Wed Dec 26 21:25:52 2018 UTC ()
Whitespace tweaks.


(thorpej)
diff -r1.8 -r1.9 src/sys/kern/kern_threadpool.c

cvs diff -r1.8 -r1.9 src/sys/kern/kern_threadpool.c (switch to unified diff)

--- src/sys/kern/kern_threadpool.c 2018/12/26 21:18:51 1.8
+++ src/sys/kern/kern_threadpool.c 2018/12/26 21:25:51 1.9
@@ -1,1037 +1,1038 @@ @@ -1,1037 +1,1038 @@
1/* $NetBSD: kern_threadpool.c,v 1.8 2018/12/26 21:18:51 thorpej Exp $ */ 1/* $NetBSD: kern_threadpool.c,v 1.9 2018/12/26 21:25:51 thorpej Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 2014, 2018 The NetBSD Foundation, Inc. 4 * Copyright (c) 2014, 2018 The NetBSD Foundation, Inc.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * This code is derived from software contributed to The NetBSD Foundation 7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell and Jason R. Thorpe. 8 * by Taylor R. Campbell and Jason R. Thorpe.
9 * 9 *
10 * Redistribution and use in source and binary forms, with or without 10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions 11 * modification, are permitted provided that the following conditions
12 * are met: 12 * are met:
13 * 1. Redistributions of source code must retain the above copyright 13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer. 14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright 15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the 16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution. 17 * documentation and/or other materials provided with the distribution.
18 * 18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE. 29 * POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31 31
32/* 32/*
33 * Thread pools. 33 * Thread pools.
34 * 34 *
35 * A thread pool is a collection of worker threads idle or running 35 * A thread pool is a collection of worker threads idle or running
36 * jobs, together with an overseer thread that does not run jobs but 36 * jobs, together with an overseer thread that does not run jobs but
37 * can be given jobs to assign to a worker thread. Scheduling a job in 37 * can be given jobs to assign to a worker thread. Scheduling a job in
38 * a thread pool does not allocate or even sleep at all, except perhaps 38 * a thread pool does not allocate or even sleep at all, except perhaps
39 * on an adaptive lock, unlike kthread_create. Jobs reuse threads, so 39 * on an adaptive lock, unlike kthread_create. Jobs reuse threads, so
40 * they do not incur the expense of creating and destroying kthreads 40 * they do not incur the expense of creating and destroying kthreads
41 * unless there is not much work to be done. 41 * unless there is not much work to be done.
42 * 42 *
43 * A per-CPU thread pool (threadpool_percpu) is a collection of thread 43 * A per-CPU thread pool (threadpool_percpu) is a collection of thread
44 * pools, one per CPU bound to that CPU. For each priority level in 44 * pools, one per CPU bound to that CPU. For each priority level in
45 * use, there is one shared unbound thread pool (i.e., pool of threads 45 * use, there is one shared unbound thread pool (i.e., pool of threads
46 * not bound to any CPU) and one shared per-CPU thread pool. 46 * not bound to any CPU) and one shared per-CPU thread pool.
47 * 47 *
48 * To use the unbound thread pool at priority pri, call 48 * To use the unbound thread pool at priority pri, call
49 * threadpool_get(&pool, pri). When you're done, call 49 * threadpool_get(&pool, pri). When you're done, call
50 * threadpool_put(pool, pri). 50 * threadpool_put(pool, pri).
51 * 51 *
52 * To use the per-CPU thread pools at priority pri, call 52 * To use the per-CPU thread pools at priority pri, call
53 * threadpool_percpu_get(&pool_percpu, pri), and then use the thread 53 * threadpool_percpu_get(&pool_percpu, pri), and then use the thread
54 * pool returned by threadpool_percpu_ref(pool_percpu) for the current 54 * pool returned by threadpool_percpu_ref(pool_percpu) for the current
55 * CPU, or by threadpool_percpu_ref_remote(pool_percpu, ci) for another 55 * CPU, or by threadpool_percpu_ref_remote(pool_percpu, ci) for another
56 * CPU. When you're done, call threadpool_percpu_put(pool_percpu, 56 * CPU. When you're done, call threadpool_percpu_put(pool_percpu,
57 * pri). 57 * pri).
58 * 58 *
59 * +--MACHINE-----------------------------------------------+ 59 * +--MACHINE-----------------------------------------------+
60 * | +--CPU 0-------+ +--CPU 1-------+ +--CPU n-------+ | 60 * | +--CPU 0-------+ +--CPU 1-------+ +--CPU n-------+ |
61 * | | <overseer 0> | | <overseer 1> | ... | <overseer n> | | 61 * | | <overseer 0> | | <overseer 1> | ... | <overseer n> | |
62 * | | <idle 0a> | | <running 1a> | ... | <idle na> | | 62 * | | <idle 0a> | | <running 1a> | ... | <idle na> | |
63 * | | <running 0b> | | <running 1b> | ... | <idle nb> | | 63 * | | <running 0b> | | <running 1b> | ... | <idle nb> | |
64 * | | . | | . | ... | . | | 64 * | | . | | . | ... | . | |
65 * | | . | | . | ... | . | | 65 * | | . | | . | ... | . | |
66 * | | . | | . | ... | . | | 66 * | | . | | . | ... | . | |
67 * | +--------------+ +--------------+ +--------------+ | 67 * | +--------------+ +--------------+ +--------------+ |
68 * | +--unbound---------+ | 68 * | +--unbound---------+ |
69 * | | <overseer n+1> | | 69 * | | <overseer n+1> | |
70 * | | <idle (n+1)a> | | 70 * | | <idle (n+1)a> | |
71 * | | <running (n+1)b> | | 71 * | | <running (n+1)b> | |
72 * | +------------------+ | 72 * | +------------------+ |
73 * +--------------------------------------------------------+ 73 * +--------------------------------------------------------+
74 * 74 *
75 * XXX Why one overseer per CPU? I did that originally to avoid 75 * XXX Why one overseer per CPU? I did that originally to avoid
76 * touching remote CPUs' memory when scheduling a job, but that still 76 * touching remote CPUs' memory when scheduling a job, but that still
77 * requires interprocessor synchronization. Perhaps we could get by 77 * requires interprocessor synchronization. Perhaps we could get by
78 * with a single overseer thread, at the expense of another pointer in 78 * with a single overseer thread, at the expense of another pointer in
79 * struct threadpool_job to identify the CPU on which it must run 79 * struct threadpool_job to identify the CPU on which it must run
80 * in order for the overseer to schedule it correctly. 80 * in order for the overseer to schedule it correctly.
81 */ 81 */
82 82
83#include <sys/cdefs.h> 83#include <sys/cdefs.h>
84__KERNEL_RCSID(0, "$NetBSD: kern_threadpool.c,v 1.8 2018/12/26 21:18:51 thorpej Exp $"); 84__KERNEL_RCSID(0, "$NetBSD: kern_threadpool.c,v 1.9 2018/12/26 21:25:51 thorpej Exp $");
85 85
86#include <sys/types.h> 86#include <sys/types.h>
87#include <sys/param.h> 87#include <sys/param.h>
88#include <sys/atomic.h> 88#include <sys/atomic.h>
89#include <sys/condvar.h> 89#include <sys/condvar.h>
90#include <sys/cpu.h> 90#include <sys/cpu.h>
91#include <sys/kernel.h> 91#include <sys/kernel.h>
92#include <sys/kmem.h> 92#include <sys/kmem.h>
93#include <sys/kthread.h> 93#include <sys/kthread.h>
94#include <sys/mutex.h> 94#include <sys/mutex.h>
95#include <sys/once.h> 95#include <sys/once.h>
