Sat Jun 29 11:13:23 2019 UTC ()
The big pool allocators use pool_page_alloc(), which allocates page-aligned
storage. So if we switch to a big pool, set PR_NOALIGN, because the address
of the storage is not aligned to the item size.

Should fix PR/54319.


(maxv)
diff -r1.251 -r1.252 src/sys/kern/subr_pool.c

cvs diff -r1.251 -r1.252 src/sys/kern/subr_pool.c (switch to unified diff)

--- src/sys/kern/subr_pool.c 2019/06/13 01:13:12 1.251
+++ src/sys/kern/subr_pool.c 2019/06/29 11:13:23 1.252
@@ -1,2960 +1,2961 @@ @@ -1,2960 +1,2961 @@
1/* $NetBSD: subr_pool.c,v 1.251 2019/06/13 01:13:12 christos Exp $ */ 1/* $NetBSD: subr_pool.c,v 1.252 2019/06/29 11:13:23 maxv Exp $ */
2 2
3/* 3/*
4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018 4 * Copyright (c) 1997, 1999, 2000, 2002, 2007, 2008, 2010, 2014, 2015, 2018
5 * The NetBSD Foundation, Inc. 5 * The NetBSD Foundation, Inc.
6 * All rights reserved. 6 * All rights reserved.
7 * 7 *
8 * This code is derived from software contributed to The NetBSD Foundation 8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace 9 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by 10 * Simulation Facility, NASA Ames Research Center; by Andrew Doran, and by
11 * Maxime Villard. 11 * Maxime Villard.
12 * 12 *
13 * Redistribution and use in source and binary forms, with or without 13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions 14 * modification, are permitted provided that the following conditions
15 * are met: 15 * are met:
16 * 1. Redistributions of source code must retain the above copyright 16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer. 17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright 18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the 19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution. 20 * documentation and/or other materials provided with the distribution.
21 * 21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE. 32 * POSSIBILITY OF SUCH DAMAGE.
33 */ 33 */
34 34
35#include <sys/cdefs.h> 35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.251 2019/06/13 01:13:12 christos Exp $"); 36__KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.252 2019/06/29 11:13:23 maxv Exp $");
37 37
38#ifdef _KERNEL_OPT 38#ifdef _KERNEL_OPT
39#include "opt_ddb.h" 39#include "opt_ddb.h"
40#include "opt_lockdebug.h" 40#include "opt_lockdebug.h"
41#include "opt_pool.h" 41#include "opt_pool.h"
42#include "opt_kleak.h" 42#include "opt_kleak.h"
43#endif 43#endif
44 44
45#include <sys/param.h> 45#include <sys/param.h>
46#include <sys/systm.h> 46#include <sys/systm.h>
47#include <sys/sysctl.h> 47#include <sys/sysctl.h>
48#include <sys/bitops.h> 48#include <sys/bitops.h>
49#include <sys/proc.h> 49#include <sys/proc.h>
50#include <sys/errno.h> 50#include <sys/errno.h>
51#include <sys/kernel.h> 51#include <sys/kernel.h>
52#include <sys/vmem.h> 52#include <sys/vmem.h>
53#include <sys/pool.h> 53#include <sys/pool.h>
54#include <sys/syslog.h> 54#include <sys/syslog.h>
55#include <sys/debug.h> 55#include <sys/debug.h>
56#include <sys/lockdebug.h> 56#include <sys/lockdebug.h>
57#include <sys/xcall.h> 57#include <sys/xcall.h>
58#include <sys/cpu.h> 58#include <sys/cpu.h>
59#include <sys/atomic.h> 59#include <sys/atomic.h>
60#include <sys/asan.h> 60#include <sys/asan.h>
61 61
62#include <uvm/uvm_extern.h> 62#include <uvm/uvm_extern.h>
63 63
64/* 64/*
65 * Pool resource management utility. 65 * Pool resource management utility.
66 * 66 *
67 * Memory is allocated in pages which are split into pieces according to 67 * Memory is allocated in pages which are split into pieces according to
68 * the pool item size. Each page is kept on one of three lists in the 68 * the pool item size. Each page is kept on one of three lists in the
69 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages', 69 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
70 * for empty, full and partially-full pages respectively. The individual 70 * for empty, full and partially-full pages respectively. The individual
71 * pool items are on a linked list headed by `ph_itemlist' in each page 71 * pool items are on a linked list headed by `ph_itemlist' in each page
72 * header. The memory for building the page list is either taken from 72 * header. The memory for building the page list is either taken from
73 * the allocated pages themselves (for small pool items) or taken from 73 * the allocated pages themselves (for small pool items) or taken from
74 * an internal pool of page headers (`phpool'). 74 * an internal pool of page headers (`phpool').
75 */ 75 */
76 76
77/* List of all pools. Non static as needed by 'vmstat -m' */ 77/* List of all pools. Non static as needed by 'vmstat -m' */
78TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head); 78TAILQ_HEAD(, pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
79 79
80/* Private pool for page header structures */ 80/* Private pool for page header structures */
81#define PHPOOL_MAX 8 81#define PHPOOL_MAX 8
82static struct pool phpool[PHPOOL_MAX]; 82static struct pool phpool[PHPOOL_MAX];
83#define PHPOOL_FREELIST_NELEM(idx) \ 83#define PHPOOL_FREELIST_NELEM(idx) \
84 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx))) 84 (((idx) == 0) ? 0 : BITMAP_SIZE * (1 << (idx)))
85 85
86#if defined(KASAN) 86#if defined(KASAN)
87#define POOL_REDZONE 87#define POOL_REDZONE
88#endif 88#endif
89 89
90#ifdef POOL_REDZONE 90#ifdef POOL_REDZONE
91# ifdef KASAN 91# ifdef KASAN
92# define POOL_REDZONE_SIZE 8 92# define POOL_REDZONE_SIZE 8
93# else 93# else
94# define POOL_REDZONE_SIZE 2 94# define POOL_REDZONE_SIZE 2
95# endif 95# endif
96static void pool_redzone_init(struct pool *, size_t); 96static void pool_redzone_init(struct pool *, size_t);
97static void pool_redzone_fill(struct pool *, void *); 97static void pool_redzone_fill(struct pool *, void *);
98static void pool_redzone_check(struct pool *, void *); 98static void pool_redzone_check(struct pool *, void *);
99static void pool_cache_redzone_check(pool_cache_t, void *); 99static void pool_cache_redzone_check(pool_cache_t, void *);
100#else 100#else
101# define pool_redzone_init(pp, sz) __nothing 101# define pool_redzone_init(pp, sz) __nothing
102# define pool_redzone_fill(pp, ptr) __nothing 102# define pool_redzone_fill(pp, ptr) __nothing
103# define pool_redzone_check(pp, ptr) __nothing 103# define pool_redzone_check(pp, ptr) __nothing
104# define pool_cache_redzone_check(pc, ptr) __nothing 104# define pool_cache_redzone_check(pc, ptr) __nothing
105#endif 105#endif
106 106
107#ifdef KLEAK 107#ifdef KLEAK
108static void pool_kleak_fill(struct pool *, void *); 108static void pool_kleak_fill(struct pool *, void *);
109static void pool_cache_kleak_fill(pool_cache_t, void *); 109static void pool_cache_kleak_fill(pool_cache_t, void *);
110#else 110#else
111#define pool_kleak_fill(pp, ptr) __nothing 111#define pool_kleak_fill(pp, ptr) __nothing
112#define pool_cache_kleak_fill(pc, ptr) __nothing 112#define pool_cache_kleak_fill(pc, ptr) __nothing
113#endif 113#endif
114 114
115#ifdef POOL_QUARANTINE 115#ifdef POOL_QUARANTINE
116static void pool_quarantine_init(struct pool *); 116static void pool_quarantine_init(struct pool *);
117static void pool_quarantine_flush(struct pool *); 117static void pool_quarantine_flush(struct pool *);
118static bool pool_put_quarantine(struct pool *, void *, 118static bool pool_put_quarantine(struct pool *, void *,
119 struct pool_pagelist *); 119 struct pool_pagelist *);
120static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t); 120static bool pool_cache_put_quarantine(pool_cache_t, void *, paddr_t);
121#else 121#else
122#define pool_quarantine_init(a) __nothing 122#define pool_quarantine_init(a) __nothing
123#define pool_quarantine_flush(a) __nothing 123#define pool_quarantine_flush(a) __nothing
124#define pool_put_quarantine(a, b, c) false 124#define pool_put_quarantine(a, b, c) false
125#define pool_cache_put_quarantine(a, b, c) false 125#define pool_cache_put_quarantine(a, b, c) false
126#endif 126#endif
127 127
128#define pc_has_ctor(pc) \ 128#define pc_has_ctor(pc) \
129 (pc->pc_ctor != (int (*)(void *, void *, int))nullop) 129 (pc->pc_ctor != (int (*)(void *, void *, int))nullop)
130#define pc_has_dtor(pc) \ 130#define pc_has_dtor(pc) \
131 (pc->pc_dtor != (void (*)(void *, void *))nullop) 131 (pc->pc_dtor != (void (*)(void *, void *))nullop)
132 132
133static void *pool_page_alloc_meta(struct pool *, int); 133static void *pool_page_alloc_meta(struct pool *, int);
134static void pool_page_free_meta(struct pool *, void *); 134static void pool_page_free_meta(struct pool *, void *);
135 135
136/* allocator for pool metadata */ 136/* allocator for pool metadata */
137struct pool_allocator pool_allocator_meta = { 137struct pool_allocator pool_allocator_meta = {
138 .pa_alloc = pool_page_alloc_meta, 138 .pa_alloc = pool_page_alloc_meta,
139 .pa_free = pool_page_free_meta, 139 .pa_free = pool_page_free_meta,
140 .pa_pagesz = 0 140 .pa_pagesz = 0
141}; 141};
142 142
143#define POOL_ALLOCATOR_BIG_BASE 13 143#define POOL_ALLOCATOR_BIG_BASE 13
144extern struct pool_allocator pool_allocator_big[]; 144extern struct pool_allocator pool_allocator_big[];
145static int pool_bigidx(size_t); 145static int pool_bigidx(size_t);
146 146
147/* # of seconds to retain page after last use */ 147/* # of seconds to retain page after last use */
148int pool_inactive_time = 10; 148int pool_inactive_time = 10;
149 149
150/* Next candidate for drainage (see pool_drain()) */ 150/* Next candidate for drainage (see pool_drain()) */
151static struct pool *drainpp; 151static struct pool *drainpp;
152 152
153/* This lock protects both pool_head and drainpp. */ 153/* This lock protects both pool_head and drainpp. */
154static kmutex_t pool_head_lock; 154static kmutex_t pool_head_lock;
155static kcondvar_t pool_busy; 155static kcondvar_t pool_busy;
156 156
157/* This lock protects initialization of a potentially shared pool allocator */ 157/* This lock protects initialization of a potentially shared pool allocator */
158static kmutex_t pool_allocator_lock; 158static kmutex_t pool_allocator_lock;
159 159
160static unsigned int poolid_counter = 0; 160static unsigned int poolid_counter = 0;
161 161
162typedef uint32_t pool_item_bitmap_t; 162typedef uint32_t pool_item_bitmap_t;
163#define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t)) 163#define BITMAP_SIZE (CHAR_BIT * sizeof(pool_item_bitmap_t))
164#define BITMAP_MASK (BITMAP_SIZE - 1) 164#define BITMAP_MASK (BITMAP_SIZE - 1)
165 165
166struct pool_item_header { 166struct pool_item_header {
167 /* Page headers */ 167 /* Page headers */
168 LIST_ENTRY(pool_item_header) 168 LIST_ENTRY(pool_item_header)
169 ph_pagelist; /* pool page list */ 169 ph_pagelist; /* pool page list */
170 union { 170 union {
171 /* !PR_PHINPAGE */ 171 /* !PR_PHINPAGE */
172 struct { 172 struct {
173 SPLAY_ENTRY(pool_item_header) 173 SPLAY_ENTRY(pool_item_header)
174 phu_node; /* off-page page headers */ 174 phu_node; /* off-page page headers */
175 } phu_offpage; 175 } phu_offpage;
176 /* PR_PHINPAGE */ 176 /* PR_PHINPAGE */
177 struct { 177 struct {
178 unsigned int phu_poolid; 178 unsigned int phu_poolid;
179 } phu_onpage; 179 } phu_onpage;
180 } ph_u1; 180 } ph_u1;
181 void * ph_page; /* this page's address */ 181 void * ph_page; /* this page's address */
182 uint32_t ph_time; /* last referenced */ 182 uint32_t ph_time; /* last referenced */
183 uint16_t ph_nmissing; /* # of chunks in use */ 183 uint16_t ph_nmissing; /* # of chunks in use */
184 uint16_t ph_off; /* start offset in page */ 184 uint16_t ph_off; /* start offset in page */
185 union { 185 union {
186 /* !PR_USEBMAP */ 186 /* !PR_USEBMAP */
187 struct { 187 struct {
188 LIST_HEAD(, pool_item) 188 LIST_HEAD(, pool_item)
189 phu_itemlist; /* chunk list for this page */ 189 phu_itemlist; /* chunk list for this page */
190 } phu_normal; 190 } phu_normal;
191 /* PR_USEBMAP */ 191 /* PR_USEBMAP */
192 struct { 192 struct {
193 pool_item_bitmap_t phu_bitmap[1]; 193 pool_item_bitmap_t phu_bitmap[1];
194 } phu_notouch; 194 } phu_notouch;
195 } ph_u2; 195 } ph_u2;
196}; 196};
197#define ph_node ph_u1.phu_offpage.phu_node 197#define ph_node ph_u1.phu_offpage.phu_node
198#define ph_poolid ph_u1.phu_onpage.phu_poolid 198#define ph_poolid ph_u1.phu_onpage.phu_poolid
199#define ph_itemlist ph_u2.phu_normal.phu_itemlist 199#define ph_itemlist ph_u2.phu_normal.phu_itemlist
200#define ph_bitmap ph_u2.phu_notouch.phu_bitmap 200#define ph_bitmap ph_u2.phu_notouch.phu_bitmap
201 201
202#define PHSIZE ALIGN(sizeof(struct pool_item_header)) 202#define PHSIZE ALIGN(sizeof(struct pool_item_header))
203 203
204#if defined(DIAGNOSTIC) && !defined(KASAN) 204#if defined(DIAGNOSTIC) && !defined(KASAN)
205#define POOL_CHECK_MAGIC 205#define POOL_CHECK_MAGIC
206#endif 206#endif
207 207
208struct pool_item { 208struct pool_item {
209#ifdef POOL_CHECK_MAGIC 209#ifdef POOL_CHECK_MAGIC
210 u_int pi_magic; 210 u_int pi_magic;
211#endif 211#endif
212#define PI_MAGIC 0xdeaddeadU 212#define PI_MAGIC 0xdeaddeadU
213 /* Other entries use only this list entry */ 213 /* Other entries use only this list entry */
214 LIST_ENTRY(pool_item) pi_list; 214 LIST_ENTRY(pool_item) pi_list;
215}; 215};
216 216
217#define POOL_NEEDS_CATCHUP(pp) \ 217#define POOL_NEEDS_CATCHUP(pp) \
218 ((pp)->pr_nitems < (pp)->pr_minitems) 218 ((pp)->pr_nitems < (pp)->pr_minitems)
219 219
220/* 220/*
221 * Pool cache management. 221 * Pool cache management.
