_get(phandle, "ahb")) == NULL) 1315 (sc->clk_ahb = fdtbus_clock_get(phandle, "stmmaceth")) == NULL)
1316 return ENXIO; 1316 return ENXIO;
1317 sc->clk_ephy = fdtbus_clock_get(phandle, "ephy"); 1317 if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL &&
1318 1318 (sc->rst_ahb = fdtbus_reset_get(phandle, "stmmaceth")) == NULL)
1319 if ((sc->rst_ahb = fdtbus_reset_get(phandle, "ahb")) == NULL) 
1320 return ENXIO; 1319 return ENXIO;
 1320
 1321 /* Internal PHY clock and reset are optional properties. */
 1322 sc->clk_ephy = fdtbus_clock_get(phandle, "ephy");
 1323 if (sc->clk_ephy == NULL) {
 1324 int phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
 1325 if (phy_phandle != -1)
 1326 sc->clk_ephy = fdtbus_clock_get_index(phy_phandle, 0);
 1327 }
1321 sc->rst_ephy = fdtbus_reset_get(phandle, "ephy"); 1328 sc->rst_ephy = fdtbus_reset_get(phandle, "ephy");
 1329 if (sc->rst_ephy == NULL) {
 1330 int phy_phandle = fdtbus_get_phandle(phandle, "phy-phandle");
 1331 if (phy_phandle != -1)
 1332 sc->rst_ephy = fdtbus_reset_get_index(phy_phandle, 0);
 1333 }
1322 1334
1323 /* Regulator is optional */ 1335 /* Regulator is optional */
1324 sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply"); 1336 sc->reg_phy = fdtbus_regulator_acquire(phandle, "phy-supply");
1325 1337
1326 /* Reset GPIO is optional */ 1338 /* Reset GPIO is optional */
1327 sc->pin_reset = fdtbus_gpio_acquire(sc->phandle, 1339 sc->pin_reset = fdtbus_gpio_acquire(sc->phandle,
1328 "allwinner,reset-gpio", GPIO_PIN_OUTPUT); 1340 "allwinner,reset-gpio", GPIO_PIN_OUTPUT);
1329 1341
1330 return 0; 1342 return 0;
1331} 1343}
1332 1344
1333static int 1345static int
1334sunxi_emac_get_phyid(struct sunxi_emac_softc *sc) 1346sunxi_emac_get_phyid(struct sunxi_emac_softc *sc)
1335{ 1347{
1336 bus_addr_t addr; 1348 bus_addr_t addr;
 1349 int phy_phandle;
1337 1350
1338 const int phy_phandle = fdtbus_get_phandle(sc->phandle, "phy"); 1351 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy");
 1352 if (phy_phandle == -1)
 1353 phy_phandle = fdtbus_get_phandle(sc->phandle, "phy-handle");
1339 if (phy_phandle == -1) 1354 if (phy_phandle == -1)
1340 return MII_PHY_ANY; 1355 return MII_PHY_ANY;
1341 1356
1342 if (fdtbus_get_reg(phy_phandle, 0, &addr, NULL) != 0) 1357 if (fdtbus_get_reg(phy_phandle, 0, &addr, NULL) != 0)
1343 return MII_PHY_ANY; 1358 return MII_PHY_ANY;
1344 1359
1345 return (int)addr; 1360 return (int)addr;
1346} 1361}
1347 1362
1348static int 1363static int
1349sunxi_emac_match(device_t parent, cfdata_t cf, void *aux) 1364sunxi_emac_match(device_t parent, cfdata_t cf, void *aux)
1350{ 1365{
1351 struct fdt_attach_args * const faa = aux; 1366 struct fdt_attach_args * const faa = aux;
1352 1367
1353 return of_match_compat_data(faa->faa_phandle, compat_data); 1368 return of_match_compat_data(faa->faa_phandle, compat_data);
1354} 1369}
1355 1370
1356static void 1371static void
1357sunxi_emac_attach(device_t parent, device_t self, void *aux) 1372sunxi_emac_attach(device_t parent, device_t self, void *aux)
1358{ 1373{
1359 struct fdt_attach_args * const faa = aux; 1374 struct fdt_attach_args * const faa = aux;
1360 struct sunxi_emac_softc * const sc = device_private(self); 1375 struct sunxi_emac_softc * const sc = device_private(self);
1361 const int phandle = faa->faa_phandle; 1376 const int phandle = faa->faa_phandle;
