Thu Dec 20 21:36:53 2018 UTC ()
make DSRTC_FLAG_YEAR_START_2K settable by device property


(macallan)
diff -r1.30 -r1.31 src/sys/dev/i2c/ds1307.c

cvs diff -r1.30 -r1.31 src/sys/dev/i2c/ds1307.c (switch to unified diff)

--- src/sys/dev/i2c/ds1307.c 2018/12/14 22:05:36 1.30
+++ src/sys/dev/i2c/ds1307.c 2018/12/20 21:36:53 1.31
@@ -1,860 +1,866 @@ @@ -1,860 +1,866 @@
1/* $NetBSD: ds1307.c,v 1.30 2018/12/14 22:05:36 macallan Exp $ */ 1/* $NetBSD: ds1307.c,v 1.31 2018/12/20 21:36:53 macallan Exp $ */
2 2
3/* 3/*
4 * Copyright (c) 2003 Wasabi Systems, Inc. 4 * Copyright (c) 2003 Wasabi Systems, Inc.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc. 7 * Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
8 * 8 *
9 * Redistribution and use in source and binary forms, with or without 9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions 10 * modification, are permitted provided that the following conditions
11 * are met: 11 * are met:
12 * 1. Redistributions of source code must retain the above copyright 12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer. 13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright 14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the 15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution. 16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software 17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement: 18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by 19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc. 20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior 22 * or promote products derived from this software without specific prior
23 * written permission. 23 * written permission.
24 * 24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE. 35 * POSSIBILITY OF SUCH DAMAGE.
36 */ 36 */
37 37
38#include <sys/cdefs.h> 38#include <sys/cdefs.h>
39__KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.30 2018/12/14 22:05:36 macallan Exp $"); 39__KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.31 2018/12/20 21:36:53 macallan Exp $");
40 40
41#include <sys/param.h> 41#include <sys/param.h>
42#include <sys/systm.h> 42#include <sys/systm.h>
43#include <sys/device.h> 43#include <sys/device.h>
44#include <sys/kernel.h> 44#include <sys/kernel.h>
45#include <sys/fcntl.h> 45#include <sys/fcntl.h>
46#include <sys/uio.h> 46#include <sys/uio.h>
47#include <sys/conf.h> 47#include <sys/conf.h>
48#include <sys/event.h> 48#include <sys/event.h>
49 49
50#include <dev/clock_subr.h> 50#include <dev/clock_subr.h>
51 51
52#include <dev/i2c/i2cvar.h> 52#include <dev/i2c/i2cvar.h>
53#include <dev/i2c/ds1307reg.h> 53#include <dev/i2c/ds1307reg.h>
54#include <dev/sysmon/sysmonvar.h> 54#include <dev/sysmon/sysmonvar.h>
55 55
56#include "ioconf.h" 56#include "ioconf.h"
57#include "opt_dsrtc.h" 57#include "opt_dsrtc.h"
58 58
59struct dsrtc_model { 59struct dsrtc_model {
60 const i2c_addr_t *dm_valid_addrs; 60 const i2c_addr_t *dm_valid_addrs;
61 uint16_t dm_model; 61 uint16_t dm_model;
62 uint8_t dm_ch_reg; 62 uint8_t dm_ch_reg;
63 uint8_t dm_ch_value; 63 uint8_t dm_ch_value;
64 uint8_t dm_vbaten_reg; 64 uint8_t dm_vbaten_reg;
65 uint8_t dm_vbaten_value; 65 uint8_t dm_vbaten_value;
66 uint8_t dm_rtc_start; 66 uint8_t dm_rtc_start;
67 uint8_t dm_rtc_size; 67 uint8_t dm_rtc_size;
68 uint8_t dm_nvram_start; 68 uint8_t dm_nvram_start;
69 uint8_t dm_nvram_size; 69 uint8_t dm_nvram_size;
70 uint8_t dm_flags; 70 uint8_t dm_flags;
71#define DSRTC_FLAG_CLOCK_HOLD 0x01 71#define DSRTC_FLAG_CLOCK_HOLD 0x01
72#define DSRTC_FLAG_BCD 0x02 72#define DSRTC_FLAG_BCD 0x02
73#define DSRTC_FLAG_TEMP 0x04 73#define DSRTC_FLAG_TEMP 0x04
74#define DSRTC_FLAG_VBATEN 0x08 74#define DSRTC_FLAG_VBATEN 0x08
75#define DSRTC_FLAG_YEAR_START_2K 0x10 75#define DSRTC_FLAG_YEAR_START_2K 0x10
76#define DSRTC_FLAG_CLOCK_HOLD_REVERSED 0x20 76#define DSRTC_FLAG_CLOCK_HOLD_REVERSED 0x20
77}; 77};
78 78
79static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 }; 79static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
80static const struct dsrtc_model ds1307_model = { 80static const struct dsrtc_model ds1307_model = {
81 .dm_valid_addrs = ds1307_valid_addrs, 81 .dm_valid_addrs = ds1307_valid_addrs,
82 .dm_model = 1307, 82 .dm_model = 1307,
83 .dm_ch_reg = DSXXXX_SECONDS, 83 .dm_ch_reg = DSXXXX_SECONDS,
84 .dm_ch_value = DS1307_SECONDS_CH, 84 .dm_ch_value = DS1307_SECONDS_CH,
85 .dm_rtc_start = DS1307_RTC_START, 85 .dm_rtc_start = DS1307_RTC_START,
86 .dm_rtc_size = DS1307_RTC_SIZE, 86 .dm_rtc_size = DS1307_RTC_SIZE,
87 .dm_nvram_start = DS1307_NVRAM_START, 87 .dm_nvram_start = DS1307_NVRAM_START,
88 .dm_nvram_size = DS1307_NVRAM_SIZE, 88 .dm_nvram_size = DS1307_NVRAM_SIZE,
89 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD, 89 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
90}; 90};
91 91
92static const struct dsrtc_model ds1339_model = { 92static const struct dsrtc_model ds1339_model = {
93 .dm_valid_addrs = ds1307_valid_addrs, 93 .dm_valid_addrs = ds1307_valid_addrs,
94 .dm_model = 1339, 94 .dm_model = 1339,
95 .dm_rtc_start = DS1339_RTC_START, 95 .dm_rtc_start = DS1339_RTC_START,
96 .dm_rtc_size = DS1339_RTC_SIZE, 96 .dm_rtc_size = DS1339_RTC_SIZE,
97 .dm_flags = DSRTC_FLAG_BCD, 97 .dm_flags = DSRTC_FLAG_BCD,
98}; 98};
99 99
100static const struct dsrtc_model ds1340_model = { 100static const struct dsrtc_model ds1340_model = {
101 .dm_valid_addrs = ds1307_valid_addrs, 101 .dm_valid_addrs = ds1307_valid_addrs,