222 * 222 *
223 * Pool caches provide a way for constructed objects to be cached by the 223 * Pool caches provide a way for constructed objects to be cached by the
224 * pool subsystem. This can lead to performance improvements by avoiding 224 * pool subsystem. This can lead to performance improvements by avoiding
225 * needless object construction/destruction; it is deferred until absolutely 225 * needless object construction/destruction; it is deferred until absolutely
226 * necessary. 226 * necessary.
227 * 227 *
228 * Caches are grouped into cache groups. Each cache group references up 228 * Caches are grouped into cache groups. Each cache group references up
229 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an 229 * to PCG_NUMOBJECTS constructed objects. When a cache allocates an
230 * object from the pool, it calls the object's constructor and places it 230 * object from the pool, it calls the object's constructor and places it
231 * into a cache group. When a cache group frees an object back to the 231 * into a cache group. When a cache group frees an object back to the
232 * pool, it first calls the object's destructor. This allows the object 232 * pool, it first calls the object's destructor. This allows the object
233 * to persist in constructed form while freed to the cache. 233 * to persist in constructed form while freed to the cache.
234 * 234 *
235 * The pool references each cache, so that when a pool is drained by the 235 * The pool references each cache, so that when a pool is drained by the
236 * pagedaemon, it can drain each individual cache as well. Each time a 236 * pagedaemon, it can drain each individual cache as well. Each time a
237 * cache is drained, the most idle cache group is freed to the pool in 237 * cache is drained, the most idle cache group is freed to the pool in
238 * its entirety. 238 * its entirety.
239 * 239 *
240 * Pool caches are layed on top of pools. By layering them, we can avoid 240 * Pool caches are layed on top of pools. By layering them, we can avoid
241 * the complexity of cache management for pools which would not benefit 241 * the complexity of cache management for pools which would not benefit
242 * from it. 242 * from it.
243 */ 243 */
244 244
245static struct pool pcg_normal_pool; 245static struct pool pcg_normal_pool;
246static struct pool pcg_large_pool; 246static struct pool pcg_large_pool;
247static struct pool cache_pool; 247static struct pool cache_pool;
248static struct pool cache_cpu_pool; 248static struct pool cache_cpu_pool;
249 249
250/* List of all caches. */ 250/* List of all caches. */
251TAILQ_HEAD(,pool_cache) pool_cache_head = 251TAILQ_HEAD(,pool_cache) pool_cache_head =
252 TAILQ_HEAD_INITIALIZER(pool_cache_head); 252 TAILQ_HEAD_INITIALIZER(pool_cache_head);
253 253
254int pool_cache_disable; /* global disable for caching */ 254int pool_cache_disable; /* global disable for caching */
255static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */ 255static const pcg_t pcg_dummy; /* zero sized: always empty, yet always full */
256 256
257static bool pool_cache_put_slow(pool_cache_cpu_t *, int, 257static bool pool_cache_put_slow(pool_cache_cpu_t *, int,
258 void *); 258 void *);
259static bool pool_cache_get_slow(pool_cache_cpu_t *, int, 259static bool pool_cache_get_slow(pool_cache_cpu_t *, int,
260 void **, paddr_t *, int); 260 void **, paddr_t *, int);
261static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t); 261static void pool_cache_cpu_init1(struct cpu_info *, pool_cache_t);
262static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *); 262static void pool_cache_invalidate_groups(pool_cache_t, pcg_t *);
263static void pool_cache_invalidate_cpu(pool_cache_t, u_int); 263static void pool_cache_invalidate_cpu(pool_cache_t, u_int);
264static void pool_cache_transfer(pool_cache_t); 264static void pool_cache_transfer(pool_cache_t);
265 265
266static int pool_catchup(struct pool *); 266static int pool_catchup(struct pool *);
267static void pool_prime_page(struct pool *, void *, 267static void pool_prime_page(struct pool *, void *,
268 struct pool_item_header *); 268 struct pool_item_header *);
269static void pool_update_curpage(struct pool *); 269static void pool_update_curpage(struct pool *);
270 270
271static int pool_grow(struct pool *, int); 271static int pool_grow(struct pool *, int);
272static void *pool_allocator_alloc(struct pool *, int); 272static void *pool_allocator_alloc(struct pool *, int);
273static void pool_allocator_free(struct pool *, void *); 273static void pool_allocator_free(struct pool *, void *);
274 274
275static void pool_print_pagelist(struct pool *, struct pool_pagelist *, 275static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
276 void (*)(const char *, ...) __printflike(1, 2)); 276 void (*)(const char *, ...) __printflike(1, 2));
277static void pool_print1(struct pool *, const char *, 277static void pool_print1(struct pool *, const char *,
278 void (*)(const char *, ...) __printflike(1, 2)); 278 void (*)(const char *, ...) __printflike(1, 2));
279 279
280static int pool_chk_page(struct pool *, const char *, 280static int pool_chk_page(struct pool *, const char *,
281 struct pool_item_header *); 281 struct pool_item_header *);
282 282
283/* -------------------------------------------------------------------------- */ 283/* -------------------------------------------------------------------------- */
284 284
285static inline unsigned int 285static inline unsigned int
286pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph, 286pr_item_bitmap_index(const struct pool *pp, const struct pool_item_header *ph,
287 const void *v) 287 const void *v)
288{ 288{
289 const char *cp = v; 289 const char *cp = v;
290 unsigned int idx; 290 unsigned int idx;
291 291
292 KASSERT(pp->pr_roflags & PR_USEBMAP); 292 KASSERT(pp->pr_roflags & PR_USEBMAP);
293 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size; 293 idx = (cp - (char *)ph->ph_page - ph->ph_off) / pp->pr_size;
294 294
295 if (__predict_false(idx >= pp->pr_itemsperpage)) { 295 if (__predict_false(idx >= pp->pr_itemsperpage)) {
296 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx, 296 panic("%s: [%s] %u >= %u", __func__, pp->pr_wchan, idx,
297 pp->pr_itemsperpage); 297 pp->pr_itemsperpage);
298 } 298 }
299 299
300 return idx; 300 return idx;
301} 301}
302 302
303static inline void 303static inline void
304pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph, 304pr_item_bitmap_put(const struct pool *pp, struct pool_item_header *ph,
305 void *obj) 305 void *obj)
306{ 306{
307 unsigned int idx = pr_item_bitmap_index(pp, ph, obj); 307 unsigned int idx = pr_item_bitmap_index(pp, ph, obj);
308 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE); 308 pool_item_bitmap_t *bitmap = ph->ph_bitmap + (idx / BITMAP_SIZE);
309 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK); 309 pool_item_bitmap_t mask = 1U << (idx & BITMAP_MASK);
310 310
311 if (__predict_false((*bitmap & mask) != 0)) { 311 if (__predict_false((*bitmap & mask) != 0)) {
312 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj); 312 panic("%s: [%s] %p already freed", __func__, pp->pr_wchan, obj);
313 } 313 }
314 314
315 *bitmap |= mask; 315 *bitmap |= mask;
316} 316}
317 317
318static inline void * 318static inline void *
319pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph) 319pr_item_bitmap_get(const struct pool *pp, struct pool_item_header *ph)
320{ 320{
321 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 321 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
322 unsigned int idx; 322 unsigned int idx;
323 int i; 323 int i;
324 324
325 for (i = 0; ; i++) { 325 for (i = 0; ; i++) {
326 int bit; 326 int bit;
327 327
328 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage); 328 KASSERT((i * BITMAP_SIZE) < pp->pr_itemsperpage);
329 bit = ffs32(bitmap[i]); 329 bit = ffs32(bitmap[i]);
330 if (bit) { 330 if (bit) {
331 pool_item_bitmap_t mask; 331 pool_item_bitmap_t mask;
332 332
333 bit--; 333 bit--;
334 idx = (i * BITMAP_SIZE) + bit; 334 idx = (i * BITMAP_SIZE) + bit;
335 mask = 1U << bit; 335 mask = 1U << bit;
336 KASSERT((bitmap[i] & mask) != 0); 336 KASSERT((bitmap[i] & mask) != 0);
337 bitmap[i] &= ~mask; 337 bitmap[i] &= ~mask;
338 break; 338 break;
339 } 339 }
340 } 340 }
341 KASSERT(idx < pp->pr_itemsperpage); 341 KASSERT(idx < pp->pr_itemsperpage);
342 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size; 342 return (char *)ph->ph_page + ph->ph_off + idx * pp->pr_size;
343} 343}
344 344
345static inline void 345static inline void
346pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph) 346pr_item_bitmap_init(const struct pool *pp, struct pool_item_header *ph)
347{ 347{
348 pool_item_bitmap_t *bitmap = ph->ph_bitmap; 348 pool_item_bitmap_t *bitmap = ph->ph_bitmap;
349 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE); 349 const int n = howmany(pp->pr_itemsperpage, BITMAP_SIZE);
350 int i; 350 int i;
351 351
352 for (i = 0; i < n; i++) { 352 for (i = 0; i < n; i++) {
353 bitmap[i] = (pool_item_bitmap_t)-1; 353 bitmap[i] = (pool_item_bitmap_t)-1;
354 } 354 }
355} 355}
356 356
357/* -------------------------------------------------------------------------- */ 357/* -------------------------------------------------------------------------- */
358 358
359static inline void 359static inline void
360pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph, 360pr_item_linkedlist_put(const struct pool *pp, struct pool_item_header *ph,
361 void *obj) 361 void *obj)
362{ 362{
363 struct pool_item *pi = obj; 363 struct pool_item *pi = obj;
364 364
365#ifdef POOL_CHECK_MAGIC 365#ifdef POOL_CHECK_MAGIC
366 pi->pi_magic = PI_MAGIC; 366 pi->pi_magic = PI_MAGIC;
367#endif 367#endif
368 368
369 if (pp->pr_redzone) { 369 if (pp->pr_redzone) {
370 /* 370 /*
371 * Mark the pool_item as valid. The rest is already 371 * Mark the pool_item as valid. The rest is already
372 * invalid. 372 * invalid.
373 */ 373 */
374 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0); 374 kasan_mark(pi, sizeof(*pi), sizeof(*pi), 0);
375 } 375 }
376 376
377 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 377 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
378} 378}
379 379
380static inline void * 380static inline void *
381pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph) 381pr_item_linkedlist_get(struct pool *pp, struct pool_item_header *ph)
382{ 382{
383 struct pool_item *pi; 383 struct pool_item *pi;
384 void *v; 384 void *v;
385 385
386 v = pi = LIST_FIRST(&ph->ph_itemlist); 386 v = pi = LIST_FIRST(&ph->ph_itemlist);
387 if (__predict_false(v == NULL)) { 387 if (__predict_false(v == NULL)) {
388 mutex_exit(&pp->pr_lock); 388 mutex_exit(&pp->pr_lock);
389 panic("%s: [%s] page empty", __func__, pp->pr_wchan); 389 panic("%s: [%s] page empty", __func__, pp->pr_wchan);
390 } 390 }
391 KASSERTMSG((pp->pr_nitems > 0), 391 KASSERTMSG((pp->pr_nitems > 0),
392 "%s: [%s] nitems %u inconsistent on itemlist", 392 "%s: [%s] nitems %u inconsistent on itemlist",
393 __func__, pp->pr_wchan, pp->pr_nitems); 393 __func__, pp->pr_wchan, pp->pr_nitems);
394#ifdef POOL_CHECK_MAGIC 394#ifdef POOL_CHECK_MAGIC
395 KASSERTMSG((pi->pi_magic == PI_MAGIC), 395 KASSERTMSG((pi->pi_magic == PI_MAGIC),
396 "%s: [%s] free list modified: " 396 "%s: [%s] free list modified: "
397 "magic=%x; page %p; item addr %p", __func__, 397 "magic=%x; page %p; item addr %p", __func__,
398 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi); 398 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
399#endif 399#endif
400 400
401 /* 401 /*
402 * Remove from item list. 402 * Remove from item list.
403 */ 403 */
404 LIST_REMOVE(pi, pi_list); 404 LIST_REMOVE(pi, pi_list);
405 405
406 return v; 406 return v;
407} 407}
408 408
409/* -------------------------------------------------------------------------- */ 409/* -------------------------------------------------------------------------- */
410 410
411static inline int 411static inline int
412phtree_compare(struct pool_item_header *a, struct pool_item_header *b) 412phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
413{ 413{
414 414
415 /* 415 /*
416 * We consider pool_item_header with smaller ph_page bigger. This 416 * We consider pool_item_header with smaller ph_page bigger. This
417 * unnatural ordering is for the benefit of pr_find_pagehead. 417 * unnatural ordering is for the benefit of pr_find_pagehead.