1362 struct mii_data *mii = &sc->mii; 1377 struct mii_data *mii = &sc->mii;
1363 struct ifnet *ifp = &sc->ec.ec_if; 1378 struct ifnet *ifp = &sc->ec.ec_if;
1364 uint8_t eaddr[ETHER_ADDR_LEN]; 1379 uint8_t eaddr[ETHER_ADDR_LEN];
1365 char intrstr[128]; 1380 char intrstr[128];
1366 1381
1367 sc->dev = self; 1382 sc->dev = self;
1368 sc->phandle = phandle; 1383 sc->phandle = phandle;
1369 sc->bst = faa->faa_bst; 1384 sc->bst = faa->faa_bst;
1370 sc->dmat = faa->faa_dmat; 1385 sc->dmat = faa->faa_dmat;
1371 sc->type = of_search_compatible(phandle, compat_data)->data; 1386 sc->type = of_search_compatible(phandle, compat_data)->data;
1372 sc->phy_id = sunxi_emac_get_phyid(sc); 1387 sc->phy_id = sunxi_emac_get_phyid(sc);
1373 1388
1374 if (sunxi_emac_get_resources(sc) != 0) { 1389 if (sunxi_emac_get_resources(sc) != 0) {
1375 aprint_error(": cannot allocate resources for device\n"); 1390 aprint_error(": cannot allocate resources for device\n");
1376 return; 1391 return;
1377 } 1392 }
1378 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { 1393 if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
1379 aprint_error(": cannot decode interrupt\n"); 1394 aprint_error(": cannot decode interrupt\n");
1380 return; 1395 return;
1381 } 1396 }
1382 1397
1383 mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET); 1398 mutex_init(&sc->mtx, MUTEX_DEFAULT, IPL_NET);
1384 callout_init(&sc->stat_ch, CALLOUT_FLAGS); 1399 callout_init(&sc->stat_ch, CALLOUT_FLAGS);
1385 callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc); 1400 callout_setfunc(&sc->stat_ch, sunxi_emac_tick, sc);
1386 1401
1387 aprint_naive("\n"); 1402 aprint_naive("\n");
1388 aprint_normal(": EMAC\n"); 1403 aprint_normal(": EMAC\n");
1389 1404
1390 /* Setup clocks and regulators */ 1405 /* Setup clocks and regulators */
1391 if (sunxi_emac_setup_resources(sc) != 0) 1406 if (sunxi_emac_setup_resources(sc) != 0)
1392 return; 1407 return;
1393 1408
1394 /* Read MAC address before resetting the chip */ 1409 /* Read MAC address before resetting the chip */
1395 sunxi_emac_get_eaddr(sc, eaddr); 1410 sunxi_emac_get_eaddr(sc, eaddr);
1396 1411
1397 /* Soft reset EMAC core */ 1412 /* Soft reset EMAC core */
1398 if (sunxi_emac_reset(sc) != 0) 1413 if (sunxi_emac_reset(sc) != 0)
1399 return; 1414 return;
1400 1415
1401 /* Setup DMA descriptors */ 1416 /* Setup DMA descriptors */
1402 if (sunxi_emac_setup_dma(sc) != 0) { 1417 if (sunxi_emac_setup_dma(sc) != 0) {
1403 aprint_error_dev(self, "failed to setup DMA descriptors\n"); 1418 aprint_error_dev(self, "failed to setup DMA descriptors\n");
1404 return; 1419 return;
1405 } 1420 }
1406 1421
1407 /* Install interrupt handler */ 1422 /* Install interrupt handler */
1408 sc->ih = fdtbus_intr_establish(phandle, 0, IPL_NET, 1423 sc->ih = fdtbus_intr_establish(phandle, 0, IPL_NET,
1409 FDT_INTR_FLAGS, sunxi_emac_intr, sc); 1424 FDT_INTR_FLAGS, sunxi_emac_intr, sc);
1410 if (sc->ih == NULL) { 1425 if (sc->ih == NULL) {
1411 aprint_error_dev(self, "failed to establish interrupt on %s\n", 1426 aprint_error_dev(self, "failed to establish interrupt on %s\n",
1412 intrstr); 1427 intrstr);
1413 return; 1428 return;
1414 } 1429 }
1415 aprint_normal_dev(self, "interrupting on %s\n", intrstr); 1430 aprint_normal_dev(self, "interrupting on %s\n", intrstr);