96#include <sys/percpu.h> 96#include <sys/percpu.h>
97#include <sys/pool.h> 97#include <sys/pool.h>
98#include <sys/proc.h> 98#include <sys/proc.h>
99#include <sys/queue.h> 99#include <sys/queue.h>
100#include <sys/systm.h> 100#include <sys/systm.h>
101#include <sys/threadpool.h> 101#include <sys/threadpool.h>
102 102
103static ONCE_DECL(threadpool_init_once) 103static ONCE_DECL(threadpool_init_once)
104 104
105#define THREADPOOL_INIT() \ 105#define THREADPOOL_INIT() \
106do { \ 106do { \
107 int threadpool_init_error __diagused = \ 107 int threadpool_init_error __diagused = \
108 RUN_ONCE(&threadpool_init_once, threadpools_init); \ 108 RUN_ONCE(&threadpool_init_once, threadpools_init); \
109 KASSERT(threadpool_init_error == 0); \ 109 KASSERT(threadpool_init_error == 0); \
110} while (/*CONSTCOND*/0) 110} while (/*CONSTCOND*/0)
111 111
112/* Data structures */ 112/* Data structures */
113 113
114TAILQ_HEAD(job_head, threadpool_job); 114TAILQ_HEAD(job_head, threadpool_job);
115TAILQ_HEAD(thread_head, threadpool_thread); 115TAILQ_HEAD(thread_head, threadpool_thread);
116 116
117struct threadpool_thread { 117struct threadpool_thread {
118 struct lwp *tpt_lwp; 118 struct lwp *tpt_lwp;
119 struct threadpool *tpt_pool; 119 struct threadpool *tpt_pool;
120 struct threadpool_job *tpt_job; 120 struct threadpool_job *tpt_job;
121 kcondvar_t tpt_cv; 121 kcondvar_t tpt_cv;
122 TAILQ_ENTRY(threadpool_thread) tpt_entry; 122 TAILQ_ENTRY(threadpool_thread) tpt_entry;
123}; 123};
124 124
125struct threadpool { 125struct threadpool {
126 kmutex_t tp_lock; 126 kmutex_t tp_lock;
127 struct threadpool_thread tp_overseer; 127 struct threadpool_thread tp_overseer;
128 struct job_head tp_jobs; 128 struct job_head tp_jobs;
129 struct thread_head tp_idle_threads; 129 struct thread_head tp_idle_threads;
130 uint64_t tp_refcnt; 130 uint64_t tp_refcnt;
131 int tp_flags; 131 int tp_flags;
132#define THREADPOOL_DYING 0x01 132#define THREADPOOL_DYING 0x01
133 struct cpu_info *tp_cpu; 133 struct cpu_info *tp_cpu;
134 pri_t tp_pri; 134 pri_t tp_pri;
135}; 135};
136 136
137static void threadpool_hold(struct threadpool *); 137static void threadpool_hold(struct threadpool *);
138static void threadpool_rele(struct threadpool *); 138static void threadpool_rele(struct threadpool *);
139 139
140static int threadpool_percpu_create(struct threadpool_percpu **, pri_t); 140static int threadpool_percpu_create(struct threadpool_percpu **, pri_t);
141static void threadpool_percpu_destroy(struct threadpool_percpu *); 141static void threadpool_percpu_destroy(struct threadpool_percpu *);
142 142
143static void threadpool_job_dead(struct threadpool_job *); 143static void threadpool_job_dead(struct threadpool_job *);
144 144
145static int threadpool_job_hold(struct threadpool_job *); 145static int threadpool_job_hold(struct threadpool_job *);
146static void threadpool_job_rele(struct threadpool_job *); 146static void threadpool_job_rele(struct threadpool_job *);
147 147
148static void threadpool_overseer_thread(void *) __dead; 148static void threadpool_overseer_thread(void *) __dead;
149static void threadpool_thread(void *) __dead; 149static void threadpool_thread(void *) __dead;
150 150
151static pool_cache_t threadpool_thread_pc __read_mostly; 151static pool_cache_t threadpool_thread_pc __read_mostly;
152 152
153static kmutex_t threadpools_lock __cacheline_aligned; 153static kmutex_t threadpools_lock __cacheline_aligned;
154 154
155 /* Idle out threads after 30 seconds */ 155 /* Idle out threads after 30 seconds */
156#define THREADPOOL_IDLE_TICKS mstohz(30 * 1000) 156#define THREADPOOL_IDLE_TICKS mstohz(30 * 1000)
157 157
158struct threadpool_unbound { 158struct threadpool_unbound {
159 struct threadpool tpu_pool; 159 struct threadpool tpu_pool;
160 160
161 /* protected by threadpools_lock */ 161 /* protected by threadpools_lock */
162 LIST_ENTRY(threadpool_unbound) tpu_link; 162 LIST_ENTRY(threadpool_unbound) tpu_link;
163 uint64_t tpu_refcnt; 163 uint64_t tpu_refcnt;
164}; 164};
165 165
166static LIST_HEAD(, threadpool_unbound) unbound_threadpools; 166static LIST_HEAD(, threadpool_unbound) unbound_threadpools;
167 167
168static struct threadpool_unbound * 168static struct threadpool_unbound *
169threadpool_lookup_unbound(pri_t pri) 169threadpool_lookup_unbound(pri_t pri)
170{ 170{
171 struct threadpool_unbound *tpu; 171 struct threadpool_unbound *tpu;
172 172
173 LIST_FOREACH(tpu, &unbound_threadpools, tpu_link) { 173 LIST_FOREACH(tpu, &unbound_threadpools, tpu_link) {
174 if (tpu->tpu_pool.tp_pri == pri) 174 if (tpu->tpu_pool.tp_pri == pri)
175 return tpu; 175 return tpu;
176 } 176 }
177 return NULL; 177 return NULL;
178} 178}
179 179
180static void 180static void
181threadpool_insert_unbound(struct threadpool_unbound *tpu) 181threadpool_insert_unbound(struct threadpool_unbound *tpu)
182{ 182{
183 KASSERT(threadpool_lookup_unbound(tpu->tpu_pool.tp_pri) == NULL); 183 KASSERT(threadpool_lookup_unbound(tpu->tpu_pool.tp_pri) == NULL);
184 LIST_INSERT_HEAD(&unbound_threadpools, tpu, tpu_link); 184 LIST_INSERT_HEAD(&unbound_threadpools, tpu, tpu_link);
185} 185}
186 186
187static void 187static void
188threadpool_remove_unbound(struct threadpool_unbound *tpu) 188threadpool_remove_unbound(struct threadpool_unbound *tpu)
189{ 189{
190 KASSERT(threadpool_lookup_unbound(tpu->tpu_pool.tp_pri) == tpu); 190 KASSERT(threadpool_lookup_unbound(tpu->tpu_pool.tp_pri) == tpu);
191 LIST_REMOVE(tpu, tpu_link); 191 LIST_REMOVE(tpu, tpu_link);
192} 192}
193 193
194struct threadpool_percpu { 194struct threadpool_percpu {
195 percpu_t * tpp_percpu; 195 percpu_t * tpp_percpu;
196 pri_t tpp_pri; 196 pri_t tpp_pri;
197 197
198 /* protected by threadpools_lock */ 198 /* protected by threadpools_lock */
199 LIST_ENTRY(threadpool_percpu) tpp_link; 199 LIST_ENTRY(threadpool_percpu) tpp_link;
200 uint64_t tpp_refcnt; 200 uint64_t tpp_refcnt;
201}; 201};
202 202
203static LIST_HEAD(, threadpool_percpu) percpu_threadpools; 203static LIST_HEAD(, threadpool_percpu) percpu_threadpools;
204 204
205static struct threadpool_percpu * 205static struct threadpool_percpu *
206threadpool_lookup_percpu(pri_t pri) 206threadpool_lookup_percpu(pri_t pri)
207{ 207{
208 struct threadpool_percpu *tpp; 208 struct threadpool_percpu *tpp;
209 209
210 LIST_FOREACH(tpp, &percpu_threadpools, tpp_link) { 210 LIST_FOREACH(tpp, &percpu_threadpools, tpp_link) {
211 if (tpp->tpp_pri == pri) 211 if (tpp->tpp_pri == pri)
212 return tpp; 212 return tpp;
213 } 213 }
214 return NULL; 214 return NULL;
215} 215}
216 216
217static void 217static void
218threadpool_insert_percpu(struct threadpool_percpu *tpp) 218threadpool_insert_percpu(struct threadpool_percpu *tpp)
219{ 219{
220 KASSERT(threadpool_lookup_percpu(tpp->tpp_pri) == NULL); 220 KASSERT(threadpool_lookup_percpu(tpp->tpp_pri) == NULL);
221 LIST_INSERT_HEAD(&percpu_threadpools, tpp, tpp_link); 221 LIST_INSERT_HEAD(&percpu_threadpools, tpp, tpp_link);
222} 222}
223 223
224static void 224static void
225threadpool_remove_percpu(struct threadpool_percpu *tpp) 225threadpool_remove_percpu(struct threadpool_percpu *tpp)
226{ 226{
227 KASSERT(threadpool_lookup_percpu(tpp->tpp_pri) == tpp); 227 KASSERT(threadpool_lookup_percpu(tpp->tpp_pri) == tpp);