102 .dm_model = 1340, 102 .dm_model = 1340,
103 .dm_ch_reg = DSXXXX_SECONDS, 103 .dm_ch_reg = DSXXXX_SECONDS,
104 .dm_ch_value = DS1340_SECONDS_EOSC, 104 .dm_ch_value = DS1340_SECONDS_EOSC,
105 .dm_rtc_start = DS1340_RTC_START, 105 .dm_rtc_start = DS1340_RTC_START,
106 .dm_rtc_size = DS1340_RTC_SIZE, 106 .dm_rtc_size = DS1340_RTC_SIZE,
107 .dm_flags = DSRTC_FLAG_BCD, 107 .dm_flags = DSRTC_FLAG_BCD,
108}; 108};
109 109
110static const struct dsrtc_model ds1672_model = { 110static const struct dsrtc_model ds1672_model = {
111 .dm_valid_addrs = ds1307_valid_addrs, 111 .dm_valid_addrs = ds1307_valid_addrs,
112 .dm_model = 1672, 112 .dm_model = 1672,
113 .dm_rtc_start = DS1672_RTC_START, 113 .dm_rtc_start = DS1672_RTC_START,
114 .dm_rtc_size = DS1672_RTC_SIZE, 114 .dm_rtc_size = DS1672_RTC_SIZE,
115 .dm_ch_reg = DS1672_CONTROL, 115 .dm_ch_reg = DS1672_CONTROL,
116 .dm_ch_value = DS1672_CONTROL_CH, 116 .dm_ch_value = DS1672_CONTROL_CH,
117 .dm_flags = 0, 117 .dm_flags = 0,
118}; 118};
119 119
120static const struct dsrtc_model ds3231_model = { 120static const struct dsrtc_model ds3231_model = {
121 .dm_valid_addrs = ds1307_valid_addrs, 121 .dm_valid_addrs = ds1307_valid_addrs,
122 .dm_model = 3231, 122 .dm_model = 3231,
123 .dm_rtc_start = DS3232_RTC_START, 123 .dm_rtc_start = DS3232_RTC_START,
124 .dm_rtc_size = DS3232_RTC_SIZE, 124 .dm_rtc_size = DS3232_RTC_SIZE,
125 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP, 125 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
126}; 126};
127 127
128static const struct dsrtc_model ds3232_model = { 128static const struct dsrtc_model ds3232_model = {
129 .dm_valid_addrs = ds1307_valid_addrs, 129 .dm_valid_addrs = ds1307_valid_addrs,
130 .dm_model = 3232, 130 .dm_model = 3232,
131 .dm_rtc_start = DS3232_RTC_START, 131 .dm_rtc_start = DS3232_RTC_START,
132 .dm_rtc_size = DS3232_RTC_SIZE, 132 .dm_rtc_size = DS3232_RTC_SIZE,
133 .dm_nvram_start = DS3232_NVRAM_START, 133 .dm_nvram_start = DS3232_NVRAM_START,
134 .dm_nvram_size = DS3232_NVRAM_SIZE, 134 .dm_nvram_size = DS3232_NVRAM_SIZE,
135 /* 135 /*
136 * XXX 136 * XXX
137 * the DS3232 likely has the temperature sensor too but I can't 137 * the DS3232 likely has the temperature sensor too but I can't
138 * easily verify or test that right now 138 * easily verify or test that right now
139 */ 139 */
140 .dm_flags = DSRTC_FLAG_BCD, 140 .dm_flags = DSRTC_FLAG_BCD,
141}; 141};
142 142
143static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 }; 143static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
144static const struct dsrtc_model mcp7940_model = { 144static const struct dsrtc_model mcp7940_model = {
145 .dm_valid_addrs = mcp7940_valid_addrs, 145 .dm_valid_addrs = mcp7940_valid_addrs,
146 .dm_model = 7940, 146 .dm_model = 7940,
147 .dm_rtc_start = DS1307_RTC_START, 147 .dm_rtc_start = DS1307_RTC_START,
148 .dm_rtc_size = DS1307_RTC_SIZE, 148 .dm_rtc_size = DS1307_RTC_SIZE,
149 .dm_ch_reg = DSXXXX_SECONDS, 149 .dm_ch_reg = DSXXXX_SECONDS,
150 .dm_ch_value = DS1307_SECONDS_CH, 150 .dm_ch_value = DS1307_SECONDS_CH,
151 .dm_vbaten_reg = DSXXXX_DAY, 151 .dm_vbaten_reg = DSXXXX_DAY,
152 .dm_vbaten_value = MCP7940_TOD_DAY_VBATEN, 152 .dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
153 .dm_nvram_start = MCP7940_NVRAM_START, 153 .dm_nvram_start = MCP7940_NVRAM_START,
154 .dm_nvram_size = MCP7940_NVRAM_SIZE, 154 .dm_nvram_size = MCP7940_NVRAM_SIZE,
155 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD | 155 .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
156 DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED, 156 DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
157}; 157};
158 158
159static const struct device_compatible_entry compat_data[] = { 159static const struct device_compatible_entry compat_data[] = {
160 { "dallas,ds1307", (uintptr_t)&ds1307_model }, 160 { "dallas,ds1307", (uintptr_t)&ds1307_model },
161 { "maxim,ds1307", (uintptr_t)&ds1307_model }, 161 { "maxim,ds1307", (uintptr_t)&ds1307_model },
162 162
163 { "dallas,ds1339", (uintptr_t)&ds1339_model }, 163 { "dallas,ds1339", (uintptr_t)&ds1339_model },
164 { "maxim,ds1339", (uintptr_t)&ds1339_model }, 164 { "maxim,ds1339", (uintptr_t)&ds1339_model },
165 165
166 { "dallas,ds1340", (uintptr_t)&ds1340_model }, 166 { "dallas,ds1340", (uintptr_t)&ds1340_model },
167 { "maxim,ds1340", (uintptr_t)&ds1340_model }, 167 { "maxim,ds1340", (uintptr_t)&ds1340_model },
168 168
169 { "dallas,ds1672", (uintptr_t)&ds1672_model }, 169 { "dallas,ds1672", (uintptr_t)&ds1672_model },
170 { "maxim,ds1672", (uintptr_t)&ds1672_model }, 170 { "maxim,ds1672", (uintptr_t)&ds1672_model },
171 171
172 { "dallas,ds3231", (uintptr_t)&ds3231_model }, 172 { "dallas,ds3231", (uintptr_t)&ds3231_model },
173 { "maxim,ds3231", (uintptr_t)&ds3231_model }, 173 { "maxim,ds3231", (uintptr_t)&ds3231_model },
174 174
175 { "dallas,ds3232", (uintptr_t)&ds3232_model }, 175 { "dallas,ds3232", (uintptr_t)&ds3232_model },
176 { "maxim,ds3232", (uintptr_t)&ds3232_model }, 176 { "maxim,ds3232", (uintptr_t)&ds3232_model },
177 177
178 { "microchip,mcp7940", (uintptr_t)&mcp7940_model }, 178 { "microchip,mcp7940", (uintptr_t)&mcp7940_model },
179 179
180 { NULL, 0 } 180 { NULL, 0 }
181}; 181};
182 182
183struct dsrtc_softc { 183struct dsrtc_softc {
184 device_t sc_dev; 184 device_t sc_dev;
185 i2c_tag_t sc_tag; 185 i2c_tag_t sc_tag;
186 uint8_t sc_address; 186 uint8_t sc_address;
187 bool sc_open; 187 bool sc_open;