1416 1431
1417 /* Setup ethernet interface */ 1432 /* Setup ethernet interface */
1418 ifp->if_softc = sc; 1433 ifp->if_softc = sc;
1419 snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self)); 1434 snprintf(ifp->if_xname, IFNAMSIZ, EMAC_IFNAME, device_unit(self));
1420 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1435 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1421#ifdef EMAC_MPSAFE 1436#ifdef EMAC_MPSAFE
1422 ifp->if_extflags = IFEF_MPSAFE; 1437 ifp->if_extflags = IFEF_MPSAFE;
1423#endif 1438#endif
1424 ifp->if_start = sunxi_emac_start; 1439 ifp->if_start = sunxi_emac_start;
1425 ifp->if_ioctl = sunxi_emac_ioctl; 1440 ifp->if_ioctl = sunxi_emac_ioctl;
1426 ifp->if_init = sunxi_emac_init; 1441 ifp->if_init = sunxi_emac_init;
1427 ifp->if_stop = sunxi_emac_stop; 1442 ifp->if_stop = sunxi_emac_stop;
1428 ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx | 1443 ifp->if_capabilities = IFCAP_CSUM_IPv4_Rx |
1429 IFCAP_CSUM_IPv4_Tx | 1444 IFCAP_CSUM_IPv4_Tx |
1430 IFCAP_CSUM_TCPv4_Rx | 1445 IFCAP_CSUM_TCPv4_Rx |
1431 IFCAP_CSUM_TCPv4_Tx | 1446 IFCAP_CSUM_TCPv4_Tx |
1432 IFCAP_CSUM_UDPv4_Rx | 1447 IFCAP_CSUM_UDPv4_Rx |
1433 IFCAP_CSUM_UDPv4_Tx; 1448 IFCAP_CSUM_UDPv4_Tx;
1434 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 1449 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1435 IFQ_SET_READY(&ifp->if_snd); 1450 IFQ_SET_READY(&ifp->if_snd);
1436 1451
1437 /* 802.1Q VLAN-sized frames are supported */ 1452 /* 802.1Q VLAN-sized frames are supported */
1438 sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU; 1453 sc->ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1439 1454
1440 /* Attach MII driver */ 1455 /* Attach MII driver */
1441 sc->ec.ec_mii = mii; 1456 sc->ec.ec_mii = mii;
1442 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); 1457 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1443 mii->mii_ifp = ifp; 1458 mii->mii_ifp = ifp;
1444 mii->mii_readreg = sunxi_emac_mii_readreg; 1459 mii->mii_readreg = sunxi_emac_mii_readreg;
1445 mii->mii_writereg = sunxi_emac_mii_writereg; 1460 mii->mii_writereg = sunxi_emac_mii_writereg;
1446 mii->mii_statchg = sunxi_emac_mii_statchg; 1461 mii->mii_statchg = sunxi_emac_mii_statchg;
1447 mii_attach(self, mii, 0xffffffff, sc->phy_id, MII_OFFSET_ANY, 1462 mii_attach(self, mii, 0xffffffff, sc->phy_id, MII_OFFSET_ANY,
1448 MIIF_DOPAUSE); 1463 MIIF_DOPAUSE);
1449 1464
1450 if (LIST_EMPTY(&mii->mii_phys)) { 1465 if (LIST_EMPTY(&mii->mii_phys)) {
1451 aprint_error_dev(self, "no PHY found!\n"); 1466 aprint_error_dev(self, "no PHY found!\n");
1452 return; 1467 return;
1453 } 1468 }
1454 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO); 1469 ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
1455 1470
1456 /* Attach interface */ 1471 /* Attach interface */
1457 if_attach(ifp); 1472 if_attach(ifp);
1458 if_deferred_start_init(ifp, NULL); 1473 if_deferred_start_init(ifp, NULL);
1459 1474
1460 /* Attach ethernet interface */ 1475 /* Attach ethernet interface */
1461 ether_ifattach(ifp, eaddr); 1476 ether_ifattach(ifp, eaddr);
1462} 1477}
1463 1478
1464CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc), 1479CFATTACH_DECL_NEW(sunxi_emac, sizeof(struct sunxi_emac_softc),
1465 sunxi_emac_match, sunxi_emac_attach, NULL, NULL); 1480 sunxi_emac_match, sunxi_emac_attach, NULL, NULL);