228 LIST_REMOVE(tpp, tpp_link); 228 LIST_REMOVE(tpp, tpp_link);
229} 229}
230 230
231#ifdef THREADPOOL_VERBOSE 231#ifdef THREADPOOL_VERBOSE
232#define TP_LOG(x) printf x 232#define TP_LOG(x) printf x
233#else 233#else
234#define TP_LOG(x) /* nothing */ 234#define TP_LOG(x) /* nothing */
235#endif /* THREADPOOL_VERBOSE */ 235#endif /* THREADPOOL_VERBOSE */
236 236
237static int 237static int
238threadpools_init(void) 238threadpools_init(void)
239{ 239{
240 240
241 threadpool_thread_pc = 241 threadpool_thread_pc =
242 pool_cache_init(sizeof(struct threadpool_thread), 0, 0, 0, 242 pool_cache_init(sizeof(struct threadpool_thread), 0, 0, 0,
243 "thplthrd", NULL, IPL_NONE, NULL, NULL, NULL); 243 "thplthrd", NULL, IPL_NONE, NULL, NULL, NULL);
244 244
245 LIST_INIT(&unbound_threadpools); 245 LIST_INIT(&unbound_threadpools);
246 LIST_INIT(&percpu_threadpools); 246 LIST_INIT(&percpu_threadpools);
247 mutex_init(&threadpools_lock, MUTEX_DEFAULT, IPL_NONE); 247 mutex_init(&threadpools_lock, MUTEX_DEFAULT, IPL_NONE);
248 248
249 TP_LOG(("%s: sizeof(threadpool_job) = %zu\n", 249 TP_LOG(("%s: sizeof(threadpool_job) = %zu\n",
250 __func__, sizeof(struct threadpool_job))); 250 __func__, sizeof(struct threadpool_job)));
251 251
252 return 0; 252 return 0;
253} 253}
254 254
255/* Thread pool creation */ 255/* Thread pool creation */
256 256
257static bool 257static bool
258threadpool_pri_is_valid(pri_t pri) 258threadpool_pri_is_valid(pri_t pri)
259{ 259{
260 return (pri == PRI_NONE || (pri >= PRI_USER && pri < PRI_COUNT)); 260 return (pri == PRI_NONE || (pri >= PRI_USER && pri < PRI_COUNT));
261} 261}
262 262
263static int 263static int
264threadpool_create(struct threadpool *const pool, struct cpu_info *ci, 264threadpool_create(struct threadpool *const pool, struct cpu_info *ci,
265 pri_t pri) 265 pri_t pri)
266{ 266{
267 struct lwp *lwp; 267 struct lwp *lwp;
268 int ktflags; 268 int ktflags;
269 int error; 269 int error;
270 270
271 KASSERT(threadpool_pri_is_valid(pri)); 271 KASSERT(threadpool_pri_is_valid(pri));
272 272
273 mutex_init(&pool->tp_lock, MUTEX_DEFAULT, IPL_VM); 273 mutex_init(&pool->tp_lock, MUTEX_DEFAULT, IPL_VM);
274 /* XXX overseer */ 274 /* XXX overseer */
275 TAILQ_INIT(&pool->tp_jobs); 275 TAILQ_INIT(&pool->tp_jobs);
276 TAILQ_INIT(&pool->tp_idle_threads); 276 TAILQ_INIT(&pool->tp_idle_threads);
277 pool->tp_refcnt = 1; /* overseer's reference */ 277 pool->tp_refcnt = 1; /* overseer's reference */
278 pool->tp_flags = 0; 278 pool->tp_flags = 0;
279 pool->tp_cpu = ci; 279 pool->tp_cpu = ci;
280 pool->tp_pri = pri; 280 pool->tp_pri = pri;
281 281
282 pool->tp_overseer.tpt_lwp = NULL; 282 pool->tp_overseer.tpt_lwp = NULL;
283 pool->tp_overseer.tpt_pool = pool; 283 pool->tp_overseer.tpt_pool = pool;
284 pool->tp_overseer.tpt_job = NULL; 284 pool->tp_overseer.tpt_job = NULL;
285 cv_init(&pool->tp_overseer.tpt_cv, "poolover"); 285 cv_init(&pool->tp_overseer.tpt_cv, "poolover");
286 286
287 ktflags = 0; 287 ktflags = 0;
288 ktflags |= KTHREAD_MPSAFE; 288 ktflags |= KTHREAD_MPSAFE;
289 if (pri < PRI_KERNEL) 289 if (pri < PRI_KERNEL)
290 ktflags |= KTHREAD_TS; 290 ktflags |= KTHREAD_TS;
291 error = kthread_create(pri, ktflags, ci, &threadpool_overseer_thread, 291 error = kthread_create(pri, ktflags, ci, &threadpool_overseer_thread,
292 &pool->tp_overseer, &lwp, 292 &pool->tp_overseer, &lwp,
293 "pooloverseer/%d@%d", (ci ? cpu_index(ci) : -1), (int)pri); 293 "pooloverseer/%d@%d", (ci ? cpu_index(ci) : -1), (int)pri);
294 if (error) 294 if (error)
295 goto fail0; 295 goto fail0;
296 296
297 mutex_spin_enter(&pool->tp_lock); 297 mutex_spin_enter(&pool->tp_lock);
298 pool->tp_overseer.tpt_lwp = lwp; 298 pool->tp_overseer.tpt_lwp = lwp;
299 cv_broadcast(&pool->tp_overseer.tpt_cv); 299 cv_broadcast(&pool->tp_overseer.tpt_cv);
300 mutex_spin_exit(&pool->tp_lock); 300 mutex_spin_exit(&pool->tp_lock);
301 301
302 return 0; 302 return 0;
303 303
304fail0: KASSERT(error); 304fail0: KASSERT(error);
305 KASSERT(pool->tp_overseer.tpt_job == NULL); 305 KASSERT(pool->tp_overseer.tpt_job == NULL);
306 KASSERT(pool->tp_overseer.tpt_pool == pool); 306 KASSERT(pool->tp_overseer.tpt_pool == pool);
307 KASSERT(pool->tp_flags == 0); 307 KASSERT(pool->tp_flags == 0);
308 KASSERT(pool->tp_refcnt == 0); 308 KASSERT(pool->tp_refcnt == 0);
309 KASSERT(TAILQ_EMPTY(&pool->tp_idle_threads)); 309 KASSERT(TAILQ_EMPTY(&pool->tp_idle_threads));
310 KASSERT(TAILQ_EMPTY(&pool->tp_jobs)); 310 KASSERT(TAILQ_EMPTY(&pool->tp_jobs));
311 KASSERT(!cv_has_waiters(&pool->tp_overseer.tpt_cv)); 311 KASSERT(!cv_has_waiters(&pool->tp_overseer.tpt_cv));
312 cv_destroy(&pool->tp_overseer.tpt_cv); 312 cv_destroy(&pool->tp_overseer.tpt_cv);
313 mutex_destroy(&pool->tp_lock); 313 mutex_destroy(&pool->tp_lock);
314 return error; 314 return error;
315} 315}
316 316
317/* Thread pool destruction */ 317/* Thread pool destruction */
318 318
319static void 319static void
320threadpool_destroy(struct threadpool *pool) 320threadpool_destroy(struct threadpool *pool)
321{ 321{
322 struct threadpool_thread *thread; 322 struct threadpool_thread *thread;
323 323
324 /* Mark the pool dying and wait for threads to commit suicide. */ 324 /* Mark the pool dying and wait for threads to commit suicide. */
325 mutex_spin_enter(&pool->tp_lock); 325 mutex_spin_enter(&pool->tp_lock);
326 KASSERT(TAILQ_EMPTY(&pool->tp_jobs)); 326 KASSERT(TAILQ_EMPTY(&pool->tp_jobs));
327 pool->tp_flags |= THREADPOOL_DYING; 327 pool->tp_flags |= THREADPOOL_DYING;
328 cv_broadcast(&pool->tp_overseer.tpt_cv); 328 cv_broadcast(&pool->tp_overseer.tpt_cv);
329 TAILQ_FOREACH(thread, &pool->tp_idle_threads, tpt_entry) 329 TAILQ_FOREACH(thread, &pool->tp_idle_threads, tpt_entry)
330 cv_broadcast(&thread->tpt_cv); 330 cv_broadcast(&thread->tpt_cv);
331 while (0 < pool->tp_refcnt) { 331 while (0 < pool->tp_refcnt) {
332 TP_LOG(("%s: draining %u references...\n", __func__, 332 TP_LOG(("%s: draining %u references...\n", __func__,
333 pool->tp_refcnt)); 333 pool->tp_refcnt));
334 cv_wait(&pool->tp_overseer.tpt_cv, &pool->tp_lock); 334 cv_wait(&pool->tp_overseer.tpt_cv, &pool->tp_lock);
335 } 335 }
336 mutex_spin_exit(&pool->tp_lock); 336 mutex_spin_exit(&pool->tp_lock);
337 337
338 KASSERT(pool->tp_overseer.tpt_job == NULL); 338 KASSERT(pool->tp_overseer.tpt_job == NULL);
339 KASSERT(pool->tp_overseer.tpt_pool == pool); 339 KASSERT(pool->tp_overseer.tpt_pool == pool);
340 KASSERT(pool->tp_flags == THREADPOOL_DYING); 340 KASSERT(pool->tp_flags == THREADPOOL_DYING);
341 KASSERT(pool->tp_refcnt == 0); 341 KASSERT(pool->tp_refcnt == 0);
342 KASSERT(TAILQ_EMPTY(&pool->tp_idle_threads)); 342 KASSERT(TAILQ_EMPTY(&pool->tp_idle_threads));
343 KASSERT(TAILQ_EMPTY(&pool->tp_jobs)); 343 KASSERT(TAILQ_EMPTY(&pool->tp_jobs));
344 KASSERT(!cv_has_waiters(&pool->tp_overseer.tpt_cv)); 344 KASSERT(!cv_has_waiters(&pool->tp_overseer.tpt_cv));
345 cv_destroy(&pool->tp_overseer.tpt_cv); 345 cv_destroy(&pool->tp_overseer.tpt_cv);
346 mutex_destroy(&pool->tp_lock); 346 mutex_destroy(&pool->tp_lock);
347} 347}
348 348
349static void 349static void
350threadpool_hold(struct threadpool *pool) 350threadpool_hold(struct threadpool *pool)
351{ 351{
352 352