188 struct dsrtc_model sc_model; 188 struct dsrtc_model sc_model;
189 struct todr_chip_handle sc_todr; 189 struct todr_chip_handle sc_todr;
190 struct sysmon_envsys *sc_sme; 190 struct sysmon_envsys *sc_sme;
191 envsys_data_t sc_sensor; 191 envsys_data_t sc_sensor;
192}; 192};
193 193
194static void dsrtc_attach(device_t, device_t, void *); 194static void dsrtc_attach(device_t, device_t, void *);
195static int dsrtc_match(device_t, cfdata_t, void *); 195static int dsrtc_match(device_t, cfdata_t, void *);
196 196
197CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc), 197CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
198 dsrtc_match, dsrtc_attach, NULL, NULL); 198 dsrtc_match, dsrtc_attach, NULL, NULL);
199 199
200dev_type_open(dsrtc_open); 200dev_type_open(dsrtc_open);
201dev_type_close(dsrtc_close); 201dev_type_close(dsrtc_close);
202dev_type_read(dsrtc_read); 202dev_type_read(dsrtc_read);
203dev_type_write(dsrtc_write); 203dev_type_write(dsrtc_write);
204 204
205const struct cdevsw dsrtc_cdevsw = { 205const struct cdevsw dsrtc_cdevsw = {
206 .d_open = dsrtc_open, 206 .d_open = dsrtc_open,
207 .d_close = dsrtc_close, 207 .d_close = dsrtc_close,
208 .d_read = dsrtc_read, 208 .d_read = dsrtc_read,
209 .d_write = dsrtc_write, 209 .d_write = dsrtc_write,
210 .d_ioctl = noioctl, 210 .d_ioctl = noioctl,
211 .d_stop = nostop, 211 .d_stop = nostop,
212 .d_tty = notty, 212 .d_tty = notty,
213 .d_poll = nopoll, 213 .d_poll = nopoll,
214 .d_mmap = nommap, 214 .d_mmap = nommap,
215 .d_kqfilter = nokqfilter, 215 .d_kqfilter = nokqfilter,
216 .d_discard = nodiscard, 216 .d_discard = nodiscard,
217 .d_flag = D_OTHER 217 .d_flag = D_OTHER
218}; 218};
219 219
220static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *); 220static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
221static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *); 221static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
222static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *); 222static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
223static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *); 223static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
224 224
225static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *); 225static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
226static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *); 226static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
227static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *); 227static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
228static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t); 228static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);
229 229
230static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *); 230static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
231static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *); 231static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);
232 232
233static const struct dsrtc_model * 233static const struct dsrtc_model *
234dsrtc_model_by_number(u_int model) 234dsrtc_model_by_number(u_int model)
235{ 235{
236 const struct device_compatible_entry *dce; 236 const struct device_compatible_entry *dce;
237 const struct dsrtc_model *dm; 237 const struct dsrtc_model *dm;
238 238
239 /* no model given, assume it's a DS1307 */ 239 /* no model given, assume it's a DS1307 */
240 if (model == 0) 240 if (model == 0)
241 return &ds1307_model; 241 return &ds1307_model;
242 242
243 for (dce = compat_data; dce->compat != NULL; dce++) { 243 for (dce = compat_data; dce->compat != NULL; dce++) {
244 dm = (void *)dce->data; 244 dm = (void *)dce->data;
245 if (dm->dm_model == model) 245 if (dm->dm_model == model)
246 return dm; 246 return dm;
247 } 247 }
248 return NULL; 248 return NULL;
249} 249}
250 250
251static const struct dsrtc_model * 251static const struct dsrtc_model *
252dsrtc_model_by_compat(const struct i2c_attach_args *ia) 252dsrtc_model_by_compat(const struct i2c_attach_args *ia)
253{ 253{
254 const struct dsrtc_model *dm = NULL; 254 const struct dsrtc_model *dm = NULL;
255 const struct device_compatible_entry *dce; 255 const struct device_compatible_entry *dce;
256 256
257 if (iic_compatible_match(ia, compat_data, &dce)) 257 if (iic_compatible_match(ia, compat_data, &dce))
258 dm = (void *)dce->data; 258 dm = (void *)dce->data;
259 259
260 return dm; 260 return dm;
261} 261}
262 262
263static bool 263static bool
264dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr) 264dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
265{ 265{
266 266
267 for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) { 267 for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
268 if (addr == dm->dm_valid_addrs[i]) 268 if (addr == dm->dm_valid_addrs[i])
269 return true; 269 return true;
270 } 270 }
271 return false; 271 return false;
272} 272}
273 273
274static int 274static int
275dsrtc_match(device_t parent, cfdata_t cf, void *arg) 275dsrtc_match(device_t parent, cfdata_t cf, void *arg)
276{ 276{
277 struct i2c_attach_args *ia = arg; 277 struct i2c_attach_args *ia = arg;
278 const struct dsrtc_model *dm; 278 const struct dsrtc_model *dm;
279 int match_result; 279 int match_result;
280 280
281 if (iic_use_direct_match(ia, cf, compat_data, &match_result)) 281 if (iic_use_direct_match(ia, cf, compat_data, &match_result))
282 return match_result; 282 return match_result;
283 283