418 */ 418 */
419 if (a->ph_page < b->ph_page) 419 if (a->ph_page < b->ph_page)
420 return 1; 420 return 1;
421 else if (a->ph_page > b->ph_page) 421 else if (a->ph_page > b->ph_page)
422 return -1; 422 return -1;
423 else 423 else
424 return 0; 424 return 0;
425} 425}
426 426
427SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare); 427SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
428SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare); 428SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
429 429
430static inline struct pool_item_header * 430static inline struct pool_item_header *
431pr_find_pagehead_noalign(struct pool *pp, void *v) 431pr_find_pagehead_noalign(struct pool *pp, void *v)
432{ 432{
433 struct pool_item_header *ph, tmp; 433 struct pool_item_header *ph, tmp;
434 434
435 tmp.ph_page = (void *)(uintptr_t)v; 435 tmp.ph_page = (void *)(uintptr_t)v;
436 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 436 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
437 if (ph == NULL) { 437 if (ph == NULL) {
438 ph = SPLAY_ROOT(&pp->pr_phtree); 438 ph = SPLAY_ROOT(&pp->pr_phtree);
439 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) { 439 if (ph != NULL && phtree_compare(&tmp, ph) >= 0) {
440 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph); 440 ph = SPLAY_NEXT(phtree, &pp->pr_phtree, ph);
441 } 441 }
442 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0); 442 KASSERT(ph == NULL || phtree_compare(&tmp, ph) < 0);
443 } 443 }
444 444
445 return ph; 445 return ph;
446} 446}
447 447
448/* 448/*
449 * Return the pool page header based on item address. 449 * Return the pool page header based on item address.
450 */ 450 */
451static inline struct pool_item_header * 451static inline struct pool_item_header *
452pr_find_pagehead(struct pool *pp, void *v) 452pr_find_pagehead(struct pool *pp, void *v)
453{ 453{
454 struct pool_item_header *ph, tmp; 454 struct pool_item_header *ph, tmp;
455 455
456 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 456 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
457 ph = pr_find_pagehead_noalign(pp, v); 457 ph = pr_find_pagehead_noalign(pp, v);
458 } else { 458 } else {
459 void *page = 459 void *page =
460 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask); 460 (void *)((uintptr_t)v & pp->pr_alloc->pa_pagemask);
461 461
462 if ((pp->pr_roflags & PR_PHINPAGE) != 0) { 462 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
463 ph = (struct pool_item_header *)page; 463 ph = (struct pool_item_header *)page;
464 if (__predict_false((void *)ph->ph_page != page)) { 464 if (__predict_false((void *)ph->ph_page != page)) {
465 panic("%s: [%s] item %p not part of pool", 465 panic("%s: [%s] item %p not part of pool",
466 __func__, pp->pr_wchan, v); 466 __func__, pp->pr_wchan, v);
467 } 467 }
468 if (__predict_false((char *)v < (char *)page + 468 if (__predict_false((char *)v < (char *)page +
469 ph->ph_off)) { 469 ph->ph_off)) {
470 panic("%s: [%s] item %p below item space", 470 panic("%s: [%s] item %p below item space",
471 __func__, pp->pr_wchan, v); 471 __func__, pp->pr_wchan, v);
472 } 472 }
473 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) { 473 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
474 panic("%s: [%s] item %p poolid %u != %u", 474 panic("%s: [%s] item %p poolid %u != %u",
475 __func__, pp->pr_wchan, v, ph->ph_poolid, 475 __func__, pp->pr_wchan, v, ph->ph_poolid,
476 pp->pr_poolid); 476 pp->pr_poolid);
477 } 477 }
478 } else { 478 } else {
479 tmp.ph_page = page; 479 tmp.ph_page = page;
480 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp); 480 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
481 } 481 }
482 } 482 }
483 483
484 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) || 484 KASSERT(ph == NULL || ((pp->pr_roflags & PR_PHINPAGE) != 0) ||
485 ((char *)ph->ph_page <= (char *)v && 485 ((char *)ph->ph_page <= (char *)v &&
486 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz)); 486 (char *)v < (char *)ph->ph_page + pp->pr_alloc->pa_pagesz));
487 return ph; 487 return ph;
488} 488}
489 489
490static void 490static void
491pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq) 491pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
492{ 492{
493 struct pool_item_header *ph; 493 struct pool_item_header *ph;
494 494
495 while ((ph = LIST_FIRST(pq)) != NULL) { 495 while ((ph = LIST_FIRST(pq)) != NULL) {
496 LIST_REMOVE(ph, ph_pagelist); 496 LIST_REMOVE(ph, ph_pagelist);
497 pool_allocator_free(pp, ph->ph_page); 497 pool_allocator_free(pp, ph->ph_page);
498 if ((pp->pr_roflags & PR_PHINPAGE) == 0) 498 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
499 pool_put(pp->pr_phpool, ph); 499 pool_put(pp->pr_phpool, ph);
500 } 500 }
501} 501}
502 502
503/* 503/*
504 * Remove a page from the pool. 504 * Remove a page from the pool.
505 */ 505 */
506static inline void 506static inline void
507pr_rmpage(struct pool *pp, struct pool_item_header *ph, 507pr_rmpage(struct pool *pp, struct pool_item_header *ph,
508 struct pool_pagelist *pq) 508 struct pool_pagelist *pq)
509{ 509{
510 510
511 KASSERT(mutex_owned(&pp->pr_lock)); 511 KASSERT(mutex_owned(&pp->pr_lock));
512 512
513 /* 513 /*
514 * If the page was idle, decrement the idle page count. 514 * If the page was idle, decrement the idle page count.
515 */ 515 */
516 if (ph->ph_nmissing == 0) { 516 if (ph->ph_nmissing == 0) {
517 KASSERT(pp->pr_nidle != 0); 517 KASSERT(pp->pr_nidle != 0);
518 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage), 518 KASSERTMSG((pp->pr_nitems >= pp->pr_itemsperpage),
519 "%s: [%s] nitems=%u < itemsperpage=%u", __func__, 519 "%s: [%s] nitems=%u < itemsperpage=%u", __func__,
520 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage); 520 pp->pr_wchan, pp->pr_nitems, pp->pr_itemsperpage);
521 pp->pr_nidle--; 521 pp->pr_nidle--;
522 } 522 }
523 523
524 pp->pr_nitems -= pp->pr_itemsperpage; 524 pp->pr_nitems -= pp->pr_itemsperpage;
525 525
526 /* 526 /*
527 * Unlink the page from the pool and queue it for release. 527 * Unlink the page from the pool and queue it for release.
528 */ 528 */
529 LIST_REMOVE(ph, ph_pagelist); 529 LIST_REMOVE(ph, ph_pagelist);
530 if (pp->pr_roflags & PR_PHINPAGE) { 530 if (pp->pr_roflags & PR_PHINPAGE) {
531 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) { 531 if (__predict_false(ph->ph_poolid != pp->pr_poolid)) {
532 panic("%s: [%s] ph %p poolid %u != %u", 532 panic("%s: [%s] ph %p poolid %u != %u",
533 __func__, pp->pr_wchan, ph, ph->ph_poolid, 533 __func__, pp->pr_wchan, ph, ph->ph_poolid,
534 pp->pr_poolid); 534 pp->pr_poolid);
535 } 535 }
536 } else { 536 } else {
537 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph); 537 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
538 } 538 }
539 LIST_INSERT_HEAD(pq, ph, ph_pagelist); 539 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
540 540
541 pp->pr_npages--; 541 pp->pr_npages--;
542 pp->pr_npagefree++; 542 pp->pr_npagefree++;
543 543
544 pool_update_curpage(pp); 544 pool_update_curpage(pp);
545} 545}
546 546
547/* 547/*
548 * Initialize all the pools listed in the "pools" link set. 548 * Initialize all the pools listed in the "pools" link set.
549 */ 549 */
550void 550void
551pool_subsystem_init(void) 551pool_subsystem_init(void)
552{ 552{
553 size_t size; 553 size_t size;
554 int idx; 554 int idx;
555 555
556 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE); 556 mutex_init(&pool_head_lock, MUTEX_DEFAULT, IPL_NONE);
557 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE); 557 mutex_init(&pool_allocator_lock, MUTEX_DEFAULT, IPL_NONE);
558 cv_init(&pool_busy, "poolbusy"); 558 cv_init(&pool_busy, "poolbusy");
559 559
560 /* 560 /*
561 * Initialize private page header pool and cache magazine pool if we 561 * Initialize private page header pool and cache magazine pool if we
562 * haven't done so yet. 562 * haven't done so yet.
563 */ 563 */
564 for (idx = 0; idx < PHPOOL_MAX; idx++) { 564 for (idx = 0; idx < PHPOOL_MAX; idx++) {
565 static char phpool_names[PHPOOL_MAX][6+1+6+1]; 565 static char phpool_names[PHPOOL_MAX][6+1+6+1];
566 int nelem; 566 int nelem;
567 size_t sz; 567 size_t sz;
568 568
569 nelem = PHPOOL_FREELIST_NELEM(idx); 569 nelem = PHPOOL_FREELIST_NELEM(idx);
570 snprintf(phpool_names[idx], sizeof(phpool_names[idx]), 570 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
571 "phpool-%d", nelem); 571 "phpool-%d", nelem);
572 sz = sizeof(struct pool_item_header); 572 sz = sizeof(struct pool_item_header);
573 if (nelem) { 573 if (nelem) {
574 sz = offsetof(struct pool_item_header, 574 sz = offsetof(struct pool_item_header,
575 ph_bitmap[howmany(nelem, BITMAP_SIZE)]); 575 ph_bitmap[howmany(nelem, BITMAP_SIZE)]);
576 } 576 }
577 pool_init(&phpool[idx], sz, 0, 0, 0, 577 pool_init(&phpool[idx], sz, 0, 0, 0,
578 phpool_names[idx], &pool_allocator_meta, IPL_VM); 578 phpool_names[idx], &pool_allocator_meta, IPL_VM);
579 } 579 }
580 580
581 size = sizeof(pcg_t) + 581 size = sizeof(pcg_t) +
582 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t); 582 (PCG_NOBJECTS_NORMAL - 1) * sizeof(pcgpair_t);
583 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0, 583 pool_init(&pcg_normal_pool, size, coherency_unit, 0, 0,
584 "pcgnormal", &pool_allocator_meta, IPL_VM); 584 "pcgnormal", &pool_allocator_meta, IPL_VM);
585 585
586 size = sizeof(pcg_t) + 586 size = sizeof(pcg_t) +
587 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t); 587 (PCG_NOBJECTS_LARGE - 1) * sizeof(pcgpair_t);
588 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0, 588 pool_init(&pcg_large_pool, size, coherency_unit, 0, 0,
589 "pcglarge", &pool_allocator_meta, IPL_VM); 589 "pcglarge", &pool_allocator_meta, IPL_VM);
590 590
591 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit, 591 pool_init(&cache_pool, sizeof(struct pool_cache), coherency_unit,
592 0, 0, "pcache", &pool_allocator_meta, IPL_NONE); 592 0, 0, "pcache", &pool_allocator_meta, IPL_NONE);
593 593
594 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit, 594 pool_init(&cache_cpu_pool, sizeof(pool_cache_cpu_t), coherency_unit,
595 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE); 595 0, 0, "pcachecpu", &pool_allocator_meta, IPL_NONE);
596} 596}
597 597
598static inline bool 598static inline bool
599pool_init_is_phinpage(const struct pool *pp) 599pool_init_is_phinpage(const struct pool *pp)
600{ 600{
601 size_t pagesize; 601 size_t pagesize;
602 602
603 if (pp->pr_roflags & PR_PHINPAGE) { 603 if (pp->pr_roflags & PR_PHINPAGE) {
604 return true; 604 return true;
605 } 605 }
606 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) { 606 if (pp->pr_roflags & (PR_NOTOUCH | PR_NOALIGN)) {
607 return false; 607 return false;
608 } 608 }
609 609
610 pagesize = pp->pr_alloc->pa_pagesz; 610 pagesize = pp->pr_alloc->pa_pagesz;
611 611
612 /* 612 /*
613 * Threshold: the item size is below 1/16 of a page size, and below 613 * Threshold: the item size is below 1/16 of a page size, and below
614 * 8 times the page header size. The latter ensures we go off-page 614 * 8 times the page header size. The latter ensures we go off-page
615 * if the page header would make us waste a rather big item. 615 * if the page header would make us waste a rather big item.
616 */ 616 */
617 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) { 617 if (pp->pr_size < MIN(pagesize / 16, PHSIZE * 8)) {
618 return true; 618 return true;
619 } 619 }
620 620
621 /* Put the header into the page if it doesn't waste any items. */ 621 /* Put the header into the page if it doesn't waste any items. */
622 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) { 622 if (pagesize / pp->pr_size == (pagesize - PHSIZE) / pp->pr_size) {
623 return true; 623 return true;
624 } 624 }
625 625
626 return false; 626 return false;
627} 627}
628 628
629static inline bool 629static inline bool
630pool_init_is_usebmap(const struct pool *pp) 630pool_init_is_usebmap(const struct pool *pp)
631{ 631{
632 size_t bmapsize; 632 size_t bmapsize;
633 633
634 if (pp->pr_roflags & PR_NOTOUCH) { 634 if (pp->pr_roflags & PR_NOTOUCH) {
635 return true; 635 return true;
636 } 636 }
637 637
638 /* 638 /*
639 * If we're on-page, and the page header can already contain a bitmap 639 * If we're on-page, and the page header can already contain a bitmap
640 * big enough to cover all the items of the page, go with a bitmap. 640 * big enough to cover all the items of the page, go with a bitmap.