353 KASSERT(mutex_owned(&pool->tp_lock)); 353 KASSERT(mutex_owned(&pool->tp_lock));
354 pool->tp_refcnt++; 354 pool->tp_refcnt++;
355 KASSERT(pool->tp_refcnt != 0); 355 KASSERT(pool->tp_refcnt != 0);
356} 356}
357 357
358static void 358static void
359threadpool_rele(struct threadpool *pool) 359threadpool_rele(struct threadpool *pool)
360{ 360{
361 361
362 KASSERT(mutex_owned(&pool->tp_lock)); 362 KASSERT(mutex_owned(&pool->tp_lock));
363 KASSERT(0 < pool->tp_refcnt); 363 KASSERT(0 < pool->tp_refcnt);
364 if (--pool->tp_refcnt == 0) 364 if (--pool->tp_refcnt == 0)
365 cv_broadcast(&pool->tp_overseer.tpt_cv); 365 cv_broadcast(&pool->tp_overseer.tpt_cv);
366} 366}
367 367
368/* Unbound thread pools */ 368/* Unbound thread pools */
369 369
370int 370int
371threadpool_get(struct threadpool **poolp, pri_t pri) 371threadpool_get(struct threadpool **poolp, pri_t pri)
372{ 372{
373 struct threadpool_unbound *tpu, *tmp = NULL; 373 struct threadpool_unbound *tpu, *tmp = NULL;
374 int error; 374 int error;
375 375
376 THREADPOOL_INIT(); 376 THREADPOOL_INIT();
377 377
378 ASSERT_SLEEPABLE(); 378 ASSERT_SLEEPABLE();
379 379
380 if (! threadpool_pri_is_valid(pri)) 380 if (! threadpool_pri_is_valid(pri))
381 return EINVAL; 381 return EINVAL;
382 382
383 mutex_enter(&threadpools_lock); 383 mutex_enter(&threadpools_lock);
384 tpu = threadpool_lookup_unbound(pri); 384 tpu = threadpool_lookup_unbound(pri);
385 if (tpu == NULL) { 385 if (tpu == NULL) {
386 mutex_exit(&threadpools_lock); 386 mutex_exit(&threadpools_lock);
387 TP_LOG(("%s: No pool for pri=%d, creating one.\n", 387 TP_LOG(("%s: No pool for pri=%d, creating one.\n",
388 __func__, (int)pri)); 388 __func__, (int)pri));
389 tmp = kmem_zalloc(sizeof(*tmp), KM_SLEEP); 389 tmp = kmem_zalloc(sizeof(*tmp), KM_SLEEP);
390 error = threadpool_create(&tmp->tpu_pool, NULL, pri); 390 error = threadpool_create(&tmp->tpu_pool, NULL, pri);
391 if (error) { 391 if (error) {
392 kmem_free(tmp, sizeof(*tmp)); 392 kmem_free(tmp, sizeof(*tmp));
393 return error; 393 return error;
394 } 394 }
395 mutex_enter(&threadpools_lock); 395 mutex_enter(&threadpools_lock);
396 tpu = threadpool_lookup_unbound(pri); 396 tpu = threadpool_lookup_unbound(pri);
397 if (tpu == NULL) { 397 if (tpu == NULL) {
398 TP_LOG(("%s: Won the creation race for pri=%d.\n", 398 TP_LOG(("%s: Won the creation race for pri=%d.\n",
399 __func__, (int)pri)); 399 __func__, (int)pri));
400 tpu = tmp; 400 tpu = tmp;
401 tmp = NULL; 401 tmp = NULL;
402 threadpool_insert_unbound(tpu); 402 threadpool_insert_unbound(tpu);
403 } 403 }
404 } 404 }
405 KASSERT(tpu != NULL); 405 KASSERT(tpu != NULL);
406 tpu->tpu_refcnt++; 406 tpu->tpu_refcnt++;
407 KASSERT(tpu->tpu_refcnt != 0); 407 KASSERT(tpu->tpu_refcnt != 0);
408 mutex_exit(&threadpools_lock); 408 mutex_exit(&threadpools_lock);
409 409
410 if (tmp != NULL) { 410 if (tmp != NULL) {
411 threadpool_destroy(&tmp->tpu_pool); 411 threadpool_destroy(&tmp->tpu_pool);
412 kmem_free(tmp, sizeof(*tmp)); 412 kmem_free(tmp, sizeof(*tmp));
413 } 413 }
414 KASSERT(tpu != NULL); 414 KASSERT(tpu != NULL);
415 *poolp = &tpu->tpu_pool; 415 *poolp = &tpu->tpu_pool;
416 return 0; 416 return 0;
417} 417}
418 418
419void 419void
420threadpool_put(struct threadpool *pool, pri_t pri) 420threadpool_put(struct threadpool *pool, pri_t pri)
421{ 421{
422 struct threadpool_unbound *tpu = 422 struct threadpool_unbound *tpu =
423 container_of(pool, struct threadpool_unbound, tpu_pool); 423 container_of(pool, struct threadpool_unbound, tpu_pool);
424 424
425 THREADPOOL_INIT(); 425 THREADPOOL_INIT();
426 426
427 ASSERT_SLEEPABLE(); 427 ASSERT_SLEEPABLE();
428 428
429 KASSERT(threadpool_pri_is_valid(pri)); 429 KASSERT(threadpool_pri_is_valid(pri));
430 430
431 mutex_enter(&threadpools_lock); 431 mutex_enter(&threadpools_lock);
432 KASSERT(tpu == threadpool_lookup_unbound(pri)); 432 KASSERT(tpu == threadpool_lookup_unbound(pri));
433 KASSERT(0 < tpu->tpu_refcnt); 433 KASSERT(0 < tpu->tpu_refcnt);
434 if (--tpu->tpu_refcnt == 0) { 434 if (--tpu->tpu_refcnt == 0) {
435 TP_LOG(("%s: Last reference for pri=%d, destroying pool.\n", 435 TP_LOG(("%s: Last reference for pri=%d, destroying pool.\n",
436 __func__, (int)pri)); 436 __func__, (int)pri));
437 threadpool_remove_unbound(tpu); 437 threadpool_remove_unbound(tpu);
438 } else { 438 } else {
439 tpu = NULL; 439 tpu = NULL;
440 } 440 }
441 mutex_exit(&threadpools_lock); 441 mutex_exit(&threadpools_lock);
442 442
443 if (tpu) { 443 if (tpu) {
444 threadpool_destroy(&tpu->tpu_pool); 444 threadpool_destroy(&tpu->tpu_pool);
445 kmem_free(tpu, sizeof(*tpu)); 445 kmem_free(tpu, sizeof(*tpu));
446 } 446 }
447} 447}
448 448
449/* Per-CPU thread pools */ 449/* Per-CPU thread pools */
450 450
451int 451int
452threadpool_percpu_get(struct threadpool_percpu **pool_percpup, pri_t pri) 452threadpool_percpu_get(struct threadpool_percpu **pool_percpup, pri_t pri)
453{ 453{
454 struct threadpool_percpu *pool_percpu, *tmp = NULL; 454 struct threadpool_percpu *pool_percpu, *tmp = NULL;
455 int error; 455 int error;
456 456
457 THREADPOOL_INIT(); 457 THREADPOOL_INIT();
458 458
459 ASSERT_SLEEPABLE(); 459 ASSERT_SLEEPABLE();
460 460
461 if (! threadpool_pri_is_valid(pri)) 461 if (! threadpool_pri_is_valid(pri))
462 return EINVAL; 462 return EINVAL;
463 463
464 mutex_enter(&threadpools_lock); 464 mutex_enter(&threadpools_lock);
465 pool_percpu = threadpool_lookup_percpu(pri); 465 pool_percpu = threadpool_lookup_percpu(pri);
466 if (pool_percpu == NULL) { 466 if (pool_percpu == NULL) {
467 mutex_exit(&threadpools_lock); 467 mutex_exit(&threadpools_lock);
468 TP_LOG(("%s: No pool for pri=%d, creating one.\n", 468 TP_LOG(("%s: No pool for pri=%d, creating one.\n",
469 __func__, (int)pri)); 469 __func__, (int)pri));
470 error = threadpool_percpu_create(&tmp, pri); 470 error = threadpool_percpu_create(&tmp, pri);
471 if (error) 471 if (error)
472 return error; 472 return error;
473 KASSERT(tmp != NULL); 473 KASSERT(tmp != NULL);
474 mutex_enter(&threadpools_lock); 474 mutex_enter(&threadpools_lock);
475 pool_percpu = threadpool_lookup_percpu(pri); 475 pool_percpu = threadpool_lookup_percpu(pri);
476 if (pool_percpu == NULL) { 476 if (pool_percpu == NULL) {
477 TP_LOG(("%s: Won the creation race for pri=%d.\n", 477 TP_LOG(("%s: Won the creation race for pri=%d.\n",
478 __func__, (int)pri)); 478 __func__, (int)pri));
479 pool_percpu = tmp; 479 pool_percpu = tmp;
480 tmp = NULL; 480 tmp = NULL;
481 threadpool_insert_percpu(pool_percpu); 481 threadpool_insert_percpu(pool_percpu);
482 } 482 }
483 } 483 }
484 KASSERT(pool_percpu != NULL); 484 KASSERT(pool_percpu != NULL);
485 pool_percpu->tpp_refcnt++; 485 pool_percpu->tpp_refcnt++;
486 KASSERT(pool_percpu->tpp_refcnt != 0); 486 KASSERT(pool_percpu->tpp_refcnt != 0);
487 mutex_exit(&threadpools_lock); 487 mutex_exit(&threadpools_lock);
488 488
489 if (tmp != NULL) 489 if (tmp != NULL)
490 threadpool_percpu_destroy(tmp); 490 threadpool_percpu_destroy(tmp);
491 KASSERT(pool_percpu != NULL); 491 KASSERT(pool_percpu != NULL);
492 *pool_percpup = pool_percpu; 492 *pool_percpup = pool_percpu;
493 return 0; 493 return 0;
494} 494}
495 495
496void 496void
497threadpool_percpu_put(struct threadpool_percpu *pool_percpu, pri_t pri) 497threadpool_percpu_put(struct threadpool_percpu *pool_percpu, pri_t pri)