284 dm = dsrtc_model_by_number(cf->cf_flags & 0xffff); 284 dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
285 if (dm == NULL) 285 if (dm == NULL)
286 return 0; 286 return 0;
287 287
288 if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr)) 288 if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
289 return I2C_MATCH_ADDRESS_ONLY; 289 return I2C_MATCH_ADDRESS_ONLY;
290 290
291 return 0; 291 return 0;
292} 292}
293 293
294static void 294static void
295dsrtc_attach(device_t parent, device_t self, void *arg) 295dsrtc_attach(device_t parent, device_t self, void *arg)
296{ 296{
297 struct dsrtc_softc *sc = device_private(self); 297 struct dsrtc_softc *sc = device_private(self);
298 struct i2c_attach_args *ia = arg; 298 struct i2c_attach_args *ia = arg;
299 const struct dsrtc_model *dm; 299 const struct dsrtc_model *dm;
 300 prop_dictionary_t dict = device_properties(self);
 301 bool base_2k = FALSE;
300 302
301 if ((dm = dsrtc_model_by_compat(ia)) == NULL) 303 if ((dm = dsrtc_model_by_compat(ia)) == NULL)
302 dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags); 304 dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);
303 305
304 if (dm == NULL) { 306 if (dm == NULL) {
305 aprint_error(": unable to determine model!\n"); 307 aprint_error(": unable to determine model!\n");
306 return; 308 return;
307 } 309 }
308 310
309 aprint_naive(": Real-time Clock%s\n", 311 aprint_naive(": Real-time Clock%s\n",
310 dm->dm_nvram_size > 0 ? "/NVRAM" : ""); 312 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
311 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model, 313 aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
312 dm->dm_nvram_size > 0 ? "/NVRAM" : ""); 314 dm->dm_nvram_size > 0 ? "/NVRAM" : "");
313 315
314 sc->sc_tag = ia->ia_tag; 316 sc->sc_tag = ia->ia_tag;
315 sc->sc_address = ia->ia_addr; 317 sc->sc_address = ia->ia_addr;
316 sc->sc_model = *dm; 318 sc->sc_model = *dm;
317 sc->sc_dev = self; 319 sc->sc_dev = self;
318 sc->sc_open = 0; 320 sc->sc_open = 0;
319 sc->sc_todr.cookie = sc; 321 sc->sc_todr.cookie = sc;
320  322
321 if (dm->dm_flags & DSRTC_FLAG_BCD) { 323 if (dm->dm_flags & DSRTC_FLAG_BCD) {
322 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms; 324 sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
323 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms; 325 sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
324 } else { 326 } else {
325 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval; 327 sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
326 sc->sc_todr.todr_settime = dsrtc_settime_timeval; 328 sc->sc_todr.todr_settime = dsrtc_settime_timeval;
327 } 329 }
328 sc->sc_todr.todr_setwen = NULL; 330 sc->sc_todr.todr_setwen = NULL;
329 331
330#ifdef DSRTC_YEAR_START_2K 332#ifdef DSRTC_YEAR_START_2K
331 sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K; 333 sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K;
332#endif 334#endif
333 335
 336 prop_dictionary_get_bool(dict, "base_year_is_2000", &base_2k);
 337 if (base_2k) sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K;
 338
 339
334 todr_attach(&sc->sc_todr); 340 todr_attach(&sc->sc_todr);
335 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) { 341 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
336 int error; 342 int error;
337 343
338 sc->sc_sme = sysmon_envsys_create(); 344 sc->sc_sme = sysmon_envsys_create();
339 sc->sc_sme->sme_name = device_xname(self); 345 sc->sc_sme->sme_name = device_xname(self);
340 sc->sc_sme->sme_cookie = sc; 346 sc->sc_sme->sme_cookie = sc;
341 sc->sc_sme->sme_refresh = dsrtc_refresh; 347 sc->sc_sme->sme_refresh = dsrtc_refresh;
342 348
343 sc->sc_sensor.units = ENVSYS_STEMP; 349 sc->sc_sensor.units = ENVSYS_STEMP;
344 sc->sc_sensor.state = ENVSYS_SINVALID; 350 sc->sc_sensor.state = ENVSYS_SINVALID;
345 sc->sc_sensor.flags = 0; 351 sc->sc_sensor.flags = 0;
346 (void)strlcpy(sc->sc_sensor.desc, "temperature", 352 (void)strlcpy(sc->sc_sensor.desc, "temperature",
347 sizeof(sc->sc_sensor.desc)); 353 sizeof(sc->sc_sensor.desc));
348 354
349 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) { 355 if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
350 aprint_error_dev(self, "unable to attach sensor\n"); 356 aprint_error_dev(self, "unable to attach sensor\n");
351 goto bad; 357 goto bad;
352 } 358 }
353 359
354 error = sysmon_envsys_register(sc->sc_sme); 360 error = sysmon_envsys_register(sc->sc_sme);
355 if (error) { 361 if (error) {
356 aprint_error_dev(self,  362 aprint_error_dev(self,
357 "error %d registering with sysmon\n", error); 363 "error %d registering with sysmon\n", error);
358 goto bad; 364 goto bad;
359 } 365 }
360 } 366 }
361 return; 367 return;
362bad: 368bad:
363 sysmon_envsys_destroy(sc->sc_sme); 369 sysmon_envsys_destroy(sc->sc_sme);
364} 370}
365 371
366/*ARGSUSED*/ 372/*ARGSUSED*/
367int 373int
368dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l) 374dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
369{ 375{
370 struct dsrtc_softc *sc; 376 struct dsrtc_softc *sc;
371 377
372 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL) 378 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
373 return ENXIO; 379 return ENXIO;
374 380
375 /* XXX: Locking */ 381 /* XXX: Locking */
376 if (sc->sc_open) 382 if (sc->sc_open)
377 return EBUSY; 383 return EBUSY;
378 384
379 sc->sc_open = true; 385 sc->sc_open = true;
380 return 0; 386 return 0;
381} 387}
382 388