641 */ 641 */
642 if (!(pp->pr_roflags & PR_PHINPAGE)) { 642 if (!(pp->pr_roflags & PR_PHINPAGE)) {
643 return false; 643 return false;
644 } 644 }
645 bmapsize = roundup(PHSIZE, pp->pr_align) - 645 bmapsize = roundup(PHSIZE, pp->pr_align) -
646 offsetof(struct pool_item_header, ph_bitmap[0]); 646 offsetof(struct pool_item_header, ph_bitmap[0]);
647 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0); 647 KASSERT(bmapsize % sizeof(pool_item_bitmap_t) == 0);
648 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) { 648 if (pp->pr_itemsperpage <= bmapsize * CHAR_BIT) {
649 return true; 649 return true;
650 } 650 }
651 651
652 return false; 652 return false;
653} 653}
654 654
655/* 655/*
656 * Initialize the given pool resource structure. 656 * Initialize the given pool resource structure.
657 * 657 *
658 * We export this routine to allow other kernel parts to declare 658 * We export this routine to allow other kernel parts to declare
659 * static pools that must be initialized before kmem(9) is available. 659 * static pools that must be initialized before kmem(9) is available.
660 */ 660 */
661void 661void
662pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags, 662pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
663 const char *wchan, struct pool_allocator *palloc, int ipl) 663 const char *wchan, struct pool_allocator *palloc, int ipl)
664{ 664{
665 struct pool *pp1; 665 struct pool *pp1;
666 size_t prsize; 666 size_t prsize;
667 int itemspace, slack; 667 int itemspace, slack;
668 668
669 /* XXX ioff will be removed. */ 669 /* XXX ioff will be removed. */
670 KASSERT(ioff == 0); 670 KASSERT(ioff == 0);
671 671
672#ifdef DEBUG 672#ifdef DEBUG
673 if (__predict_true(!cold)) 673 if (__predict_true(!cold))
674 mutex_enter(&pool_head_lock); 674 mutex_enter(&pool_head_lock);
675 /* 675 /*
676 * Check that the pool hasn't already been initialised and 676 * Check that the pool hasn't already been initialised and
677 * added to the list of all pools. 677 * added to the list of all pools.
678 */ 678 */
679 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 679 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
680 if (pp == pp1) 680 if (pp == pp1)
681 panic("%s: [%s] already initialised", __func__, 681 panic("%s: [%s] already initialised", __func__,
682 wchan); 682 wchan);
683 } 683 }
684 if (__predict_true(!cold)) 684 if (__predict_true(!cold))
685 mutex_exit(&pool_head_lock); 685 mutex_exit(&pool_head_lock);
686#endif 686#endif
687 687
688 if (palloc == NULL) 688 if (palloc == NULL)
689 palloc = &pool_allocator_kmem; 689 palloc = &pool_allocator_kmem;
690 690
691 if (!cold) 691 if (!cold)
692 mutex_enter(&pool_allocator_lock); 692 mutex_enter(&pool_allocator_lock);
693 if (palloc->pa_refcnt++ == 0) { 693 if (palloc->pa_refcnt++ == 0) {
694 if (palloc->pa_pagesz == 0) 694 if (palloc->pa_pagesz == 0)
695 palloc->pa_pagesz = PAGE_SIZE; 695 palloc->pa_pagesz = PAGE_SIZE;
696 696
697 TAILQ_INIT(&palloc->pa_list); 697 TAILQ_INIT(&palloc->pa_list);
698 698
699 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM); 699 mutex_init(&palloc->pa_lock, MUTEX_DEFAULT, IPL_VM);
700 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1); 700 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
701 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1; 701 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
702 } 702 }
703 if (!cold) 703 if (!cold)
704 mutex_exit(&pool_allocator_lock); 704 mutex_exit(&pool_allocator_lock);
705 705
706 if (align == 0) 706 if (align == 0)
707 align = ALIGN(1); 707 align = ALIGN(1);
708 708
709 prsize = size; 709 prsize = size;
710 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item)) 710 if ((flags & PR_NOTOUCH) == 0 && prsize < sizeof(struct pool_item))
711 prsize = sizeof(struct pool_item); 711 prsize = sizeof(struct pool_item);
712 712
713 prsize = roundup(prsize, align); 713 prsize = roundup(prsize, align);
714 KASSERTMSG((prsize <= palloc->pa_pagesz), 714 KASSERTMSG((prsize <= palloc->pa_pagesz),
715 "%s: [%s] pool item size (%zu) larger than page size (%u)", 715 "%s: [%s] pool item size (%zu) larger than page size (%u)",
716 __func__, wchan, prsize, palloc->pa_pagesz); 716 __func__, wchan, prsize, palloc->pa_pagesz);
717 717
718 /* 718 /*
719 * Initialize the pool structure. 719 * Initialize the pool structure.
720 */ 720 */
721 LIST_INIT(&pp->pr_emptypages); 721 LIST_INIT(&pp->pr_emptypages);
722 LIST_INIT(&pp->pr_fullpages); 722 LIST_INIT(&pp->pr_fullpages);
723 LIST_INIT(&pp->pr_partpages); 723 LIST_INIT(&pp->pr_partpages);
724 pp->pr_cache = NULL; 724 pp->pr_cache = NULL;
725 pp->pr_curpage = NULL; 725 pp->pr_curpage = NULL;
726 pp->pr_npages = 0; 726 pp->pr_npages = 0;
727 pp->pr_minitems = 0; 727 pp->pr_minitems = 0;
728 pp->pr_minpages = 0; 728 pp->pr_minpages = 0;
729 pp->pr_maxpages = UINT_MAX; 729 pp->pr_maxpages = UINT_MAX;
730 pp->pr_roflags = flags; 730 pp->pr_roflags = flags;
731 pp->pr_flags = 0; 731 pp->pr_flags = 0;
732 pp->pr_size = prsize; 732 pp->pr_size = prsize;
733 pp->pr_reqsize = size; 733 pp->pr_reqsize = size;
734 pp->pr_align = align; 734 pp->pr_align = align;
735 pp->pr_wchan = wchan; 735 pp->pr_wchan = wchan;
736 pp->pr_alloc = palloc; 736 pp->pr_alloc = palloc;
737 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter); 737 pp->pr_poolid = atomic_inc_uint_nv(&poolid_counter);
738 pp->pr_nitems = 0; 738 pp->pr_nitems = 0;
739 pp->pr_nout = 0; 739 pp->pr_nout = 0;
740 pp->pr_hardlimit = UINT_MAX; 740 pp->pr_hardlimit = UINT_MAX;
741 pp->pr_hardlimit_warning = NULL; 741 pp->pr_hardlimit_warning = NULL;
742 pp->pr_hardlimit_ratecap.tv_sec = 0; 742 pp->pr_hardlimit_ratecap.tv_sec = 0;
743 pp->pr_hardlimit_ratecap.tv_usec = 0; 743 pp->pr_hardlimit_ratecap.tv_usec = 0;
744 pp->pr_hardlimit_warning_last.tv_sec = 0; 744 pp->pr_hardlimit_warning_last.tv_sec = 0;
745 pp->pr_hardlimit_warning_last.tv_usec = 0; 745 pp->pr_hardlimit_warning_last.tv_usec = 0;
746 pp->pr_drain_hook = NULL; 746 pp->pr_drain_hook = NULL;
747 pp->pr_drain_hook_arg = NULL; 747 pp->pr_drain_hook_arg = NULL;
748 pp->pr_freecheck = NULL; 748 pp->pr_freecheck = NULL;
749 pool_redzone_init(pp, size); 749 pool_redzone_init(pp, size);
750 pool_quarantine_init(pp); 750 pool_quarantine_init(pp);
751 751
752 /* 752 /*
753 * Decide whether to put the page header off-page to avoid wasting too 753 * Decide whether to put the page header off-page to avoid wasting too
754 * large a part of the page or too big an item. Off-page page headers 754 * large a part of the page or too big an item. Off-page page headers
755 * go on a hash table, so we can match a returned item with its header 755 * go on a hash table, so we can match a returned item with its header
756 * based on the page address. 756 * based on the page address.
757 */ 757 */
758 if (pool_init_is_phinpage(pp)) { 758 if (pool_init_is_phinpage(pp)) {
759 /* Use the beginning of the page for the page header */ 759 /* Use the beginning of the page for the page header */
760 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align); 760 itemspace = palloc->pa_pagesz - roundup(PHSIZE, align);
761 pp->pr_itemoffset = roundup(PHSIZE, align); 761 pp->pr_itemoffset = roundup(PHSIZE, align);
762 pp->pr_roflags |= PR_PHINPAGE; 762 pp->pr_roflags |= PR_PHINPAGE;
763 } else { 763 } else {
764 /* The page header will be taken from our page header pool */ 764 /* The page header will be taken from our page header pool */
765 itemspace = palloc->pa_pagesz; 765 itemspace = palloc->pa_pagesz;
766 pp->pr_itemoffset = 0; 766 pp->pr_itemoffset = 0;
767 SPLAY_INIT(&pp->pr_phtree); 767 SPLAY_INIT(&pp->pr_phtree);
768 } 768 }
769 769
770 pp->pr_itemsperpage = itemspace / pp->pr_size; 770 pp->pr_itemsperpage = itemspace / pp->pr_size;
771 KASSERT(pp->pr_itemsperpage != 0); 771 KASSERT(pp->pr_itemsperpage != 0);
772 772
773 /* 773 /*
774 * Decide whether to use a bitmap or a linked list to manage freed 774 * Decide whether to use a bitmap or a linked list to manage freed
775 * items. 775 * items.
776 */ 776 */
777 if (pool_init_is_usebmap(pp)) { 777 if (pool_init_is_usebmap(pp)) {
778 pp->pr_roflags |= PR_USEBMAP; 778 pp->pr_roflags |= PR_USEBMAP;
779 } 779 }
780 780
781 /* 781 /*
782 * If we're off-page and use a bitmap, choose the appropriate pool to 782 * If we're off-page and use a bitmap, choose the appropriate pool to
783 * allocate page headers, whose size varies depending on the bitmap. If 783 * allocate page headers, whose size varies depending on the bitmap. If
784 * we're just off-page, take the first pool, no extra size. If we're 784 * we're just off-page, take the first pool, no extra size. If we're
785 * on-page, nothing to do. 785 * on-page, nothing to do.
786 */ 786 */
787 if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) { 787 if (!(pp->pr_roflags & PR_PHINPAGE) && (pp->pr_roflags & PR_USEBMAP)) {
788 int idx; 788 int idx;
789 789
790 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx); 790 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
791 idx++) { 791 idx++) {
792 /* nothing */ 792 /* nothing */
793 } 793 }
794 if (idx >= PHPOOL_MAX) { 794 if (idx >= PHPOOL_MAX) {
795 /* 795 /*
796 * if you see this panic, consider to tweak 796 * if you see this panic, consider to tweak
797 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM. 797 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
798 */ 798 */
799 panic("%s: [%s] too large itemsperpage(%d) for " 799 panic("%s: [%s] too large itemsperpage(%d) for "
800 "PR_USEBMAP", __func__, 800 "PR_USEBMAP", __func__,
801 pp->pr_wchan, pp->pr_itemsperpage); 801 pp->pr_wchan, pp->pr_itemsperpage);
802 } 802 }
803 pp->pr_phpool = &phpool[idx]; 803 pp->pr_phpool = &phpool[idx];
804 } else if (!(pp->pr_roflags & PR_PHINPAGE)) { 804 } else if (!(pp->pr_roflags & PR_PHINPAGE)) {
805 pp->pr_phpool = &phpool[0]; 805 pp->pr_phpool = &phpool[0];
806 } else { 806 } else {
807 pp->pr_phpool = NULL; 807 pp->pr_phpool = NULL;
808 } 808 }
809 809
810 /* 810 /*
811 * Use the slack between the chunks and the page header 811 * Use the slack between the chunks and the page header
812 * for "cache coloring". 812 * for "cache coloring".
813 */ 813 */
814 slack = itemspace - pp->pr_itemsperpage * pp->pr_size; 814 slack = itemspace - pp->pr_itemsperpage * pp->pr_size;
815 pp->pr_maxcolor = rounddown(slack, align); 815 pp->pr_maxcolor = rounddown(slack, align);
816 pp->pr_curcolor = 0; 816 pp->pr_curcolor = 0;
817 817
818 pp->pr_nget = 0; 818 pp->pr_nget = 0;
819 pp->pr_nfail = 0; 819 pp->pr_nfail = 0;
820 pp->pr_nput = 0; 820 pp->pr_nput = 0;
821 pp->pr_npagealloc = 0; 821 pp->pr_npagealloc = 0;
822 pp->pr_npagefree = 0; 822 pp->pr_npagefree = 0;
823 pp->pr_hiwat = 0; 823 pp->pr_hiwat = 0;
824 pp->pr_nidle = 0; 824 pp->pr_nidle = 0;
825 pp->pr_refcnt = 0; 825 pp->pr_refcnt = 0;
826 826
827 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl); 827 mutex_init(&pp->pr_lock, MUTEX_DEFAULT, ipl);
828 cv_init(&pp->pr_cv, wchan); 828 cv_init(&pp->pr_cv, wchan);
829 pp->pr_ipl = ipl; 829 pp->pr_ipl = ipl;
830 830
831 /* Insert into the list of all pools. */ 831 /* Insert into the list of all pools. */
832 if (!cold) 832 if (!cold)
833 mutex_enter(&pool_head_lock); 833 mutex_enter(&pool_head_lock);
834 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) { 834 TAILQ_FOREACH(pp1, &pool_head, pr_poollist) {
835 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0) 835 if (strcmp(pp1->pr_wchan, pp->pr_wchan) > 0)
836 break; 836 break;
837 } 837 }
838 if (pp1 == NULL) 838 if (pp1 == NULL)
839 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist); 839 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
840 else 840 else
841 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist); 841 TAILQ_INSERT_BEFORE(pp1, pp, pr_poollist);
842 if (!cold) 842 if (!cold)
843 mutex_exit(&pool_head_lock); 843 mutex_exit(&pool_head_lock);
844 844
845 /* Insert this into the list of pools using this allocator. */ 845 /* Insert this into the list of pools using this allocator. */
846 if (!cold) 846 if (!cold)
847 mutex_enter(&palloc->pa_lock); 847 mutex_enter(&palloc->pa_lock);
848 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list); 848 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
849 if (!cold) 849 if (!cold)
850 mutex_exit(&palloc->pa_lock); 850 mutex_exit(&palloc->pa_lock);
851} 851}
852 852
853/* 853/*
854 * De-commision a pool resource. 854 * De-commision a pool resource.