498{ 498{
499 499
500 THREADPOOL_INIT(); 500 THREADPOOL_INIT();
501 501
502 ASSERT_SLEEPABLE(); 502 ASSERT_SLEEPABLE();
503 503
504 KASSERT(threadpool_pri_is_valid(pri)); 504 KASSERT(threadpool_pri_is_valid(pri));
505 505
506 mutex_enter(&threadpools_lock); 506 mutex_enter(&threadpools_lock);
507 KASSERT(pool_percpu == threadpool_lookup_percpu(pri)); 507 KASSERT(pool_percpu == threadpool_lookup_percpu(pri));
508 KASSERT(0 < pool_percpu->tpp_refcnt); 508 KASSERT(0 < pool_percpu->tpp_refcnt);
509 if (--pool_percpu->tpp_refcnt == 0) { 509 if (--pool_percpu->tpp_refcnt == 0) {
510 TP_LOG(("%s: Last reference for pri=%d, destroying pool.\n", 510 TP_LOG(("%s: Last reference for pri=%d, destroying pool.\n",
511 __func__, (int)pri)); 511 __func__, (int)pri));
512 threadpool_remove_percpu(pool_percpu); 512 threadpool_remove_percpu(pool_percpu);
513 } else { 513 } else {
514 pool_percpu = NULL; 514 pool_percpu = NULL;
515 } 515 }
516 mutex_exit(&threadpools_lock); 516 mutex_exit(&threadpools_lock);
517 517
518 if (pool_percpu) 518 if (pool_percpu)
519 threadpool_percpu_destroy(pool_percpu); 519 threadpool_percpu_destroy(pool_percpu);
520} 520}
521 521
522struct threadpool * 522struct threadpool *
523threadpool_percpu_ref(struct threadpool_percpu *pool_percpu) 523threadpool_percpu_ref(struct threadpool_percpu *pool_percpu)
524{ 524{
525 struct threadpool **poolp, *pool; 525 struct threadpool **poolp, *pool;
526 526
527 poolp = percpu_getref(pool_percpu->tpp_percpu); 527 poolp = percpu_getref(pool_percpu->tpp_percpu);
528 pool = *poolp; 528 pool = *poolp;
529 percpu_putref(pool_percpu->tpp_percpu); 529 percpu_putref(pool_percpu->tpp_percpu);
530 530
531 return pool; 531 return pool;
532} 532}
533 533
534struct threadpool * 534struct threadpool *
535threadpool_percpu_ref_remote(struct threadpool_percpu *pool_percpu, 535threadpool_percpu_ref_remote(struct threadpool_percpu *pool_percpu,
536 struct cpu_info *ci) 536 struct cpu_info *ci)
537{ 537{
538 struct threadpool **poolp, *pool; 538 struct threadpool **poolp, *pool;
539 539
540 percpu_traverse_enter(); 540 percpu_traverse_enter();
541 poolp = percpu_getptr_remote(pool_percpu->tpp_percpu, ci); 541 poolp = percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
542 pool = *poolp; 542 pool = *poolp;
543 percpu_traverse_exit(); 543 percpu_traverse_exit();
544 544
545 return pool; 545 return pool;
546} 546}
547 547
548static int 548static int
549threadpool_percpu_create(struct threadpool_percpu **pool_percpup, pri_t pri) 549threadpool_percpu_create(struct threadpool_percpu **pool_percpup, pri_t pri)
550{ 550{
551 struct threadpool_percpu *pool_percpu; 551 struct threadpool_percpu *pool_percpu;
552 struct cpu_info *ci; 552 struct cpu_info *ci;
553 CPU_INFO_ITERATOR cii; 553 CPU_INFO_ITERATOR cii;
554 unsigned int i, j; 554 unsigned int i, j;
555 int error; 555 int error;
556 556
557 pool_percpu = kmem_zalloc(sizeof(*pool_percpu), KM_SLEEP); 557 pool_percpu = kmem_zalloc(sizeof(*pool_percpu), KM_SLEEP);
558 if (pool_percpu == NULL) { 558 if (pool_percpu == NULL) {
559 error = ENOMEM; 559 error = ENOMEM;
560 goto fail0; 560 goto fail0;
561 } 561 }
562 pool_percpu->tpp_pri = pri; 562 pool_percpu->tpp_pri = pri;
563 563
564 pool_percpu->tpp_percpu = percpu_alloc(sizeof(struct threadpool *)); 564 pool_percpu->tpp_percpu = percpu_alloc(sizeof(struct threadpool *));
565 if (pool_percpu->tpp_percpu == NULL) { 565 if (pool_percpu->tpp_percpu == NULL) {
566 error = ENOMEM; 566 error = ENOMEM;
567 goto fail1; 567 goto fail1;
568 } 568 }
569 569
570 for (i = 0, CPU_INFO_FOREACH(cii, ci), i++) { 570 for (i = 0, CPU_INFO_FOREACH(cii, ci), i++) {
571 struct threadpool *pool; 571 struct threadpool *pool;
572 572
573 pool = kmem_zalloc(sizeof(*pool), KM_SLEEP); 573 pool = kmem_zalloc(sizeof(*pool), KM_SLEEP);
574 error = threadpool_create(pool, ci, pri); 574 error = threadpool_create(pool, ci, pri);
575 if (error) { 575 if (error) {
576 kmem_free(pool, sizeof(*pool)); 576 kmem_free(pool, sizeof(*pool));
577 goto fail2; 577 goto fail2;
578 } 578 }
579 percpu_traverse_enter(); 579 percpu_traverse_enter();
580 struct threadpool **const poolp = 580 struct threadpool **const poolp =
581 percpu_getptr_remote(pool_percpu->tpp_percpu, ci); 581 percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
582 *poolp = pool; 582 *poolp = pool;
583 percpu_traverse_exit(); 583 percpu_traverse_exit();
584 } 584 }
585 585
586 /* Success! */ 586 /* Success! */
587 *pool_percpup = (struct threadpool_percpu *)pool_percpu; 587 *pool_percpup = (struct threadpool_percpu *)pool_percpu;
588 return 0; 588 return 0;
589 589
590fail2: for (j = 0, CPU_INFO_FOREACH(cii, ci), j++) { 590fail2: for (j = 0, CPU_INFO_FOREACH(cii, ci), j++) {
591 if (i <= j) 591 if (i <= j)
592 break; 592 break;
593 percpu_traverse_enter(); 593 percpu_traverse_enter();
594 struct threadpool **const poolp = 594 struct threadpool **const poolp =
595 percpu_getptr_remote(pool_percpu->tpp_percpu, ci); 595 percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
596 struct threadpool *const pool = *poolp; 596 struct threadpool *const pool = *poolp;
597 percpu_traverse_exit(); 597 percpu_traverse_exit();
598 threadpool_destroy(pool); 598 threadpool_destroy(pool);
599 kmem_free(pool, sizeof(*pool)); 599 kmem_free(pool, sizeof(*pool));
600 } 600 }
601 percpu_free(pool_percpu->tpp_percpu, sizeof(struct taskthread_pool *)); 601 percpu_free(pool_percpu->tpp_percpu, sizeof(struct taskthread_pool *));
602fail1: kmem_free(pool_percpu, sizeof(*pool_percpu)); 602fail1: kmem_free(pool_percpu, sizeof(*pool_percpu));
603fail0: return error; 603fail0: return error;
604} 604}
605 605
606static void 606static void
607threadpool_percpu_destroy(struct threadpool_percpu *pool_percpu) 607threadpool_percpu_destroy(struct threadpool_percpu *pool_percpu)
608{ 608{
609 struct cpu_info *ci; 609 struct cpu_info *ci;
610 CPU_INFO_ITERATOR cii; 610 CPU_INFO_ITERATOR cii;
611 611
612 for (CPU_INFO_FOREACH(cii, ci)) { 612 for (CPU_INFO_FOREACH(cii, ci)) {
613 percpu_traverse_enter(); 613 percpu_traverse_enter();
614 struct threadpool **const poolp = 614 struct threadpool **const poolp =
615 percpu_getptr_remote(pool_percpu->tpp_percpu, ci); 615 percpu_getptr_remote(pool_percpu->tpp_percpu, ci);
616 struct threadpool *const pool = *poolp; 616 struct threadpool *const pool = *poolp;
617 percpu_traverse_exit(); 617 percpu_traverse_exit();
618 threadpool_destroy(pool); 618 threadpool_destroy(pool);
619 kmem_free(pool, sizeof(*pool)); 619 kmem_free(pool, sizeof(*pool));
620 } 620 }
621 621
622 percpu_free(pool_percpu->tpp_percpu, sizeof(struct threadpool *)); 622 percpu_free(pool_percpu->tpp_percpu, sizeof(struct threadpool *));
623 kmem_free(pool_percpu, sizeof(*pool_percpu)); 623 kmem_free(pool_percpu, sizeof(*pool_percpu));
624} 624}
625 625
626/* Thread pool jobs */ 626/* Thread pool jobs */
627 627
628void __printflike(4,5) 628void __printflike(4,5)
629threadpool_job_init(struct threadpool_job *job, threadpool_job_fn_t fn, 629threadpool_job_init(struct threadpool_job *job, threadpool_job_fn_t fn,
630 kmutex_t *lock, const char *fmt, ...) 630 kmutex_t *lock, const char *fmt, ...)