383/*ARGSUSED*/ 389/*ARGSUSED*/
384int 390int
385dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l) 391dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
386{ 392{
387 struct dsrtc_softc *sc; 393 struct dsrtc_softc *sc;
388 394
389 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL) 395 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
390 return ENXIO; 396 return ENXIO;
391 397
392 sc->sc_open = false; 398 sc->sc_open = false;
393 return 0; 399 return 0;
394} 400}
395 401
396/*ARGSUSED*/ 402/*ARGSUSED*/
397int 403int
398dsrtc_read(dev_t dev, struct uio *uio, int flags) 404dsrtc_read(dev_t dev, struct uio *uio, int flags)
399{ 405{
400 struct dsrtc_softc *sc; 406 struct dsrtc_softc *sc;
401 int error; 407 int error;
402 408
403 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL) 409 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
404 return ENXIO; 410 return ENXIO;
405 411
406 const struct dsrtc_model * const dm = &sc->sc_model; 412 const struct dsrtc_model * const dm = &sc->sc_model;
407 if (uio->uio_offset >= dm->dm_nvram_size) 413 if (uio->uio_offset >= dm->dm_nvram_size)
408 return EINVAL; 414 return EINVAL;
409 415
410 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) 416 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
411 return error; 417 return error;
412 418
413 KASSERT(uio->uio_offset >= 0); 419 KASSERT(uio->uio_offset >= 0);
414 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) { 420 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
415 uint8_t ch, cmd; 421 uint8_t ch, cmd;
416 const u_int a = uio->uio_offset; 422 const u_int a = uio->uio_offset;
417 cmd = a + dm->dm_nvram_start; 423 cmd = a + dm->dm_nvram_start;
418 if ((error = iic_exec(sc->sc_tag, 424 if ((error = iic_exec(sc->sc_tag,
419 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP, 425 uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
420 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) { 426 sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
421 iic_release_bus(sc->sc_tag, 0); 427 iic_release_bus(sc->sc_tag, 0);
422 aprint_error_dev(sc->sc_dev, 428 aprint_error_dev(sc->sc_dev,
423 "%s: read failed at 0x%x: %d\n", 429 "%s: read failed at 0x%x: %d\n",
424 __func__, a, error); 430 __func__, a, error);
425 return error; 431 return error;
426 } 432 }
427 if ((error = uiomove(&ch, 1, uio)) != 0) { 433 if ((error = uiomove(&ch, 1, uio)) != 0) {
428 iic_release_bus(sc->sc_tag, 0); 434 iic_release_bus(sc->sc_tag, 0);
429 return error; 435 return error;
430 } 436 }
431 } 437 }
432 438
433 iic_release_bus(sc->sc_tag, 0); 439 iic_release_bus(sc->sc_tag, 0);
434 440
435 return 0; 441 return 0;
436} 442}
437 443
438/*ARGSUSED*/ 444/*ARGSUSED*/
439int 445int
440dsrtc_write(dev_t dev, struct uio *uio, int flags) 446dsrtc_write(dev_t dev, struct uio *uio, int flags)
441{ 447{
442 struct dsrtc_softc *sc; 448 struct dsrtc_softc *sc;
443 int error; 449 int error;
444 450
445 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL) 451 if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
446 return ENXIO; 452 return ENXIO;
447 453
448 const struct dsrtc_model * const dm = &sc->sc_model; 454 const struct dsrtc_model * const dm = &sc->sc_model;
449 if (uio->uio_offset >= dm->dm_nvram_size) 455 if (uio->uio_offset >= dm->dm_nvram_size)
450 return EINVAL; 456 return EINVAL;
451 457
452 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) 458 if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
453 return error; 459 return error;
454 460
455 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) { 461 while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
456 uint8_t cmdbuf[2]; 462 uint8_t cmdbuf[2];
457 const u_int a = (int)uio->uio_offset; 463 const u_int a = (int)uio->uio_offset;
458 cmdbuf[0] = a + dm->dm_nvram_start; 464 cmdbuf[0] = a + dm->dm_nvram_start;
459 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0) 465 if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
460 break; 466 break;
461 467
462 if ((error = iic_exec(sc->sc_tag, 468 if ((error = iic_exec(sc->sc_tag,
463 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP, 469 uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
464 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) { 470 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
465 aprint_error_dev(sc->sc_dev, 471 aprint_error_dev(sc->sc_dev,
466 "%s: write failed at 0x%x: %d\n", 472 "%s: write failed at 0x%x: %d\n",
467 __func__, a, error); 473 __func__, a, error);
468 break; 474 break;
469 } 475 }
470 } 476 }
471 477
472 iic_release_bus(sc->sc_tag, 0); 478 iic_release_bus(sc->sc_tag, 0);
473 479
474 return error; 480 return error;
475} 481}
476 482
477static int 483static int
478dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt) 484dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
479{ 485{
480 struct dsrtc_softc *sc = ch->cookie; 486 struct dsrtc_softc *sc = ch->cookie;
481 struct clock_ymdhms check; 487 struct clock_ymdhms check;
482 int retries; 488 int retries;
483 489
484 memset(dt, 0, sizeof(*dt)); 490 memset(dt, 0, sizeof(*dt));
485 memset(&check, 0, sizeof(check)); 491 memset(&check, 0, sizeof(check));
486 492
487 /* 493 /*
488 * Since we don't support Burst Read, we have to read the clock twice 494 * Since we don't support Burst Read, we have to read the clock twice
489 * until we get two consecutive identical results. 495 * until we get two consecutive identical results.