855 */ 855 */
856void 856void
857pool_destroy(struct pool *pp) 857pool_destroy(struct pool *pp)
858{ 858{
859 struct pool_pagelist pq; 859 struct pool_pagelist pq;
860 struct pool_item_header *ph; 860 struct pool_item_header *ph;
861 861
862 pool_quarantine_flush(pp); 862 pool_quarantine_flush(pp);
863 863
864 /* Remove from global pool list */ 864 /* Remove from global pool list */
865 mutex_enter(&pool_head_lock); 865 mutex_enter(&pool_head_lock);
866 while (pp->pr_refcnt != 0) 866 while (pp->pr_refcnt != 0)
867 cv_wait(&pool_busy, &pool_head_lock); 867 cv_wait(&pool_busy, &pool_head_lock);
868 TAILQ_REMOVE(&pool_head, pp, pr_poollist); 868 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
869 if (drainpp == pp) 869 if (drainpp == pp)
870 drainpp = NULL; 870 drainpp = NULL;
871 mutex_exit(&pool_head_lock); 871 mutex_exit(&pool_head_lock);
872 872
873 /* Remove this pool from its allocator's list of pools. */ 873 /* Remove this pool from its allocator's list of pools. */
874 mutex_enter(&pp->pr_alloc->pa_lock); 874 mutex_enter(&pp->pr_alloc->pa_lock);
875 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list); 875 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
876 mutex_exit(&pp->pr_alloc->pa_lock); 876 mutex_exit(&pp->pr_alloc->pa_lock);
877 877
878 mutex_enter(&pool_allocator_lock); 878 mutex_enter(&pool_allocator_lock);
879 if (--pp->pr_alloc->pa_refcnt == 0) 879 if (--pp->pr_alloc->pa_refcnt == 0)
880 mutex_destroy(&pp->pr_alloc->pa_lock); 880 mutex_destroy(&pp->pr_alloc->pa_lock);
881 mutex_exit(&pool_allocator_lock); 881 mutex_exit(&pool_allocator_lock);
882 882
883 mutex_enter(&pp->pr_lock); 883 mutex_enter(&pp->pr_lock);
884 884
885 KASSERT(pp->pr_cache == NULL); 885 KASSERT(pp->pr_cache == NULL);
886 KASSERTMSG((pp->pr_nout == 0), 886 KASSERTMSG((pp->pr_nout == 0),
887 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan, 887 "%s: [%s] pool busy: still out: %u", __func__, pp->pr_wchan,
888 pp->pr_nout); 888 pp->pr_nout);
889 KASSERT(LIST_EMPTY(&pp->pr_fullpages)); 889 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
890 KASSERT(LIST_EMPTY(&pp->pr_partpages)); 890 KASSERT(LIST_EMPTY(&pp->pr_partpages));
891 891
892 /* Remove all pages */ 892 /* Remove all pages */
893 LIST_INIT(&pq); 893 LIST_INIT(&pq);
894 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 894 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
895 pr_rmpage(pp, ph, &pq); 895 pr_rmpage(pp, ph, &pq);
896 896
897 mutex_exit(&pp->pr_lock); 897 mutex_exit(&pp->pr_lock);
898 898
899 pr_pagelist_free(pp, &pq); 899 pr_pagelist_free(pp, &pq);
900 cv_destroy(&pp->pr_cv); 900 cv_destroy(&pp->pr_cv);
901 mutex_destroy(&pp->pr_lock); 901 mutex_destroy(&pp->pr_lock);
902} 902}
903 903
904void 904void
905pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg) 905pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
906{ 906{
907 907
908 /* XXX no locking -- must be used just after pool_init() */ 908 /* XXX no locking -- must be used just after pool_init() */
909 KASSERTMSG((pp->pr_drain_hook == NULL), 909 KASSERTMSG((pp->pr_drain_hook == NULL),
910 "%s: [%s] already set", __func__, pp->pr_wchan); 910 "%s: [%s] already set", __func__, pp->pr_wchan);
911 pp->pr_drain_hook = fn; 911 pp->pr_drain_hook = fn;
912 pp->pr_drain_hook_arg = arg; 912 pp->pr_drain_hook_arg = arg;
913} 913}
914 914
915static struct pool_item_header * 915static struct pool_item_header *
916pool_alloc_item_header(struct pool *pp, void *storage, int flags) 916pool_alloc_item_header(struct pool *pp, void *storage, int flags)
917{ 917{
918 struct pool_item_header *ph; 918 struct pool_item_header *ph;
919 919
920 if ((pp->pr_roflags & PR_PHINPAGE) != 0) 920 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
921 ph = storage; 921 ph = storage;
922 else 922 else
923 ph = pool_get(pp->pr_phpool, flags); 923 ph = pool_get(pp->pr_phpool, flags);
924 924
925 return ph; 925 return ph;
926} 926}
927 927
928/* 928/*
929 * Grab an item from the pool. 929 * Grab an item from the pool.
930 */ 930 */
931void * 931void *
932pool_get(struct pool *pp, int flags) 932pool_get(struct pool *pp, int flags)
933{ 933{
934 struct pool_item_header *ph; 934 struct pool_item_header *ph;
935 void *v; 935 void *v;
936 936
937 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 937 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
938 KASSERTMSG((pp->pr_itemsperpage != 0), 938 KASSERTMSG((pp->pr_itemsperpage != 0),
939 "%s: [%s] pr_itemsperpage is zero, " 939 "%s: [%s] pr_itemsperpage is zero, "
940 "pool not initialized?", __func__, pp->pr_wchan); 940 "pool not initialized?", __func__, pp->pr_wchan);
941 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p()) 941 KASSERTMSG((!(cpu_intr_p() || cpu_softintr_p())
942 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL), 942 || pp->pr_ipl != IPL_NONE || cold || panicstr != NULL),
943 "%s: [%s] is IPL_NONE, but called from interrupt context", 943 "%s: [%s] is IPL_NONE, but called from interrupt context",
944 __func__, pp->pr_wchan); 944 __func__, pp->pr_wchan);
945 if (flags & PR_WAITOK) { 945 if (flags & PR_WAITOK) {
946 ASSERT_SLEEPABLE(); 946 ASSERT_SLEEPABLE();
947 } 947 }
948 948
949 mutex_enter(&pp->pr_lock); 949 mutex_enter(&pp->pr_lock);
950 startover: 950 startover:
951 /* 951 /*
952 * Check to see if we've reached the hard limit. If we have, 952 * Check to see if we've reached the hard limit. If we have,
953 * and we can wait, then wait until an item has been returned to 953 * and we can wait, then wait until an item has been returned to
954 * the pool. 954 * the pool.
955 */ 955 */
956 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit), 956 KASSERTMSG((pp->pr_nout <= pp->pr_hardlimit),
957 "%s: %s: crossed hard limit", __func__, pp->pr_wchan); 957 "%s: %s: crossed hard limit", __func__, pp->pr_wchan);
958 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) { 958 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
959 if (pp->pr_drain_hook != NULL) { 959 if (pp->pr_drain_hook != NULL) {
960 /* 960 /*
961 * Since the drain hook is going to free things 961 * Since the drain hook is going to free things
962 * back to the pool, unlock, call the hook, re-lock, 962 * back to the pool, unlock, call the hook, re-lock,
963 * and check the hardlimit condition again. 963 * and check the hardlimit condition again.
964 */ 964 */
965 mutex_exit(&pp->pr_lock); 965 mutex_exit(&pp->pr_lock);
966 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 966 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
967 mutex_enter(&pp->pr_lock); 967 mutex_enter(&pp->pr_lock);
968 if (pp->pr_nout < pp->pr_hardlimit) 968 if (pp->pr_nout < pp->pr_hardlimit)
969 goto startover; 969 goto startover;
970 } 970 }
971 971
972 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) { 972 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
973 /* 973 /*
974 * XXX: A warning isn't logged in this case. Should 974 * XXX: A warning isn't logged in this case. Should
975 * it be? 975 * it be?
976 */ 976 */
977 pp->pr_flags |= PR_WANTED; 977 pp->pr_flags |= PR_WANTED;
978 do { 978 do {
979 cv_wait(&pp->pr_cv, &pp->pr_lock); 979 cv_wait(&pp->pr_cv, &pp->pr_lock);
980 } while (pp->pr_flags & PR_WANTED); 980 } while (pp->pr_flags & PR_WANTED);
981 goto startover; 981 goto startover;
982 } 982 }
983 983
984 /* 984 /*
985 * Log a message that the hard limit has been hit. 985 * Log a message that the hard limit has been hit.
986 */ 986 */
987 if (pp->pr_hardlimit_warning != NULL && 987 if (pp->pr_hardlimit_warning != NULL &&
988 ratecheck(&pp->pr_hardlimit_warning_last, 988 ratecheck(&pp->pr_hardlimit_warning_last,
989 &pp->pr_hardlimit_ratecap)) 989 &pp->pr_hardlimit_ratecap))
990 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning); 990 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
991 991
992 pp->pr_nfail++; 992 pp->pr_nfail++;
993 993
994 mutex_exit(&pp->pr_lock); 994 mutex_exit(&pp->pr_lock);
995 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0); 995 KASSERT((flags & (PR_NOWAIT|PR_LIMITFAIL)) != 0);
996 return NULL; 996 return NULL;
997 } 997 }
998 998
999 /* 999 /*
1000 * The convention we use is that if `curpage' is not NULL, then 1000 * The convention we use is that if `curpage' is not NULL, then
1001 * it points at a non-empty bucket. In particular, `curpage' 1001 * it points at a non-empty bucket. In particular, `curpage'
1002 * never points at a page header which has PR_PHINPAGE set and 1002 * never points at a page header which has PR_PHINPAGE set and
1003 * has no items in its bucket. 1003 * has no items in its bucket.
1004 */ 1004 */
1005 if ((ph = pp->pr_curpage) == NULL) { 1005 if ((ph = pp->pr_curpage) == NULL) {
1006 int error; 1006 int error;
1007 1007
1008 KASSERTMSG((pp->pr_nitems == 0), 1008 KASSERTMSG((pp->pr_nitems == 0),
1009 "%s: [%s] curpage NULL, inconsistent nitems %u", 1009 "%s: [%s] curpage NULL, inconsistent nitems %u",
1010 __func__, pp->pr_wchan, pp->pr_nitems); 1010 __func__, pp->pr_wchan, pp->pr_nitems);
1011 1011
1012 /* 1012 /*
1013 * Call the back-end page allocator for more memory. 1013 * Call the back-end page allocator for more memory.
1014 * Release the pool lock, as the back-end page allocator 1014 * Release the pool lock, as the back-end page allocator
1015 * may block. 1015 * may block.
1016 */ 1016 */
1017 error = pool_grow(pp, flags); 1017 error = pool_grow(pp, flags);
1018 if (error != 0) { 1018 if (error != 0) {
1019 /* 1019 /*
1020 * pool_grow aborts when another thread 1020 * pool_grow aborts when another thread
1021 * is allocating a new page. Retry if it 1021 * is allocating a new page. Retry if it
1022 * waited for it. 1022 * waited for it.
1023 */ 1023 */
1024 if (error == ERESTART) 1024 if (error == ERESTART)
1025 goto startover; 1025 goto startover;
1026 1026
1027 /* 1027 /*
1028 * We were unable to allocate a page or item 1028 * We were unable to allocate a page or item
1029 * header, but we released the lock during 1029 * header, but we released the lock during
1030 * allocation, so perhaps items were freed 1030 * allocation, so perhaps items were freed
1031 * back to the pool. Check for this case. 1031 * back to the pool. Check for this case.
1032 */ 1032 */
1033 if (pp->pr_curpage != NULL) 1033 if (pp->pr_curpage != NULL)
1034 goto startover; 1034 goto startover;
1035 1035
1036 pp->pr_nfail++; 1036 pp->pr_nfail++;
1037 mutex_exit(&pp->pr_lock); 1037 mutex_exit(&pp->pr_lock);
1038 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT); 1038 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
1039 return NULL; 1039 return NULL;
1040 } 1040 }
1041 1041
1042 /* Start the allocation process over. */ 1042 /* Start the allocation process over. */
1043 goto startover; 1043 goto startover;
1044 } 1044 }
1045 if (pp->pr_roflags & PR_USEBMAP) { 1045 if (pp->pr_roflags & PR_USEBMAP) {
1046 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage), 1046 KASSERTMSG((ph->ph_nmissing < pp->pr_itemsperpage),
1047 "%s: [%s] pool page empty", __func__, pp->pr_wchan); 1047 "%s: [%s] pool page empty", __func__, pp->pr_wchan);
1048 v = pr_item_bitmap_get(pp, ph); 1048 v = pr_item_bitmap_get(pp, ph);
1049 } else { 1049 } else {
1050 v = pr_item_linkedlist_get(pp, ph); 1050 v = pr_item_linkedlist_get(pp, ph);
1051 } 1051 }
1052 pp->pr_nitems--; 1052 pp->pr_nitems--;
1053 pp->pr_nout++; 1053 pp->pr_nout++;
1054 if (ph->ph_nmissing == 0) { 1054 if (ph->ph_nmissing == 0) {
1055 KASSERT(pp->pr_nidle > 0); 1055 KASSERT(pp->pr_nidle > 0);
1056 pp->pr_nidle--; 1056 pp->pr_nidle--;
1057 1057
1058 /* 1058 /*
1059 * This page was previously empty. Move it to the list of 1059 * This page was previously empty. Move it to the list of
1060 * partially-full pages. This page is already curpage. 1060 * partially-full pages. This page is already curpage.