631{ 631{
632 va_list ap; 632 va_list ap;
633 633
634 va_start(ap, fmt); 634 va_start(ap, fmt);
635 (void)vsnprintf(job->job_name, sizeof(job->job_name), fmt, ap); 635 (void)vsnprintf(job->job_name, sizeof(job->job_name), fmt, ap);
636 va_end(ap); 636 va_end(ap);
637 637
638 job->job_lock = lock; 638 job->job_lock = lock;
639 job->job_thread = NULL; 639 job->job_thread = NULL;
640 job->job_refcnt = 0; 640 job->job_refcnt = 0;
641 cv_init(&job->job_cv, job->job_name); 641 cv_init(&job->job_cv, job->job_name);
642 job->job_fn = fn; 642 job->job_fn = fn;
643} 643}
644 644
645static void 645static void
646threadpool_job_dead(struct threadpool_job *job) 646threadpool_job_dead(struct threadpool_job *job)
647{ 647{
648 648
649 panic("threadpool job %p ran after destruction", job); 649 panic("threadpool job %p ran after destruction", job);
650} 650}
651 651
652void 652void
653threadpool_job_destroy(struct threadpool_job *job) 653threadpool_job_destroy(struct threadpool_job *job)
654{ 654{
655 655
656 ASSERT_SLEEPABLE(); 656 ASSERT_SLEEPABLE();
657 657
658 KASSERTMSG((job->job_thread == NULL), "job %p still running", job); 658 KASSERTMSG((job->job_thread == NULL), "job %p still running", job);
659 659
660 mutex_enter(job->job_lock); 660 mutex_enter(job->job_lock);
661 while (0 < job->job_refcnt) 661 while (0 < job->job_refcnt)
662 cv_wait(&job->job_cv, job->job_lock); 662 cv_wait(&job->job_cv, job->job_lock);
663 mutex_exit(job->job_lock); 663 mutex_exit(job->job_lock);
664 664
665 job->job_lock = NULL; 665 job->job_lock = NULL;
666 KASSERT(job->job_thread == NULL); 666 KASSERT(job->job_thread == NULL);
667 KASSERT(job->job_refcnt == 0); 667 KASSERT(job->job_refcnt == 0);
668 KASSERT(!cv_has_waiters(&job->job_cv)); 668 KASSERT(!cv_has_waiters(&job->job_cv));
669 cv_destroy(&job->job_cv); 669 cv_destroy(&job->job_cv);
670 job->job_fn = threadpool_job_dead; 670 job->job_fn = threadpool_job_dead;
671 (void)strlcpy(job->job_name, "deadjob", sizeof(job->job_name)); 671 (void)strlcpy(job->job_name, "deadjob", sizeof(job->job_name));
672} 672}
673 673
674static int 674static int
675threadpool_job_hold(struct threadpool_job *job) 675threadpool_job_hold(struct threadpool_job *job)
676{ 676{
677 unsigned int refcnt; 677 unsigned int refcnt;
 678
678 do { 679 do {
679 refcnt = job->job_refcnt; 680 refcnt = job->job_refcnt;
680 if (refcnt == UINT_MAX) 681 if (refcnt == UINT_MAX)
681 return EBUSY; 682 return EBUSY;
682 } while (atomic_cas_uint(&job->job_refcnt, refcnt, (refcnt + 1)) 683 } while (atomic_cas_uint(&job->job_refcnt, refcnt, (refcnt + 1))
683 != refcnt); 684 != refcnt);
684  685
685 return 0; 686 return 0;
686} 687}
687 688
688static void 689static void
689threadpool_job_rele(struct threadpool_job *job) 690threadpool_job_rele(struct threadpool_job *job)
690{ 691{
691 unsigned int refcnt; 692 unsigned int refcnt;
692 693
693 do { 694 do {
694 refcnt = job->job_refcnt; 695 refcnt = job->job_refcnt;
695 KASSERT(0 < refcnt); 696 KASSERT(0 < refcnt);
696 if (refcnt == 1) { 697 if (refcnt == 1) {
697 mutex_enter(job->job_lock); 698 mutex_enter(job->job_lock);
698 refcnt = atomic_dec_uint_nv(&job->job_refcnt); 699 refcnt = atomic_dec_uint_nv(&job->job_refcnt);
699 KASSERT(refcnt != UINT_MAX); 700 KASSERT(refcnt != UINT_MAX);
700 if (refcnt == 0) 701 if (refcnt == 0)
701 cv_broadcast(&job->job_cv); 702 cv_broadcast(&job->job_cv);
702 mutex_exit(job->job_lock); 703 mutex_exit(job->job_lock);
703 return; 704 return;
704 } 705 }
705 } while (atomic_cas_uint(&job->job_refcnt, refcnt, (refcnt - 1)) 706 } while (atomic_cas_uint(&job->job_refcnt, refcnt, (refcnt - 1))
706 != refcnt); 707 != refcnt);
707} 708}
708 709
709void 710void
710threadpool_job_done(struct threadpool_job *job) 711threadpool_job_done(struct threadpool_job *job)
711{ 712{
712 713
713 KASSERT(mutex_owned(job->job_lock)); 714 KASSERT(mutex_owned(job->job_lock));
714 KASSERT(job->job_thread != NULL); 715 KASSERT(job->job_thread != NULL);
715 KASSERT(job->job_thread->tpt_lwp == curlwp); 716 KASSERT(job->job_thread->tpt_lwp == curlwp);
716 717
717 cv_broadcast(&job->job_cv); 718 cv_broadcast(&job->job_cv);
718 job->job_thread = NULL; 719 job->job_thread = NULL;
719} 720}
720 721
721void 722void
722threadpool_schedule_job(struct threadpool *pool, struct threadpool_job *job) 723threadpool_schedule_job(struct threadpool *pool, struct threadpool_job *job)
723{ 724{
724 725
725 KASSERT(mutex_owned(job->job_lock)); 726 KASSERT(mutex_owned(job->job_lock));
726 727
727 /* 728 /*
728 * If the job's already running, let it keep running. The job 729 * If the job's already running, let it keep running. The job
729 * is guaranteed by the interlock not to end early -- if it had 730 * is guaranteed by the interlock not to end early -- if it had
730 * ended early, threadpool_job_done would have set job_thread 731 * ended early, threadpool_job_done would have set job_thread
731 * to NULL under the interlock. 732 * to NULL under the interlock.
732 */ 733 */
733 if (__predict_true(job->job_thread != NULL)) { 734 if (__predict_true(job->job_thread != NULL)) {
734 TP_LOG(("%s: job '%s' already runnining.\n", 735 TP_LOG(("%s: job '%s' already runnining.\n",
735 __func__, job->job_name)); 736 __func__, job->job_name));
736 return; 737 return;
737 } 738 }
738 739
739 /* Otherwise, try to assign a thread to the job. */ 740 /* Otherwise, try to assign a thread to the job. */
740 mutex_spin_enter(&pool->tp_lock); 741 mutex_spin_enter(&pool->tp_lock);
741 if (__predict_false(TAILQ_EMPTY(&pool->tp_idle_threads))) { 742 if (__predict_false(TAILQ_EMPTY(&pool->tp_idle_threads))) {
742 /* Nobody's idle. Give it to the overseer. */ 743 /* Nobody's idle. Give it to the overseer. */
743 TP_LOG(("%s: giving job '%s' to overseer.\n", 744 TP_LOG(("%s: giving job '%s' to overseer.\n",
744 __func__, job->job_name)); 745 __func__, job->job_name));
745 job->job_thread = &pool->tp_overseer; 746 job->job_thread = &pool->tp_overseer;
746 TAILQ_INSERT_TAIL(&pool->tp_jobs, job, job_entry); 747 TAILQ_INSERT_TAIL(&pool->tp_jobs, job, job_entry);
747 } else { 748 } else {
748 /* Assign it to the first idle thread. */ 749 /* Assign it to the first idle thread. */
749 job->job_thread = TAILQ_FIRST(&pool->tp_idle_threads); 750 job->job_thread = TAILQ_FIRST(&pool->tp_idle_threads);
750 TP_LOG(("%s: giving job '%s' to idle thread %p.\n", 751 TP_LOG(("%s: giving job '%s' to idle thread %p.\n",
751 __func__, job->job_name, job->job_thread)); 752 __func__, job->job_name, job->job_thread));
752 TAILQ_REMOVE(&pool->tp_idle_threads, job->job_thread, 753 TAILQ_REMOVE(&pool->tp_idle_threads, job->job_thread,
753 tpt_entry); 754 tpt_entry);
754 threadpool_job_hold(job); 755 threadpool_job_hold(job);
755 job->job_thread->tpt_job = job; 756 job->job_thread->tpt_job = job;
756 } 757 }
757 758
758 /* Notify whomever we gave it to, overseer or idle thread. */ 759 /* Notify whomever we gave it to, overseer or idle thread. */
759 KASSERT(job->job_thread != NULL); 760 KASSERT(job->job_thread != NULL);
760 cv_broadcast(&job->job_thread->tpt_cv); 761 cv_broadcast(&job->job_thread->tpt_cv);
761 mutex_spin_exit(&pool->tp_lock); 762 mutex_spin_exit(&pool->tp_lock);
762} 763}
763 764
764bool 765bool
765threadpool_cancel_job_async(struct threadpool *pool, struct threadpool_job *job) 766threadpool_cancel_job_async(struct threadpool *pool, struct threadpool_job *job)
766{ 767{
767 768
768 KASSERT(mutex_owned(job->job_lock)); 769 KASSERT(mutex_owned(job->job_lock));
769 770
770 /* 771 /*
771 * XXXJRT This fails (albeit safely) when all of the following 772 * XXXJRT This fails (albeit safely) when all of the following
772 * are true: 773 * are true:
773 * 774 *
774 * => "pool" is something other than what the job was 775 * => "pool" is something other than what the job was
775 * scheduled on. This can legitimately occur if, 776 * scheduled on. This can legitimately occur if,
776 * for example, a job is percpu-scheduled on CPU0 777 * for example, a job is percpu-scheduled on CPU0
777 * and then CPU1 attempts to cancel it without taking 778 * and then CPU1 attempts to cancel it without taking
778 * a remote pool reference. (this might happen by 779 * a remote pool reference. (this might happen by
779 * "luck of the draw"). 780 * "luck of the draw").
780 * 781 *
781 * => "job" is not yet running, but is assigned to the 782 * => "job" is not yet running, but is assigned to the
782 * overseer. 783 * overseer.
783 * 784 *
784 * When this happens, this code makes the determination that 785 * When this happens, this code makes the determination that
785 * the job is already running. The failure mode is that the 786 * the job is already running. The failure mode is that the
786 * caller is told the job is running, and thus has to wait. 787 * caller is told the job is running, and thus has to wait.