490 */ 496 */
491 retries = 5; 497 retries = 5;
492 do { 498 do {
493 dsrtc_clock_read_ymdhms(sc, dt); 499 dsrtc_clock_read_ymdhms(sc, dt);
494 dsrtc_clock_read_ymdhms(sc, &check); 500 dsrtc_clock_read_ymdhms(sc, &check);
495 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries); 501 } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);
496 502
497 return 0; 503 return 0;
498} 504}
499 505
500static int 506static int
501dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt) 507dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
502{ 508{
503 struct dsrtc_softc *sc = ch->cookie; 509 struct dsrtc_softc *sc = ch->cookie;
504 510
505 if (dsrtc_clock_write_ymdhms(sc, dt) == 0) 511 if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
506 return -1; 512 return -1;
507 513
508 return 0; 514 return 0;
509} 515}
510 516
511static int 517static int
512dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt) 518dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
513{ 519{
514 struct dsrtc_model * const dm = &sc->sc_model; 520 struct dsrtc_model * const dm = &sc->sc_model;
515 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1]; 521 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
516 int error; 522 int error;
517 523
518 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size); 524 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
519 525
520 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { 526 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
521 aprint_error_dev(sc->sc_dev, 527 aprint_error_dev(sc->sc_dev,
522 "%s: failed to acquire I2C bus: %d\n", 528 "%s: failed to acquire I2C bus: %d\n",
523 __func__, error); 529 __func__, error);
524 return 0; 530 return 0;
525 } 531 }
526 532
527 /* Read each RTC register in order. */ 533 /* Read each RTC register in order. */
528 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) { 534 for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
529 cmdbuf[0] = dm->dm_rtc_start + i; 535 cmdbuf[0] = dm->dm_rtc_start + i;
530 536
531 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, 537 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
532 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL); 538 sc->sc_address, cmdbuf, 1, &bcd[i], 1, I2C_F_POLL);
533 } 539 }
534 540
535 /* Done with I2C */ 541 /* Done with I2C */
536 iic_release_bus(sc->sc_tag, I2C_F_POLL); 542 iic_release_bus(sc->sc_tag, I2C_F_POLL);
537 543
538 if (error != 0) { 544 if (error != 0) {
539 aprint_error_dev(sc->sc_dev, 545 aprint_error_dev(sc->sc_dev,
540 "%s: failed to read rtc at 0x%x: %d\n",  546 "%s: failed to read rtc at 0x%x: %d\n",
541 __func__, cmdbuf[0], error); 547 __func__, cmdbuf[0], error);
542 return 0; 548 return 0;
543 } 549 }
544 550
545 /* 551 /*
546 * Convert the RTC's register values into something useable 552 * Convert the RTC's register values into something useable
547 */ 553 */
548 dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK); 554 dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
549 dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK); 555 dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);
550 556
551 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) { 557 if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
552 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] & 558 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
553 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */ 559 DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
554 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM) 560 if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
555 dt->dt_hour += 12; 561 dt->dt_hour += 12;
556 } else 562 } else
557 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] & 563 dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
558 DSXXXX_HOURS_24MASK); 564 DSXXXX_HOURS_24MASK);
559 565
560 dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK); 566 dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
561 dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK); 567 dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);
562 568
563 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */ 569 /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
564 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K) 570 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
565 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000; 571 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
566 else { 572 else {
567 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR; 573 dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
568 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY) 574 if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
569 dt->dt_year += 100; 575 dt->dt_year += 100;
570 } 576 }
571 577
572 return 1; 578 return 1;
573} 579}
574 580
575static int 581static int
576dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt) 582dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
577{ 583{
578 struct dsrtc_model * const dm = &sc->sc_model; 584 struct dsrtc_model * const dm = &sc->sc_model;
579 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2]; 585 uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
580 int error, offset; 586 int error, offset;
581 587
582 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size); 588 KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);
583 589
584 /* 590 /*
585 * Convert our time representation into something the DSXXXX 591 * Convert our time representation into something the DSXXXX
586 * can understand. 592 * can understand.
587 */ 593 */
588 bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec); 594 bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
589 bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min); 595 bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
590 bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */ 596 bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
591 bcd[DSXXXX_DATE] = bintobcd(dt->dt_day); 597 bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
592 bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday); 598 bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
593 bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon); 599 bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);
594  600
595 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K) { 601 if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K) {
596 offset = 2000; 602 offset = 2000;
597 } else { 603 } else {
598 offset = POSIX_BASE_YEAR; 604 offset = POSIX_BASE_YEAR;
599 } 605 }
600 606
601 bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - offset) % 100); 607 bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - offset) % 100);
602 if (dt->dt_year - offset >= 100) 608 if (dt->dt_year - offset >= 100)
603 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY; 609 bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;
604 610
605 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { 611 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
606 aprint_error_dev(sc->sc_dev, 612 aprint_error_dev(sc->sc_dev,
607 "%s: failed to acquire I2C bus: %d\n", 613 "%s: failed to acquire I2C bus: %d\n",
608 __func__, error); 614 __func__, error);
609 return 0; 615 return 0;
610 } 616 }
611 617
612 /* Stop the clock */ 618 /* Stop the clock */
613 cmdbuf[0] = dm->dm_ch_reg; 619 cmdbuf[0] = dm->dm_ch_reg;
614 620
615 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address, 621 if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
616 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) { 622 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
617 iic_release_bus(sc->sc_tag, I2C_F_POLL); 623 iic_release_bus(sc->sc_tag, I2C_F_POLL);
618 aprint_error_dev(sc->sc_dev, 624 aprint_error_dev(sc->sc_dev,
619 "%s: failed to read Hold Clock: %d\n", 625 "%s: failed to read Hold Clock: %d\n",
620 __func__, error); 626 __func__, error);
621 return 0; 627 return 0;
622 } 628 }
623 629
624 if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED) 630 if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
625 cmdbuf[1] &= ~dm->dm_ch_value; 631 cmdbuf[1] &= ~dm->dm_ch_value;
626 else 632 else
627 cmdbuf[1] |= dm->dm_ch_value; 633 cmdbuf[1] |= dm->dm_ch_value;
628 634
629 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address, 635 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
630 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) { 636 cmdbuf, 1, &cmdbuf[1], 1, I2C_F_POLL)) != 0) {
631 iic_release_bus(sc->sc_tag, I2C_F_POLL); 637 iic_release_bus(sc->sc_tag, I2C_F_POLL);
632 aprint_error_dev(sc->sc_dev, 638 aprint_error_dev(sc->sc_dev,
633 "%s: failed to write Hold Clock: %d\n", 639 "%s: failed to write Hold Clock: %d\n",
634 __func__, error); 640 __func__, error);
635 return 0; 641 return 0;
636 } 642 }
637 643
638 /* 644 /*
639 * Write registers in reverse order. The last write (to the Seconds 645 * Write registers in reverse order. The last write (to the Seconds
640 * register) will undo the Clock Hold, above. 646 * register) will undo the Clock Hold, above.