1061 */ 1061 */
1062 LIST_REMOVE(ph, ph_pagelist); 1062 LIST_REMOVE(ph, ph_pagelist);
1063 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1063 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1064 } 1064 }
1065 ph->ph_nmissing++; 1065 ph->ph_nmissing++;
1066 if (ph->ph_nmissing == pp->pr_itemsperpage) { 1066 if (ph->ph_nmissing == pp->pr_itemsperpage) {
1067 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) || 1067 KASSERTMSG(((pp->pr_roflags & PR_USEBMAP) ||
1068 LIST_EMPTY(&ph->ph_itemlist)), 1068 LIST_EMPTY(&ph->ph_itemlist)),
1069 "%s: [%s] nmissing (%u) inconsistent", __func__, 1069 "%s: [%s] nmissing (%u) inconsistent", __func__,
1070 pp->pr_wchan, ph->ph_nmissing); 1070 pp->pr_wchan, ph->ph_nmissing);
1071 /* 1071 /*
1072 * This page is now full. Move it to the full list 1072 * This page is now full. Move it to the full list
1073 * and select a new current page. 1073 * and select a new current page.
1074 */ 1074 */
1075 LIST_REMOVE(ph, ph_pagelist); 1075 LIST_REMOVE(ph, ph_pagelist);
1076 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist); 1076 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1077 pool_update_curpage(pp); 1077 pool_update_curpage(pp);
1078 } 1078 }
1079 1079
1080 pp->pr_nget++; 1080 pp->pr_nget++;
1081 1081
1082 /* 1082 /*
1083 * If we have a low water mark and we are now below that low 1083 * If we have a low water mark and we are now below that low
1084 * water mark, add more items to the pool. 1084 * water mark, add more items to the pool.
1085 */ 1085 */
1086 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1086 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1087 /* 1087 /*
1088 * XXX: Should we log a warning? Should we set up a timeout 1088 * XXX: Should we log a warning? Should we set up a timeout
1089 * to try again in a second or so? The latter could break 1089 * to try again in a second or so? The latter could break
1090 * a caller's assumptions about interrupt protection, etc. 1090 * a caller's assumptions about interrupt protection, etc.
1091 */ 1091 */
1092 } 1092 }
1093 1093
1094 mutex_exit(&pp->pr_lock); 1094 mutex_exit(&pp->pr_lock);
1095 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0); 1095 KASSERT((((vaddr_t)v) & (pp->pr_align - 1)) == 0);
1096 FREECHECK_OUT(&pp->pr_freecheck, v); 1096 FREECHECK_OUT(&pp->pr_freecheck, v);
1097 pool_redzone_fill(pp, v); 1097 pool_redzone_fill(pp, v);
1098 if (flags & PR_ZERO) 1098 if (flags & PR_ZERO)
1099 memset(v, 0, pp->pr_reqsize); 1099 memset(v, 0, pp->pr_reqsize);
1100 else 1100 else
1101 pool_kleak_fill(pp, v); 1101 pool_kleak_fill(pp, v);
1102 return v; 1102 return v;
1103} 1103}
1104 1104
1105/* 1105/*
1106 * Internal version of pool_put(). Pool is already locked/entered. 1106 * Internal version of pool_put(). Pool is already locked/entered.
1107 */ 1107 */
1108static void 1108static void
1109pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq) 1109pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
1110{ 1110{
1111 struct pool_item_header *ph; 1111 struct pool_item_header *ph;
1112 1112
1113 KASSERT(mutex_owned(&pp->pr_lock)); 1113 KASSERT(mutex_owned(&pp->pr_lock));
1114 pool_redzone_check(pp, v); 1114 pool_redzone_check(pp, v);
1115 FREECHECK_IN(&pp->pr_freecheck, v); 1115 FREECHECK_IN(&pp->pr_freecheck, v);
1116 LOCKDEBUG_MEM_CHECK(v, pp->pr_size); 1116 LOCKDEBUG_MEM_CHECK(v, pp->pr_size);
1117 1117
1118 KASSERTMSG((pp->pr_nout > 0), 1118 KASSERTMSG((pp->pr_nout > 0),
1119 "%s: [%s] putting with none out", __func__, pp->pr_wchan); 1119 "%s: [%s] putting with none out", __func__, pp->pr_wchan);
1120 1120
1121 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) { 1121 if (__predict_false((ph = pr_find_pagehead(pp, v)) == NULL)) {
1122 panic("%s: [%s] page header missing", __func__, pp->pr_wchan); 1122 panic("%s: [%s] page header missing", __func__, pp->pr_wchan);
1123 } 1123 }
1124 1124
1125 /* 1125 /*
1126 * Return to item list. 1126 * Return to item list.
1127 */ 1127 */
1128 if (pp->pr_roflags & PR_USEBMAP) { 1128 if (pp->pr_roflags & PR_USEBMAP) {
1129 pr_item_bitmap_put(pp, ph, v); 1129 pr_item_bitmap_put(pp, ph, v);
1130 } else { 1130 } else {
1131 pr_item_linkedlist_put(pp, ph, v); 1131 pr_item_linkedlist_put(pp, ph, v);
1132 } 1132 }
1133 KDASSERT(ph->ph_nmissing != 0); 1133 KDASSERT(ph->ph_nmissing != 0);
1134 ph->ph_nmissing--; 1134 ph->ph_nmissing--;
1135 pp->pr_nput++; 1135 pp->pr_nput++;
1136 pp->pr_nitems++; 1136 pp->pr_nitems++;
1137 pp->pr_nout--; 1137 pp->pr_nout--;
1138 1138
1139 /* Cancel "pool empty" condition if it exists */ 1139 /* Cancel "pool empty" condition if it exists */
1140 if (pp->pr_curpage == NULL) 1140 if (pp->pr_curpage == NULL)
1141 pp->pr_curpage = ph; 1141 pp->pr_curpage = ph;
1142 1142
1143 if (pp->pr_flags & PR_WANTED) { 1143 if (pp->pr_flags & PR_WANTED) {
1144 pp->pr_flags &= ~PR_WANTED; 1144 pp->pr_flags &= ~PR_WANTED;
1145 cv_broadcast(&pp->pr_cv); 1145 cv_broadcast(&pp->pr_cv);
1146 } 1146 }
1147 1147
1148 /* 1148 /*
1149 * If this page is now empty, do one of two things: 1149 * If this page is now empty, do one of two things:
1150 * 1150 *
1151 * (1) If we have more pages than the page high water mark, 1151 * (1) If we have more pages than the page high water mark,
1152 * free the page back to the system. ONLY CONSIDER 1152 * free the page back to the system. ONLY CONSIDER
1153 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE 1153 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1154 * CLAIM. 1154 * CLAIM.
1155 * 1155 *
1156 * (2) Otherwise, move the page to the empty page list. 1156 * (2) Otherwise, move the page to the empty page list.
1157 * 1157 *
1158 * Either way, select a new current page (so we use a partially-full 1158 * Either way, select a new current page (so we use a partially-full
1159 * page if one is available). 1159 * page if one is available).
1160 */ 1160 */
1161 if (ph->ph_nmissing == 0) { 1161 if (ph->ph_nmissing == 0) {
1162 pp->pr_nidle++; 1162 pp->pr_nidle++;
1163 if (pp->pr_npages > pp->pr_minpages && 1163 if (pp->pr_npages > pp->pr_minpages &&
1164 pp->pr_npages > pp->pr_maxpages) { 1164 pp->pr_npages > pp->pr_maxpages) {
1165 pr_rmpage(pp, ph, pq); 1165 pr_rmpage(pp, ph, pq);
1166 } else { 1166 } else {
1167 LIST_REMOVE(ph, ph_pagelist); 1167 LIST_REMOVE(ph, ph_pagelist);
1168 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1168 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1169 1169
1170 /* 1170 /*
1171 * Update the timestamp on the page. A page must 1171 * Update the timestamp on the page. A page must
1172 * be idle for some period of time before it can 1172 * be idle for some period of time before it can
1173 * be reclaimed by the pagedaemon. This minimizes 1173 * be reclaimed by the pagedaemon. This minimizes
1174 * ping-pong'ing for memory. 1174 * ping-pong'ing for memory.
1175 * 1175 *
1176 * note for 64-bit time_t: truncating to 32-bit is not 1176 * note for 64-bit time_t: truncating to 32-bit is not
1177 * a problem for our usage. 1177 * a problem for our usage.
1178 */ 1178 */
1179 ph->ph_time = time_uptime; 1179 ph->ph_time = time_uptime;
1180 } 1180 }
1181 pool_update_curpage(pp); 1181 pool_update_curpage(pp);
1182 } 1182 }
1183 1183
1184 /* 1184 /*
1185 * If the page was previously completely full, move it to the 1185 * If the page was previously completely full, move it to the
1186 * partially-full list and make it the current page. The next 1186 * partially-full list and make it the current page. The next
1187 * allocation will get the item from this page, instead of 1187 * allocation will get the item from this page, instead of
1188 * further fragmenting the pool. 1188 * further fragmenting the pool.
1189 */ 1189 */
1190 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) { 1190 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1191 LIST_REMOVE(ph, ph_pagelist); 1191 LIST_REMOVE(ph, ph_pagelist);
1192 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist); 1192 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1193 pp->pr_curpage = ph; 1193 pp->pr_curpage = ph;
1194 } 1194 }
1195} 1195}
1196 1196
1197void 1197void
1198pool_put(struct pool *pp, void *v) 1198pool_put(struct pool *pp, void *v)
1199{ 1199{
1200 struct pool_pagelist pq; 1200 struct pool_pagelist pq;
1201 1201
1202 LIST_INIT(&pq); 1202 LIST_INIT(&pq);
1203 1203
1204 mutex_enter(&pp->pr_lock); 1204 mutex_enter(&pp->pr_lock);
1205 if (!pool_put_quarantine(pp, v, &pq)) { 1205 if (!pool_put_quarantine(pp, v, &pq)) {
1206 pool_do_put(pp, v, &pq); 1206 pool_do_put(pp, v, &pq);
1207 } 1207 }
1208 mutex_exit(&pp->pr_lock); 1208 mutex_exit(&pp->pr_lock);
1209 1209
1210 pr_pagelist_free(pp, &pq); 1210 pr_pagelist_free(pp, &pq);
1211} 1211}
1212 1212
1213/* 1213/*
1214 * pool_grow: grow a pool by a page. 1214 * pool_grow: grow a pool by a page.
1215 * 1215 *
1216 * => called with pool locked. 1216 * => called with pool locked.
1217 * => unlock and relock the pool. 1217 * => unlock and relock the pool.
1218 * => return with pool locked. 1218 * => return with pool locked.
1219 */ 1219 */
1220 1220
1221static int 1221static int
1222pool_grow(struct pool *pp, int flags) 1222pool_grow(struct pool *pp, int flags)
1223{ 1223{
1224 struct pool_item_header *ph; 1224 struct pool_item_header *ph;
1225 char *storage; 1225 char *storage;
1226 1226
1227 /* 1227 /*
1228 * If there's a pool_grow in progress, wait for it to complete 1228 * If there's a pool_grow in progress, wait for it to complete
1229 * and try again from the top. 1229 * and try again from the top.
1230 */ 1230 */
1231 if (pp->pr_flags & PR_GROWING) { 1231 if (pp->pr_flags & PR_GROWING) {
1232 if (flags & PR_WAITOK) { 1232 if (flags & PR_WAITOK) {
1233 do { 1233 do {
1234 cv_wait(&pp->pr_cv, &pp->pr_lock); 1234 cv_wait(&pp->pr_cv, &pp->pr_lock);
1235 } while (pp->pr_flags & PR_GROWING); 1235 } while (pp->pr_flags & PR_GROWING);
1236 return ERESTART; 1236 return ERESTART;
1237 } else { 1237 } else {
1238 if (pp->pr_flags & PR_GROWINGNOWAIT) { 1238 if (pp->pr_flags & PR_GROWINGNOWAIT) {
1239 /* 1239 /*
1240 * This needs an unlock/relock dance so 1240 * This needs an unlock/relock dance so
1241 * that the other caller has a chance to 1241 * that the other caller has a chance to
1242 * run and actually do the thing. Note 1242 * run and actually do the thing. Note
1243 * that this is effectively a busy-wait. 1243 * that this is effectively a busy-wait.
1244 */ 1244 */
1245 mutex_exit(&pp->pr_lock); 1245 mutex_exit(&pp->pr_lock);
1246 mutex_enter(&pp->pr_lock); 1246 mutex_enter(&pp->pr_lock);
1247 return ERESTART; 1247 return ERESTART;
1248 } 1248 }
1249 return EWOULDBLOCK; 1249 return EWOULDBLOCK;
1250 } 1250 }
1251 } 1251 }
1252 pp->pr_flags |= PR_GROWING; 1252 pp->pr_flags |= PR_GROWING;
1253 if (flags & PR_WAITOK) 1253 if (flags & PR_WAITOK)
1254 mutex_exit(&pp->pr_lock); 1254 mutex_exit(&pp->pr_lock);
1255 else 1255 else
1256 pp->pr_flags |= PR_GROWINGNOWAIT; 1256 pp->pr_flags |= PR_GROWINGNOWAIT;
1257 1257
1258 storage = pool_allocator_alloc(pp, flags); 1258 storage = pool_allocator_alloc(pp, flags);
1259 if (__predict_false(storage == NULL)) 1259 if (__predict_false(storage == NULL))
1260 goto out; 1260 goto out;
1261 1261
1262 ph = pool_alloc_item_header(pp, storage, flags); 1262 ph = pool_alloc_item_header(pp, storage, flags);
1263 if (__predict_false(ph == NULL)) { 1263 if (__predict_false(ph == NULL)) {
1264 pool_allocator_free(pp, storage); 1264 pool_allocator_free(pp, storage);
1265 goto out; 1265 goto out;
1266 } 1266 }
1267 1267
1268 if (flags & PR_WAITOK) 1268 if (flags & PR_WAITOK)
1269 mutex_enter(&pp->pr_lock); 1269 mutex_enter(&pp->pr_lock);
1270 pool_prime_page(pp, storage, ph); 1270 pool_prime_page(pp, storage, ph);
1271 pp->pr_npagealloc++; 1271 pp->pr_npagealloc++;
1272 KASSERT(pp->pr_flags & PR_GROWING); 1272 KASSERT(pp->pr_flags & PR_GROWING);
1273 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT); 1273 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1274 /* 1274 /*
1275 * If anyone was waiting for pool_grow, notify them that we 1275 * If anyone was waiting for pool_grow, notify them that we
1276 * may have just done it. 1276 * may have just done it.