787 * The overseer will eventually get to it and the job will 788 * The overseer will eventually get to it and the job will
788 * proceed as if it had been already running. 789 * proceed as if it had been already running.
789 */ 790 */
790 791
791 if (job->job_thread == NULL) { 792 if (job->job_thread == NULL) {
792 /* Nothing to do. Guaranteed not running. */ 793 /* Nothing to do. Guaranteed not running. */
793 return true; 794 return true;
794 } else if (job->job_thread == &pool->tp_overseer) { 795 } else if (job->job_thread == &pool->tp_overseer) {
795 /* Take it off the list to guarantee it won't run. */ 796 /* Take it off the list to guarantee it won't run. */
796 job->job_thread = NULL; 797 job->job_thread = NULL;
797 mutex_spin_enter(&pool->tp_lock); 798 mutex_spin_enter(&pool->tp_lock);
798 TAILQ_REMOVE(&pool->tp_jobs, job, job_entry); 799 TAILQ_REMOVE(&pool->tp_jobs, job, job_entry);
799 mutex_spin_exit(&pool->tp_lock); 800 mutex_spin_exit(&pool->tp_lock);
800 return true; 801 return true;
801 } else { 802 } else {
802 /* Too late -- already running. */ 803 /* Too late -- already running. */
803 return false; 804 return false;
804 } 805 }
805} 806}
806 807
807void 808void
808threadpool_cancel_job(struct threadpool *pool, struct threadpool_job *job) 809threadpool_cancel_job(struct threadpool *pool, struct threadpool_job *job)
809{ 810{
810 811
811 ASSERT_SLEEPABLE(); 812 ASSERT_SLEEPABLE();
812 813
813 KASSERT(mutex_owned(job->job_lock)); 814 KASSERT(mutex_owned(job->job_lock));
814 815
815 if (threadpool_cancel_job_async(pool, job)) 816 if (threadpool_cancel_job_async(pool, job))
816 return; 817 return;
817 818
818 /* Already running. Wait for it to complete. */ 819 /* Already running. Wait for it to complete. */
819 while (job->job_thread != NULL) 820 while (job->job_thread != NULL)
820 cv_wait(&job->job_cv, job->job_lock); 821 cv_wait(&job->job_cv, job->job_lock);
821} 822}
822 823
823/* Thread pool overseer thread */ 824/* Thread pool overseer thread */
824 825
825static void __dead 826static void __dead
826threadpool_overseer_thread(void *arg) 827threadpool_overseer_thread(void *arg)
827{ 828{
828 struct threadpool_thread *const overseer = arg; 829 struct threadpool_thread *const overseer = arg;
829 struct threadpool *const pool = overseer->tpt_pool; 830 struct threadpool *const pool = overseer->tpt_pool;
830 struct lwp *lwp = NULL; 831 struct lwp *lwp = NULL;
831 int ktflags; 832 int ktflags;
832 int error; 833 int error;
833 834
834 KASSERT((pool->tp_cpu == NULL) || (pool->tp_cpu == curcpu())); 835 KASSERT((pool->tp_cpu == NULL) || (pool->tp_cpu == curcpu()));
835 836
836 /* Wait until we're initialized. */ 837 /* Wait until we're initialized. */
837 mutex_spin_enter(&pool->tp_lock); 838 mutex_spin_enter(&pool->tp_lock);
838 while (overseer->tpt_lwp == NULL) 839 while (overseer->tpt_lwp == NULL)
839 cv_wait(&overseer->tpt_cv, &pool->tp_lock); 840 cv_wait(&overseer->tpt_cv, &pool->tp_lock);
840 841
841 TP_LOG(("%s: starting.\n", __func__)); 842 TP_LOG(("%s: starting.\n", __func__));
842 843
843 for (;;) { 844 for (;;) {
844 /* Wait until there's a job. */ 845 /* Wait until there's a job. */
845 while (TAILQ_EMPTY(&pool->tp_jobs)) { 846 while (TAILQ_EMPTY(&pool->tp_jobs)) {
846 if (ISSET(pool->tp_flags, THREADPOOL_DYING)) { 847 if (ISSET(pool->tp_flags, THREADPOOL_DYING)) {
847 TP_LOG(("%s: THREADPOOL_DYING\n", 848 TP_LOG(("%s: THREADPOOL_DYING\n",
848 __func__)); 849 __func__));
849 break; 850 break;
850 } 851 }
851 cv_wait(&overseer->tpt_cv, &pool->tp_lock); 852 cv_wait(&overseer->tpt_cv, &pool->tp_lock);
852 } 853 }
853 if (__predict_false(TAILQ_EMPTY(&pool->tp_jobs))) 854 if (__predict_false(TAILQ_EMPTY(&pool->tp_jobs)))
854 break; 855 break;
855 856
856 /* If there are no threads, we'll have to try to start one. */ 857 /* If there are no threads, we'll have to try to start one. */
857 if (TAILQ_EMPTY(&pool->tp_idle_threads)) { 858 if (TAILQ_EMPTY(&pool->tp_idle_threads)) {
858 TP_LOG(("%s: Got a job, need to create a thread.\n", 859 TP_LOG(("%s: Got a job, need to create a thread.\n",
859 __func__)); 860 __func__));
860 threadpool_hold(pool); 861 threadpool_hold(pool);
861 mutex_spin_exit(&pool->tp_lock); 862 mutex_spin_exit(&pool->tp_lock);
862 863
863 struct threadpool_thread *const thread = 864 struct threadpool_thread *const thread =
864 pool_cache_get(threadpool_thread_pc, PR_WAITOK); 865 pool_cache_get(threadpool_thread_pc, PR_WAITOK);
865 thread->tpt_lwp = NULL; 866 thread->tpt_lwp = NULL;
866 thread->tpt_pool = pool; 867 thread->tpt_pool = pool;
867 thread->tpt_job = NULL; 868 thread->tpt_job = NULL;
868 cv_init(&thread->tpt_cv, "poolthrd"); 869 cv_init(&thread->tpt_cv, "poolthrd");
869 870
870 ktflags = 0; 871 ktflags = 0;
871 ktflags |= KTHREAD_MPSAFE; 872 ktflags |= KTHREAD_MPSAFE;
872 if (pool->tp_pri < PRI_KERNEL) 873 if (pool->tp_pri < PRI_KERNEL)
873 ktflags |= KTHREAD_TS; 874 ktflags |= KTHREAD_TS;
874 error = kthread_create(pool->tp_pri, ktflags, 875 error = kthread_create(pool->tp_pri, ktflags,
875 pool->tp_cpu, &threadpool_thread, thread, &lwp, 876 pool->tp_cpu, &threadpool_thread, thread, &lwp,
876 "poolthread/%d@%d", 877 "poolthread/%d@%d",
877 (pool->tp_cpu ? cpu_index(pool->tp_cpu) : -1), 878 (pool->tp_cpu ? cpu_index(pool->tp_cpu) : -1),
878 (int)pool->tp_pri); 879 (int)pool->tp_pri);
879 880
880 mutex_spin_enter(&pool->tp_lock); 881 mutex_spin_enter(&pool->tp_lock);
881 if (error) { 882 if (error) {
882 pool_cache_put(threadpool_thread_pc, thread); 883 pool_cache_put(threadpool_thread_pc, thread);
883 threadpool_rele(pool); 884 threadpool_rele(pool);
884 /* XXX What to do to wait for memory? */ 885 /* XXX What to do to wait for memory? */
885 (void)kpause("thrdplcr", false, hz, 886 (void)kpause("thrdplcr", false, hz,
886 &pool->tp_lock); 887 &pool->tp_lock);
887 continue; 888 continue;
888 } 889 }
889 /* 890 /*
890 * New kthread now owns the reference to the pool 891 * New kthread now owns the reference to the pool
891 * taken above. 892 * taken above.
892 */ 893 */
893 KASSERT(lwp != NULL); 894 KASSERT(lwp != NULL);
894 TAILQ_INSERT_TAIL(&pool->tp_idle_threads, thread, 895 TAILQ_INSERT_TAIL(&pool->tp_idle_threads, thread,
895 tpt_entry); 896 tpt_entry);
896 thread->tpt_lwp = lwp; 897 thread->tpt_lwp = lwp;
897 lwp = NULL; 898 lwp = NULL;
898 cv_broadcast(&thread->tpt_cv); 899 cv_broadcast(&thread->tpt_cv);
899 continue; 900 continue;
900 } 901 }
901 902
902 /* There are idle threads, so try giving one a job. */ 903 /* There are idle threads, so try giving one a job. */
903 bool rele_job = true; 904 bool rele_job = true;
904 struct threadpool_job *const job = TAILQ_FIRST(&pool->tp_jobs); 905 struct threadpool_job *const job = TAILQ_FIRST(&pool->tp_jobs);
905 TAILQ_REMOVE(&pool->tp_jobs, job, job_entry); 906 TAILQ_REMOVE(&pool->tp_jobs, job, job_entry);
906 error = threadpool_job_hold(job); 907 error = threadpool_job_hold(job);
907 if (error) { 908 if (error) {
908 TAILQ_INSERT_HEAD(&pool->tp_jobs, job, job_entry); 909 TAILQ_INSERT_HEAD(&pool->tp_jobs, job, job_entry);
909 (void)kpause("pooljob", false, hz, &pool->tp_lock); 910 (void)kpause("pooljob", false, hz, &pool->tp_lock);
910 continue; 911 continue;
911 } 912 }
912 mutex_spin_exit(&pool->tp_lock); 913 mutex_spin_exit(&pool->tp_lock);
913 914
914 mutex_enter(job->job_lock); 915 mutex_enter(job->job_lock);
915 /* If the job was cancelled, we'll no longer be its thread. */ 916 /* If the job was cancelled, we'll no longer be its thread. */
916 if (__predict_true(job->job_thread == overseer)) { 917 if (__predict_true(job->job_thread == overseer)) {
917 mutex_spin_enter(&pool->tp_lock); 918 mutex_spin_enter(&pool->tp_lock);
918 if (__predict_false( 919 if (__predict_false(
919 TAILQ_EMPTY(&pool->tp_idle_threads))) { 920 TAILQ_EMPTY(&pool->tp_idle_threads))) {
920 /* 921 /*
921 * Someone else snagged the thread 922 * Someone else snagged the thread
922 * first. We'll have to try again. 923 * first. We'll have to try again.