641 */ 647 */
642 uint8_t op = I2C_OP_WRITE; 648 uint8_t op = I2C_OP_WRITE;
643 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) { 649 for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
644 cmdbuf[0] = dm->dm_rtc_start + i; 650 cmdbuf[0] = dm->dm_rtc_start + i;
645 if ((dm->dm_flags & DSRTC_FLAG_VBATEN) && 651 if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
646 dm->dm_rtc_start + i == dm->dm_vbaten_reg) 652 dm->dm_rtc_start + i == dm->dm_vbaten_reg)
647 bcd[i] |= dm->dm_vbaten_value; 653 bcd[i] |= dm->dm_vbaten_value;
648 if (dm->dm_rtc_start + i == dm->dm_ch_reg) { 654 if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
649 op = I2C_OP_WRITE_WITH_STOP; 655 op = I2C_OP_WRITE_WITH_STOP;
650 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED) 656 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
651 bcd[i] |= dm->dm_ch_value; 657 bcd[i] |= dm->dm_ch_value;
652 } 658 }
653 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address, 659 if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
654 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) { 660 cmdbuf, 1, &bcd[i], 1, I2C_F_POLL)) != 0) {
655 iic_release_bus(sc->sc_tag, I2C_F_POLL); 661 iic_release_bus(sc->sc_tag, I2C_F_POLL);
656 aprint_error_dev(sc->sc_dev, 662 aprint_error_dev(sc->sc_dev,
657 "%s: failed to write rtc at 0x%x: %d\n", 663 "%s: failed to write rtc at 0x%x: %d\n",
658 __func__, i, error); 664 __func__, i, error);
659 /* XXX: Clock Hold is likely still asserted! */ 665 /* XXX: Clock Hold is likely still asserted! */
660 return 0; 666 return 0;
661 } 667 }
662 } 668 }
663 /* 669 /*
664 * If the clock hold register isn't the same register as seconds, 670 * If the clock hold register isn't the same register as seconds,
665 * we need to reeanble the clock. 671 * we need to reeanble the clock.
666 */ 672 */
667 if (op != I2C_OP_WRITE_WITH_STOP) { 673 if (op != I2C_OP_WRITE_WITH_STOP) {
668 cmdbuf[0] = dm->dm_ch_reg; 674 cmdbuf[0] = dm->dm_ch_reg;
669 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED) 675 if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
670 cmdbuf[1] |= dm->dm_ch_value; 676 cmdbuf[1] |= dm->dm_ch_value;
671 else 677 else
672 cmdbuf[1] &= ~dm->dm_ch_value; 678 cmdbuf[1] &= ~dm->dm_ch_value;
673 679
674 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, 680 if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
675 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 681 sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1,
676 I2C_F_POLL)) != 0) { 682 I2C_F_POLL)) != 0) {
677 iic_release_bus(sc->sc_tag, I2C_F_POLL); 683 iic_release_bus(sc->sc_tag, I2C_F_POLL);
678 aprint_error_dev(sc->sc_dev, 684 aprint_error_dev(sc->sc_dev,
679 "%s: failed to Hold Clock: %d\n", 685 "%s: failed to Hold Clock: %d\n",
680 __func__, error); 686 __func__, error);
681 return 0; 687 return 0;
682 } 688 }
683 } 689 }
684 690
685 iic_release_bus(sc->sc_tag, I2C_F_POLL); 691 iic_release_bus(sc->sc_tag, I2C_F_POLL);
686 692
687 return 1; 693 return 1;
688} 694}
689 695
690static int 696static int
691dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv) 697dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
692{ 698{
693 struct dsrtc_softc *sc = ch->cookie; 699 struct dsrtc_softc *sc = ch->cookie;
694 struct timeval check; 700 struct timeval check;
695 int retries; 701 int retries;
696 702
697 memset(tv, 0, sizeof(*tv)); 703 memset(tv, 0, sizeof(*tv));
698 memset(&check, 0, sizeof(check)); 704 memset(&check, 0, sizeof(check));
699 705
700 /* 706 /*
701 * Since we don't support Burst Read, we have to read the clock twice 707 * Since we don't support Burst Read, we have to read the clock twice
702 * until we get two consecutive identical results. 708 * until we get two consecutive identical results.
703 */ 709 */
704 retries = 5; 710 retries = 5;
705 do { 711 do {
706 dsrtc_clock_read_timeval(sc, &tv->tv_sec); 712 dsrtc_clock_read_timeval(sc, &tv->tv_sec);
707 dsrtc_clock_read_timeval(sc, &check.tv_sec); 713 dsrtc_clock_read_timeval(sc, &check.tv_sec);
708 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries); 714 } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);
709 715
710 return 0; 716 return 0;
711} 717}
712 718
713static int 719static int
714dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv) 720dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
715{ 721{
716 struct dsrtc_softc *sc = ch->cookie; 722 struct dsrtc_softc *sc = ch->cookie;
717 723
718 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0) 724 if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
719 return -1; 725 return -1;
720 726
721 return 0; 727 return 0;
722} 728}
723 729
724/* 730/*
725 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use 731 * The RTC probably has a nice Clock Burst Read/Write command, but we can't use
726 * it, since some I2C controllers don't support anything other than single-byte 732 * it, since some I2C controllers don't support anything other than single-byte
727 * transfers. 733 * transfers.