1277 */ 1277 */
1278 cv_broadcast(&pp->pr_cv); 1278 cv_broadcast(&pp->pr_cv);
1279 return 0; 1279 return 0;
1280out: 1280out:
1281 if (flags & PR_WAITOK) 1281 if (flags & PR_WAITOK)
1282 mutex_enter(&pp->pr_lock); 1282 mutex_enter(&pp->pr_lock);
1283 KASSERT(pp->pr_flags & PR_GROWING); 1283 KASSERT(pp->pr_flags & PR_GROWING);
1284 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT); 1284 pp->pr_flags &= ~(PR_GROWING|PR_GROWINGNOWAIT);
1285 return ENOMEM; 1285 return ENOMEM;
1286} 1286}
1287 1287
1288/* 1288/*
1289 * Add N items to the pool. 1289 * Add N items to the pool.
1290 */ 1290 */
1291int 1291int
1292pool_prime(struct pool *pp, int n) 1292pool_prime(struct pool *pp, int n)
1293{ 1293{
1294 int newpages; 1294 int newpages;
1295 int error = 0; 1295 int error = 0;
1296 1296
1297 mutex_enter(&pp->pr_lock); 1297 mutex_enter(&pp->pr_lock);
1298 1298
1299 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1299 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1300 1300
1301 while (newpages > 0) { 1301 while (newpages > 0) {
1302 error = pool_grow(pp, PR_NOWAIT); 1302 error = pool_grow(pp, PR_NOWAIT);
1303 if (error) { 1303 if (error) {
1304 if (error == ERESTART) 1304 if (error == ERESTART)
1305 continue; 1305 continue;
1306 break; 1306 break;
1307 } 1307 }
1308 pp->pr_minpages++; 1308 pp->pr_minpages++;
1309 newpages--; 1309 newpages--;
1310 } 1310 }
1311 1311
1312 if (pp->pr_minpages >= pp->pr_maxpages) 1312 if (pp->pr_minpages >= pp->pr_maxpages)
1313 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */ 1313 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1314 1314
1315 mutex_exit(&pp->pr_lock); 1315 mutex_exit(&pp->pr_lock);
1316 return error; 1316 return error;
1317} 1317}
1318 1318
1319/* 1319/*
1320 * Add a page worth of items to the pool. 1320 * Add a page worth of items to the pool.
1321 * 1321 *
1322 * Note, we must be called with the pool descriptor LOCKED. 1322 * Note, we must be called with the pool descriptor LOCKED.
1323 */ 1323 */
1324static void 1324static void
1325pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph) 1325pool_prime_page(struct pool *pp, void *storage, struct pool_item_header *ph)
1326{ 1326{
1327 const unsigned int align = pp->pr_align; 1327 const unsigned int align = pp->pr_align;
1328 struct pool_item *pi; 1328 struct pool_item *pi;
1329 void *cp = storage; 1329 void *cp = storage;
1330 int n; 1330 int n;
1331 1331
1332 KASSERT(mutex_owned(&pp->pr_lock)); 1332 KASSERT(mutex_owned(&pp->pr_lock));
1333 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) || 1333 KASSERTMSG(((pp->pr_roflags & PR_NOALIGN) ||
1334 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)), 1334 (((uintptr_t)cp & (pp->pr_alloc->pa_pagesz - 1)) == 0)),
1335 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp); 1335 "%s: [%s] unaligned page: %p", __func__, pp->pr_wchan, cp);
1336 1336
1337 /* 1337 /*
1338 * Insert page header. 1338 * Insert page header.
1339 */ 1339 */
1340 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist); 1340 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1341 LIST_INIT(&ph->ph_itemlist); 1341 LIST_INIT(&ph->ph_itemlist);
1342 ph->ph_page = storage; 1342 ph->ph_page = storage;
1343 ph->ph_nmissing = 0; 1343 ph->ph_nmissing = 0;
1344 ph->ph_time = time_uptime; 1344 ph->ph_time = time_uptime;
1345 if (pp->pr_roflags & PR_PHINPAGE) 1345 if (pp->pr_roflags & PR_PHINPAGE)
1346 ph->ph_poolid = pp->pr_poolid; 1346 ph->ph_poolid = pp->pr_poolid;
1347 else 1347 else
1348 SPLAY_INSERT(phtree, &pp->pr_phtree, ph); 1348 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1349 1349
1350 pp->pr_nidle++; 1350 pp->pr_nidle++;
1351 1351
1352 /* 1352 /*
1353 * The item space starts after the on-page header, if any. 1353 * The item space starts after the on-page header, if any.
1354 */ 1354 */
1355 ph->ph_off = pp->pr_itemoffset; 1355 ph->ph_off = pp->pr_itemoffset;
1356 1356
1357 /* 1357 /*
1358 * Color this page. 1358 * Color this page.
1359 */ 1359 */
1360 ph->ph_off += pp->pr_curcolor; 1360 ph->ph_off += pp->pr_curcolor;
1361 cp = (char *)cp + ph->ph_off; 1361 cp = (char *)cp + ph->ph_off;
1362 if ((pp->pr_curcolor += align) > pp->pr_maxcolor) 1362 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1363 pp->pr_curcolor = 0; 1363 pp->pr_curcolor = 0;
1364 1364
1365 KASSERT((((vaddr_t)cp) & (align - 1)) == 0); 1365 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1366 1366
1367 /* 1367 /*
1368 * Insert remaining chunks on the bucket list. 1368 * Insert remaining chunks on the bucket list.
1369 */ 1369 */
1370 n = pp->pr_itemsperpage; 1370 n = pp->pr_itemsperpage;
1371 pp->pr_nitems += n; 1371 pp->pr_nitems += n;
1372 1372
1373 if (pp->pr_roflags & PR_USEBMAP) { 1373 if (pp->pr_roflags & PR_USEBMAP) {
1374 pr_item_bitmap_init(pp, ph); 1374 pr_item_bitmap_init(pp, ph);
1375 } else { 1375 } else {
1376 while (n--) { 1376 while (n--) {
1377 pi = (struct pool_item *)cp; 1377 pi = (struct pool_item *)cp;
1378 1378
1379 KASSERT((((vaddr_t)pi) & (align - 1)) == 0); 1379 KASSERT((((vaddr_t)pi) & (align - 1)) == 0);
1380 1380
1381 /* Insert on page list */ 1381 /* Insert on page list */
1382 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list); 1382 LIST_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1383#ifdef POOL_CHECK_MAGIC 1383#ifdef POOL_CHECK_MAGIC
1384 pi->pi_magic = PI_MAGIC; 1384 pi->pi_magic = PI_MAGIC;
1385#endif 1385#endif
1386 cp = (char *)cp + pp->pr_size; 1386 cp = (char *)cp + pp->pr_size;
1387 1387
1388 KASSERT((((vaddr_t)cp) & (align - 1)) == 0); 1388 KASSERT((((vaddr_t)cp) & (align - 1)) == 0);
1389 } 1389 }
1390 } 1390 }
1391 1391
1392 /* 1392 /*
1393 * If the pool was depleted, point at the new page. 1393 * If the pool was depleted, point at the new page.
1394 */ 1394 */
1395 if (pp->pr_curpage == NULL) 1395 if (pp->pr_curpage == NULL)
1396 pp->pr_curpage = ph; 1396 pp->pr_curpage = ph;
1397 1397
1398 if (++pp->pr_npages > pp->pr_hiwat) 1398 if (++pp->pr_npages > pp->pr_hiwat)
1399 pp->pr_hiwat = pp->pr_npages; 1399 pp->pr_hiwat = pp->pr_npages;
1400} 1400}
1401 1401
1402/* 1402/*
1403 * Used by pool_get() when nitems drops below the low water mark. This 1403 * Used by pool_get() when nitems drops below the low water mark. This
1404 * is used to catch up pr_nitems with the low water mark. 1404 * is used to catch up pr_nitems with the low water mark.
1405 * 1405 *
1406 * Note 1, we never wait for memory here, we let the caller decide what to do. 1406 * Note 1, we never wait for memory here, we let the caller decide what to do.
1407 * 1407 *
1408 * Note 2, we must be called with the pool already locked, and we return 1408 * Note 2, we must be called with the pool already locked, and we return
1409 * with it locked. 1409 * with it locked.
1410 */ 1410 */
1411static int 1411static int
1412pool_catchup(struct pool *pp) 1412pool_catchup(struct pool *pp)
1413{ 1413{
1414 int error = 0; 1414 int error = 0;
1415 1415
1416 while (POOL_NEEDS_CATCHUP(pp)) { 1416 while (POOL_NEEDS_CATCHUP(pp)) {
1417 error = pool_grow(pp, PR_NOWAIT); 1417 error = pool_grow(pp, PR_NOWAIT);
1418 if (error) { 1418 if (error) {
1419 if (error == ERESTART) 1419 if (error == ERESTART)
1420 continue; 1420 continue;
1421 break; 1421 break;
1422 } 1422 }
1423 } 1423 }
1424 return error; 1424 return error;
1425} 1425}
1426 1426
1427static void 1427static void
1428pool_update_curpage(struct pool *pp) 1428pool_update_curpage(struct pool *pp)
1429{ 1429{
1430 1430
1431 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages); 1431 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1432 if (pp->pr_curpage == NULL) { 1432 if (pp->pr_curpage == NULL) {
1433 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages); 1433 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1434 } 1434 }
1435 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) || 1435 KASSERT((pp->pr_curpage == NULL && pp->pr_nitems == 0) ||
1436 (pp->pr_curpage != NULL && pp->pr_nitems > 0)); 1436 (pp->pr_curpage != NULL && pp->pr_nitems > 0));
1437} 1437}
1438 1438
1439void 1439void
1440pool_setlowat(struct pool *pp, int n) 1440pool_setlowat(struct pool *pp, int n)
1441{ 1441{
1442 1442
1443 mutex_enter(&pp->pr_lock); 1443 mutex_enter(&pp->pr_lock);
1444 1444
1445 pp->pr_minitems = n; 1445 pp->pr_minitems = n;
1446 pp->pr_minpages = (n == 0) 1446 pp->pr_minpages = (n == 0)
1447 ? 0 1447 ? 0
1448 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1448 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1449 1449
1450 /* Make sure we're caught up with the newly-set low water mark. */ 1450 /* Make sure we're caught up with the newly-set low water mark. */
1451 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) { 1451 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1452 /* 1452 /*
1453 * XXX: Should we log a warning? Should we set up a timeout 1453 * XXX: Should we log a warning? Should we set up a timeout
1454 * to try again in a second or so? The latter could break 1454 * to try again in a second or so? The latter could break
1455 * a caller's assumptions about interrupt protection, etc. 1455 * a caller's assumptions about interrupt protection, etc.
1456 */ 1456 */
1457 } 1457 }
1458 1458
1459 mutex_exit(&pp->pr_lock); 1459 mutex_exit(&pp->pr_lock);
1460} 1460}
1461 1461
1462void 1462void
1463pool_sethiwat(struct pool *pp, int n) 1463pool_sethiwat(struct pool *pp, int n)
1464{ 1464{
1465 1465
1466 mutex_enter(&pp->pr_lock); 1466 mutex_enter(&pp->pr_lock);
1467 1467
1468 pp->pr_maxpages = (n == 0) 1468 pp->pr_maxpages = (n == 0)
1469 ? 0 1469 ? 0
1470 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1470 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1471 1471
1472 mutex_exit(&pp->pr_lock); 1472 mutex_exit(&pp->pr_lock);
1473} 1473}
1474 1474
1475void 1475void
1476pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap) 1476pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1477{ 1477{
1478 1478
1479 mutex_enter(&pp->pr_lock); 1479 mutex_enter(&pp->pr_lock);
1480 1480
1481 pp->pr_hardlimit = n; 1481 pp->pr_hardlimit = n;
1482 pp->pr_hardlimit_warning = warnmess; 1482 pp->pr_hardlimit_warning = warnmess;
1483 pp->pr_hardlimit_ratecap.tv_sec = ratecap; 1483 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1484 pp->pr_hardlimit_warning_last.tv_sec = 0; 1484 pp->pr_hardlimit_warning_last.tv_sec = 0;
1485 pp->pr_hardlimit_warning_last.tv_usec = 0; 1485 pp->pr_hardlimit_warning_last.tv_usec = 0;
1486 1486
1487 /* 1487 /*
1488 * In-line version of pool_sethiwat(), because we don't want to 1488 * In-line version of pool_sethiwat(), because we don't want to
1489 * release the lock. 1489 * release the lock.
1490 */ 1490 */
1491 pp->pr_maxpages = (n == 0) 1491 pp->pr_maxpages = (n == 0)
1492 ? 0 1492 ? 0
1493 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage; 1493 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1494 1494
1495 mutex_exit(&pp->pr_lock); 1495 mutex_exit(&pp->pr_lock);
1496} 1496}
1497 1497
1498/* 1498/*
1499 * Release all complete pages that have not been used recently. 1499 * Release all complete pages that have not been used recently.