923 */ 924 */
924 TP_LOG(("%s: '%s' lost race to use idle thread.\n", 925 TP_LOG(("%s: '%s' lost race to use idle thread.\n",
925 __func__, job->job_name)); 926 __func__, job->job_name));
926 TAILQ_INSERT_HEAD(&pool->tp_jobs, job, 927 TAILQ_INSERT_HEAD(&pool->tp_jobs, job,
927 job_entry); 928 job_entry);
928 } else { 929 } else {
929 /* 930 /*
930 * Assign the job to the thread and 931 * Assign the job to the thread and
931 * wake the thread so it starts work. 932 * wake the thread so it starts work.
932 */ 933 */
933 struct threadpool_thread *const thread = 934 struct threadpool_thread *const thread =
934 TAILQ_FIRST(&pool->tp_idle_threads); 935 TAILQ_FIRST(&pool->tp_idle_threads);
935 936
936 TP_LOG(("%s: '%s' gets thread %p\n", 937 TP_LOG(("%s: '%s' gets thread %p\n",
937 __func__, job->job_name, thread)); 938 __func__, job->job_name, thread));
938 KASSERT(thread->tpt_job == NULL); 939 KASSERT(thread->tpt_job == NULL);
939 TAILQ_REMOVE(&pool->tp_idle_threads, thread, 940 TAILQ_REMOVE(&pool->tp_idle_threads, thread,
940 tpt_entry); 941 tpt_entry);
941 thread->tpt_job = job; 942 thread->tpt_job = job;
942 job->job_thread = thread; 943 job->job_thread = thread;
943 cv_broadcast(&thread->tpt_cv); 944 cv_broadcast(&thread->tpt_cv);
944 /* Gave the thread our job reference. */ 945 /* Gave the thread our job reference. */
945 rele_job = false; 946 rele_job = false;
946 } 947 }
947 mutex_spin_exit(&pool->tp_lock); 948 mutex_spin_exit(&pool->tp_lock);
948 } 949 }
949 mutex_exit(job->job_lock); 950 mutex_exit(job->job_lock);
950 if (__predict_false(rele_job)) 951 if (__predict_false(rele_job))
951 threadpool_job_rele(job); 952 threadpool_job_rele(job);
952 953
953 mutex_spin_enter(&pool->tp_lock); 954 mutex_spin_enter(&pool->tp_lock);
954 } 955 }
955 threadpool_rele(pool); 956 threadpool_rele(pool);
956 mutex_spin_exit(&pool->tp_lock); 957 mutex_spin_exit(&pool->tp_lock);
957 958
958 TP_LOG(("%s: exiting.\n", __func__)); 959 TP_LOG(("%s: exiting.\n", __func__));
959 960
960 kthread_exit(0); 961 kthread_exit(0);
961} 962}
962 963
963/* Thread pool thread */ 964/* Thread pool thread */
964 965
965static void __dead 966static void __dead
966threadpool_thread(void *arg) 967threadpool_thread(void *arg)
967{ 968{
968 struct threadpool_thread *const thread = arg; 969 struct threadpool_thread *const thread = arg;
969 struct threadpool *const pool = thread->tpt_pool; 970 struct threadpool *const pool = thread->tpt_pool;
970 971
971 KASSERT((pool->tp_cpu == NULL) || (pool->tp_cpu == curcpu())); 972 KASSERT((pool->tp_cpu == NULL) || (pool->tp_cpu == curcpu()));
972 973
973 /* Wait until we're initialized and on the queue. */ 974 /* Wait until we're initialized and on the queue. */
974 mutex_spin_enter(&pool->tp_lock); 975 mutex_spin_enter(&pool->tp_lock);
975 while (thread->tpt_lwp == NULL) 976 while (thread->tpt_lwp == NULL)
976 cv_wait(&thread->tpt_cv, &pool->tp_lock); 977 cv_wait(&thread->tpt_cv, &pool->tp_lock);
977 978
978 TP_LOG(("%s: starting.\n", __func__)); 979 TP_LOG(("%s: starting.\n", __func__));
979 980
980 KASSERT(thread->tpt_lwp == curlwp); 981 KASSERT(thread->tpt_lwp == curlwp);
981 for (;;) { 982 for (;;) {
982 /* Wait until we are assigned a job. */ 983 /* Wait until we are assigned a job. */
983 while (thread->tpt_job == NULL) { 984 while (thread->tpt_job == NULL) {
984 if (ISSET(pool->tp_flags, THREADPOOL_DYING)) { 985 if (ISSET(pool->tp_flags, THREADPOOL_DYING)) {
985 TP_LOG(("%s: THREADPOOL_DYING\n", 986 TP_LOG(("%s: THREADPOOL_DYING\n",
986 __func__)); 987 __func__));
987 break; 988 break;
988 } 989 }
989 if (cv_timedwait(&thread->tpt_cv, &pool->tp_lock, 990 if (cv_timedwait(&thread->tpt_cv, &pool->tp_lock,
990 THREADPOOL_IDLE_TICKS)) 991 THREADPOOL_IDLE_TICKS))
991 break; 992 break;
992 } 993 }
993 if (__predict_false(thread->tpt_job == NULL)) { 994 if (__predict_false(thread->tpt_job == NULL)) {
994 TAILQ_REMOVE(&pool->tp_idle_threads, thread, 995 TAILQ_REMOVE(&pool->tp_idle_threads, thread,
995 tpt_entry); 996 tpt_entry);
996 break; 997 break;
997 } 998 }
998 999
999 struct threadpool_job *const job = thread->tpt_job; 1000 struct threadpool_job *const job = thread->tpt_job;
1000 KASSERT(job != NULL); 1001 KASSERT(job != NULL);
1001 mutex_spin_exit(&pool->tp_lock); 1002 mutex_spin_exit(&pool->tp_lock);
1002 1003
1003 TP_LOG(("%s: running job '%s' on thread %p.\n", 1004 TP_LOG(("%s: running job '%s' on thread %p.\n",
1004 __func__, job->job_name, thread)); 1005 __func__, job->job_name, thread));
1005 1006
1006 /* Set our lwp name to reflect what job we're doing. */ 1007 /* Set our lwp name to reflect what job we're doing. */
1007 lwp_lock(curlwp); 1008 lwp_lock(curlwp);
1008 char *const lwp_name = curlwp->l_name; 1009 char *const lwp_name = curlwp->l_name;
1009 curlwp->l_name = job->job_name; 1010 curlwp->l_name = job->job_name;
1010 lwp_unlock(curlwp); 1011 lwp_unlock(curlwp);
1011 1012
1012 /* Run the job. */ 1013 /* Run the job. */
1013 (*job->job_fn)(job); 1014 (*job->job_fn)(job);
1014 1015
1015 /* Restore our lwp name. */ 1016 /* Restore our lwp name. */
1016 lwp_lock(curlwp); 1017 lwp_lock(curlwp);
1017 curlwp->l_name = lwp_name; 1018 curlwp->l_name = lwp_name;
1018 lwp_unlock(curlwp); 1019 lwp_unlock(curlwp);
1019 1020
1020 /* Job is done and its name is unreferenced. Release it. */ 1021 /* Job is done and its name is unreferenced. Release it. */
1021 threadpool_job_rele(job); 1022 threadpool_job_rele(job);
1022 1023
1023 mutex_spin_enter(&pool->tp_lock); 1024 mutex_spin_enter(&pool->tp_lock);
1024 KASSERT(thread->tpt_job == job); 1025 KASSERT(thread->tpt_job == job);
1025 thread->tpt_job = NULL; 1026 thread->tpt_job = NULL;
1026 TAILQ_INSERT_TAIL(&pool->tp_idle_threads, thread, tpt_entry); 1027 TAILQ_INSERT_TAIL(&pool->tp_idle_threads, thread, tpt_entry);
1027 } 1028 }
1028 threadpool_rele(pool); 1029 threadpool_rele(pool);
1029 mutex_spin_exit(&pool->tp_lock); 1030 mutex_spin_exit(&pool->tp_lock);
1030 1031
1031 TP_LOG(("%s: thread %p exiting.\n", __func__, thread)); 1032 TP_LOG(("%s: thread %p exiting.\n", __func__, thread));
1032 1033
1033 KASSERT(!cv_has_waiters(&thread->tpt_cv)); 1034 KASSERT(!cv_has_waiters(&thread->tpt_cv));
1034 cv_destroy(&thread->tpt_cv); 1035 cv_destroy(&thread->tpt_cv);
1035 pool_cache_put(threadpool_thread_pc, thread); 1036 pool_cache_put(threadpool_thread_pc, thread);
1036 kthread_exit(0); 1037 kthread_exit(0);
1037} 1038}