728 */ 734 */
729static int 735static int
730dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp) 736dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
731{ 737{
732 const struct dsrtc_model * const dm = &sc->sc_model; 738 const struct dsrtc_model * const dm = &sc->sc_model;
733 uint8_t buf[4]; 739 uint8_t buf[4];
734 int error; 740 int error;
735 741
736 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { 742 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
737 aprint_error_dev(sc->sc_dev, 743 aprint_error_dev(sc->sc_dev,
738 "%s: failed to acquire I2C bus: %d\n", 744 "%s: failed to acquire I2C bus: %d\n",
739 __func__, error); 745 __func__, error);
740 return 0; 746 return 0;
741 } 747 }
742 748
743 /* read all registers: */ 749 /* read all registers: */
744 uint8_t reg = dm->dm_rtc_start; 750 uint8_t reg = dm->dm_rtc_start;
745 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address, 751 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
746 &reg, 1, buf, 4, I2C_F_POLL); 752 &reg, 1, buf, 4, I2C_F_POLL);
747 753
748 /* Done with I2C */ 754 /* Done with I2C */
749 iic_release_bus(sc->sc_tag, I2C_F_POLL); 755 iic_release_bus(sc->sc_tag, I2C_F_POLL);
750 756
751 if (error != 0) { 757 if (error != 0) {
752 aprint_error_dev(sc->sc_dev, 758 aprint_error_dev(sc->sc_dev,
753 "%s: failed to read rtc at 0x%x: %d\n", 759 "%s: failed to read rtc at 0x%x: %d\n",
754 __func__, reg, error); 760 __func__, reg, error);
755 return 0; 761 return 0;
756 } 762 }
757 763
758 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; 764 uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
759 *tp = v; 765 *tp = v;
760 766
761 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n", 767 aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
762 __func__, v); 768 __func__, v);
763 769
764 return 1; 770 return 1;
765} 771}
766 772
767static int 773static int
768dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t) 774dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
769{ 775{
770 const struct dsrtc_model * const dm = &sc->sc_model; 776 const struct dsrtc_model * const dm = &sc->sc_model;
771 size_t buflen = dm->dm_rtc_size + 2;  777 size_t buflen = dm->dm_rtc_size + 2;
772 uint8_t buf[buflen]; 778 uint8_t buf[buflen];
773 int error; 779 int error;
774 780
775 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0); 781 KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
776 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4); 782 KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);
777 783
778 buf[0] = dm->dm_rtc_start; 784 buf[0] = dm->dm_rtc_start;
779 buf[1] = (t >> 0) & 0xff; 785 buf[1] = (t >> 0) & 0xff;
780 buf[2] = (t >> 8) & 0xff; 786 buf[2] = (t >> 8) & 0xff;
781 buf[3] = (t >> 16) & 0xff; 787 buf[3] = (t >> 16) & 0xff;
782 buf[4] = (t >> 24) & 0xff; 788 buf[4] = (t >> 24) & 0xff;
783 buf[5] = 0; 789 buf[5] = 0;
784 790
785 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { 791 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
786 aprint_error_dev(sc->sc_dev, 792 aprint_error_dev(sc->sc_dev,
787 "%s: failed to acquire I2C bus: %d\n", 793 "%s: failed to acquire I2C bus: %d\n",
788 __func__, error); 794 __func__, error);
789 return 0; 795 return 0;
790 } 796 }
791 797
792 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address, 798 error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
793 &buf, buflen, NULL, 0, I2C_F_POLL); 799 &buf, buflen, NULL, 0, I2C_F_POLL);
794 800
795 /* Done with I2C */ 801 /* Done with I2C */
796 iic_release_bus(sc->sc_tag, I2C_F_POLL); 802 iic_release_bus(sc->sc_tag, I2C_F_POLL);
797 803
798 /* send data */ 804 /* send data */
799 if (error != 0) { 805 if (error != 0) {
800 aprint_error_dev(sc->sc_dev, 806 aprint_error_dev(sc->sc_dev,
801 "%s: failed to set time: %d\n", 807 "%s: failed to set time: %d\n",
802 __func__, error); 808 __func__, error);
803 return 0; 809 return 0;
804 } 810 }
805 811
806 return 1; 812 return 1;
807} 813}
808 814
809static int 815static int
810dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp) 816dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
811{ 817{
812 int error, tc; 818 int error, tc;
813 uint8_t reg = DS3232_TEMP_MSB; 819 uint8_t reg = DS3232_TEMP_MSB;
814 uint8_t buf[2]; 820 uint8_t buf[2];
815 821
816 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0) 822 if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
817 return ENOTSUP; 823 return ENOTSUP;
818 824
819 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) { 825 if ((error = iic_acquire_bus(sc->sc_tag, I2C_F_POLL)) != 0) {
820 aprint_error_dev(sc->sc_dev, 826 aprint_error_dev(sc->sc_dev,
821 "%s: failed to acquire I2C bus: %d\n", 827 "%s: failed to acquire I2C bus: %d\n",
822 __func__, error); 828 __func__, error);
823 return 0; 829 return 0;
824 } 830 }
825 831
826 /* read temperature registers: */ 832 /* read temperature registers: */
827 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address, 833 error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
828 &reg, 1, buf, 2, I2C_F_POLL); 834 &reg, 1, buf, 2, I2C_F_POLL);
829 835
830 /* Done with I2C */ 836 /* Done with I2C */
831 iic_release_bus(sc->sc_tag, I2C_F_POLL); 837 iic_release_bus(sc->sc_tag, I2C_F_POLL);
832 838
833 if (error != 0) { 839 if (error != 0) {
834 aprint_error_dev(sc->sc_dev, 840 aprint_error_dev(sc->sc_dev,
835 "%s: failed to read temperature: %d\n", 841 "%s: failed to read temperature: %d\n",
836 __func__, error); 842 __func__, error);
837 return 0; 843 return 0;
838 } 844 }
839 845
840 /* convert to microkelvin */ 846 /* convert to microkelvin */
841 tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000; 847 tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
842 *temp = tc + 273150000; 848 *temp = tc + 273150000;
843 return 1; 849 return 1;
844} 850}
845 851
846static void 852static void
847dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) 853dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
848{ 854{
849 struct dsrtc_softc *sc = sme->sme_cookie; 855 struct dsrtc_softc *sc = sme->sme_cookie;
850 uint32_t temp = 0; /* XXX gcc */ 856 uint32_t temp = 0; /* XXX gcc */
851 857
852 if (dsrtc_read_temp(sc, &temp) == 0) { 858 if (dsrtc_read_temp(sc, &temp) == 0) {
853 edata->state = ENVSYS_SINVALID; 859 edata->state = ENVSYS_SINVALID;
854 return; 860 return;
855 } 861 }
856 862
857 edata->value_cur = temp; 863 edata->value_cur = temp;
858 864
859 edata->state = ENVSYS_SVALID; 865 edata->state = ENVSYS_SVALID;
860} 866}