1500 * 1500 *
1501 * Must not be called from interrupt context. 1501 * Must not be called from interrupt context.
1502 */ 1502 */
1503int 1503int
1504pool_reclaim(struct pool *pp) 1504pool_reclaim(struct pool *pp)
1505{ 1505{
1506 struct pool_item_header *ph, *phnext; 1506 struct pool_item_header *ph, *phnext;
1507 struct pool_pagelist pq; 1507 struct pool_pagelist pq;
1508 uint32_t curtime; 1508 uint32_t curtime;
1509 bool klock; 1509 bool klock;
1510 int rv; 1510 int rv;
1511 1511
1512 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 1512 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
1513 1513
1514 if (pp->pr_drain_hook != NULL) { 1514 if (pp->pr_drain_hook != NULL) {
1515 /* 1515 /*
1516 * The drain hook must be called with the pool unlocked. 1516 * The drain hook must be called with the pool unlocked.
1517 */ 1517 */
1518 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT); 1518 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1519 } 1519 }
1520 1520
1521 /* 1521 /*
1522 * XXXSMP Because we do not want to cause non-MPSAFE code 1522 * XXXSMP Because we do not want to cause non-MPSAFE code
1523 * to block. 1523 * to block.
1524 */ 1524 */
1525 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK || 1525 if (pp->pr_ipl == IPL_SOFTNET || pp->pr_ipl == IPL_SOFTCLOCK ||
1526 pp->pr_ipl == IPL_SOFTSERIAL) { 1526 pp->pr_ipl == IPL_SOFTSERIAL) {
1527 KERNEL_LOCK(1, NULL); 1527 KERNEL_LOCK(1, NULL);
1528 klock = true; 1528 klock = true;
1529 } else 1529 } else
1530 klock = false; 1530 klock = false;
1531 1531
1532 /* Reclaim items from the pool's cache (if any). */ 1532 /* Reclaim items from the pool's cache (if any). */
1533 if (pp->pr_cache != NULL) 1533 if (pp->pr_cache != NULL)
1534 pool_cache_invalidate(pp->pr_cache); 1534 pool_cache_invalidate(pp->pr_cache);
1535 1535
1536 if (mutex_tryenter(&pp->pr_lock) == 0) { 1536 if (mutex_tryenter(&pp->pr_lock) == 0) {
1537 if (klock) { 1537 if (klock) {
1538 KERNEL_UNLOCK_ONE(NULL); 1538 KERNEL_UNLOCK_ONE(NULL);
1539 } 1539 }
1540 return 0; 1540 return 0;
1541 } 1541 }
1542 1542
1543 LIST_INIT(&pq); 1543 LIST_INIT(&pq);
1544 1544
1545 curtime = time_uptime; 1545 curtime = time_uptime;
1546 1546
1547 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) { 1547 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1548 phnext = LIST_NEXT(ph, ph_pagelist); 1548 phnext = LIST_NEXT(ph, ph_pagelist);
1549 1549
1550 /* Check our minimum page claim */ 1550 /* Check our minimum page claim */
1551 if (pp->pr_npages <= pp->pr_minpages) 1551 if (pp->pr_npages <= pp->pr_minpages)
1552 break; 1552 break;
1553 1553
1554 KASSERT(ph->ph_nmissing == 0); 1554 KASSERT(ph->ph_nmissing == 0);
1555 if (curtime - ph->ph_time < pool_inactive_time) 1555 if (curtime - ph->ph_time < pool_inactive_time)
1556 continue; 1556 continue;
1557 1557
1558 /* 1558 /*
1559 * If freeing this page would put us below 1559 * If freeing this page would put us below
1560 * the low water mark, stop now. 1560 * the low water mark, stop now.
1561 */ 1561 */
1562 if ((pp->pr_nitems - pp->pr_itemsperpage) < 1562 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1563 pp->pr_minitems) 1563 pp->pr_minitems)
1564 break; 1564 break;
1565 1565
1566 pr_rmpage(pp, ph, &pq); 1566 pr_rmpage(pp, ph, &pq);
1567 } 1567 }
1568 1568
1569 mutex_exit(&pp->pr_lock); 1569 mutex_exit(&pp->pr_lock);
1570 1570
1571 if (LIST_EMPTY(&pq)) 1571 if (LIST_EMPTY(&pq))
1572 rv = 0; 1572 rv = 0;
1573 else { 1573 else {
1574 pr_pagelist_free(pp, &pq); 1574 pr_pagelist_free(pp, &pq);
1575 rv = 1; 1575 rv = 1;
1576 } 1576 }
1577 1577
1578 if (klock) { 1578 if (klock) {
1579 KERNEL_UNLOCK_ONE(NULL); 1579 KERNEL_UNLOCK_ONE(NULL);
1580 } 1580 }
1581 1581
1582 return rv; 1582 return rv;
1583} 1583}
1584 1584
1585/* 1585/*
1586 * Drain pools, one at a time. The drained pool is returned within ppp. 1586 * Drain pools, one at a time. The drained pool is returned within ppp.
1587 * 1587 *
1588 * Note, must never be called from interrupt context. 1588 * Note, must never be called from interrupt context.
1589 */ 1589 */
1590bool 1590bool
1591pool_drain(struct pool **ppp) 1591pool_drain(struct pool **ppp)
1592{ 1592{
1593 bool reclaimed; 1593 bool reclaimed;
1594 struct pool *pp; 1594 struct pool *pp;
1595 1595
1596 KASSERT(!TAILQ_EMPTY(&pool_head)); 1596 KASSERT(!TAILQ_EMPTY(&pool_head));
1597 1597
1598 pp = NULL; 1598 pp = NULL;
1599 1599
1600 /* Find next pool to drain, and add a reference. */ 1600 /* Find next pool to drain, and add a reference. */
1601 mutex_enter(&pool_head_lock); 1601 mutex_enter(&pool_head_lock);
1602 do { 1602 do {
1603 if (drainpp == NULL) { 1603 if (drainpp == NULL) {
1604 drainpp = TAILQ_FIRST(&pool_head); 1604 drainpp = TAILQ_FIRST(&pool_head);
1605 } 1605 }
1606 if (drainpp != NULL) { 1606 if (drainpp != NULL) {
1607 pp = drainpp; 1607 pp = drainpp;
1608 drainpp = TAILQ_NEXT(pp, pr_poollist); 1608 drainpp = TAILQ_NEXT(pp, pr_poollist);
1609 } 1609 }
1610 /* 1610 /*
1611 * Skip completely idle pools. We depend on at least 1611 * Skip completely idle pools. We depend on at least
1612 * one pool in the system being active. 1612 * one pool in the system being active.
1613 */ 1613 */
1614 } while (pp == NULL || pp->pr_npages == 0); 1614 } while (pp == NULL || pp->pr_npages == 0);
1615 pp->pr_refcnt++; 1615 pp->pr_refcnt++;
1616 mutex_exit(&pool_head_lock); 1616 mutex_exit(&pool_head_lock);
1617 1617
1618 /* Drain the cache (if any) and pool.. */ 1618 /* Drain the cache (if any) and pool.. */
1619 reclaimed = pool_reclaim(pp); 1619 reclaimed = pool_reclaim(pp);
1620 1620
1621 /* Finally, unlock the pool. */ 1621 /* Finally, unlock the pool. */
1622 mutex_enter(&pool_head_lock); 1622 mutex_enter(&pool_head_lock);
1623 pp->pr_refcnt--; 1623 pp->pr_refcnt--;
1624 cv_broadcast(&pool_busy); 1624 cv_broadcast(&pool_busy);
1625 mutex_exit(&pool_head_lock); 1625 mutex_exit(&pool_head_lock);
1626 1626
1627 if (ppp != NULL) 1627 if (ppp != NULL)
1628 *ppp = pp; 1628 *ppp = pp;
1629 1629
1630 return reclaimed; 1630 return reclaimed;
1631} 1631}
1632 1632
1633/* 1633/*
1634 * Calculate the total number of pages consumed by pools. 1634 * Calculate the total number of pages consumed by pools.
1635 */ 1635 */
1636int 1636int
1637pool_totalpages(void) 1637pool_totalpages(void)
1638{ 1638{
1639 1639
1640 mutex_enter(&pool_head_lock); 1640 mutex_enter(&pool_head_lock);
1641 int pages = pool_totalpages_locked(); 1641 int pages = pool_totalpages_locked();
1642 mutex_exit(&pool_head_lock); 1642 mutex_exit(&pool_head_lock);
1643 1643
1644 return pages; 1644 return pages;
1645} 1645}
1646 1646
1647int 1647int
1648pool_totalpages_locked(void) 1648pool_totalpages_locked(void)
1649{ 1649{
1650 struct pool *pp; 1650 struct pool *pp;
1651 uint64_t total = 0; 1651 uint64_t total = 0;
1652 1652
1653 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1653 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1654 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz; 1654 uint64_t bytes = pp->pr_npages * pp->pr_alloc->pa_pagesz;
1655 1655
1656 if ((pp->pr_roflags & PR_RECURSIVE) != 0) 1656 if ((pp->pr_roflags & PR_RECURSIVE) != 0)
1657 bytes -= (pp->pr_nout * pp->pr_size); 1657 bytes -= (pp->pr_nout * pp->pr_size);
1658 total += bytes; 1658 total += bytes;
1659 } 1659 }
1660 1660
1661 return atop(total); 1661 return atop(total);
1662} 1662}
1663 1663
1664/* 1664/*
1665 * Diagnostic helpers. 1665 * Diagnostic helpers.
1666 */ 1666 */
1667 1667
1668void 1668void
1669pool_printall(const char *modif, void (*pr)(const char *, ...)) 1669pool_printall(const char *modif, void (*pr)(const char *, ...))
1670{ 1670{
1671 struct pool *pp; 1671 struct pool *pp;
1672 1672
1673 TAILQ_FOREACH(pp, &pool_head, pr_poollist) { 1673 TAILQ_FOREACH(pp, &pool_head, pr_poollist) {
1674 pool_printit(pp, modif, pr); 1674 pool_printit(pp, modif, pr);
1675 } 1675 }
1676} 1676}
1677 1677
1678void 1678void
1679pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1679pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1680{ 1680{
1681 1681
1682 if (pp == NULL) { 1682 if (pp == NULL) {
1683 (*pr)("Must specify a pool to print.\n"); 1683 (*pr)("Must specify a pool to print.\n");
1684 return; 1684 return;
1685 } 1685 }
1686 1686
1687 pool_print1(pp, modif, pr); 1687 pool_print1(pp, modif, pr);
1688} 1688}
1689 1689
1690static void 1690static void
1691pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl, 1691pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1692 void (*pr)(const char *, ...)) 1692 void (*pr)(const char *, ...))
1693{ 1693{
1694 struct pool_item_header *ph; 1694 struct pool_item_header *ph;
1695 1695
1696 LIST_FOREACH(ph, pl, ph_pagelist) { 1696 LIST_FOREACH(ph, pl, ph_pagelist) {
1697 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n", 1697 (*pr)("\t\tpage %p, nmissing %d, time %" PRIu32 "\n",
1698 ph->ph_page, ph->ph_nmissing, ph->ph_time); 1698 ph->ph_page, ph->ph_nmissing, ph->ph_time);
1699#ifdef POOL_CHECK_MAGIC 1699#ifdef POOL_CHECK_MAGIC
1700 struct pool_item *pi; 1700 struct pool_item *pi;
1701 if (!(pp->pr_roflags & PR_USEBMAP)) { 1701 if (!(pp->pr_roflags & PR_USEBMAP)) {
1702 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) { 1702 LIST_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1703 if (pi->pi_magic != PI_MAGIC) { 1703 if (pi->pi_magic != PI_MAGIC) {
1704 (*pr)("\t\t\titem %p, magic 0x%x\n", 1704 (*pr)("\t\t\titem %p, magic 0x%x\n",
1705 pi, pi->pi_magic); 1705 pi, pi->pi_magic);
1706 } 1706 }
1707 } 1707 }
1708 } 1708 }
1709#endif 1709#endif
1710 } 1710 }
1711} 1711}
1712 1712
1713static void 1713static void
1714pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...)) 1714pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1715{ 1715{
1716 struct pool_item_header *ph; 1716 struct pool_item_header *ph;
1717 pool_cache_t pc; 1717 pool_cache_t pc;
1718 pcg_t *pcg; 1718 pcg_t *pcg;
1719 pool_cache_cpu_t *cc; 1719 pool_cache_cpu_t *cc;
1720 uint64_t cpuhit, cpumiss; 1720 uint64_t cpuhit, cpumiss;
1721 int i, print_log = 0, print_pagelist = 0, print_cache = 0; 1721 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1722 char c; 1722 char c;
1723 1723
1724 while ((c = *modif++) != '\0') { 1724 while ((c = *modif++) != '\0') {
1725 if (c == 'l') 1725 if (c == 'l')
1726 print_log = 1; 1726 print_log = 1;
1727 if (c == 'p') 1727 if (c == 'p')
1728 print_pagelist = 1; 1728 print_pagelist = 1;
1729 if (c == 'c') 1729 if (c == 'c')
1730 print_cache = 1; 1730 print_cache = 1;
1731 } 1731 }
1732 1732
1733 if ((pc = pp->pr_cache) != NULL) { 1733 if ((pc = pp->pr_cache) != NULL) {
1734 (*pr)("POOL CACHE"); 1734 (*pr)("POOL CACHE");
1735 } else { 1735 } else {
1736 (*pr)("POOL"); 1736 (*pr)("POOL");
1737 } 1737 }
1738 1738
1739 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n", 1739 (*pr)(" %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1740 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset, 1740 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1741 pp->pr_roflags); 1741 pp->pr_roflags);
1742 (*pr)("\talloc %p\n", pp->pr_alloc); 1742 (*pr)("\talloc %p\n", pp->pr_alloc);
1743 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n", 1743 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1744 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages); 1744 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1745 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n", 1745 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1746 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit); 1746 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1747 1747
1748 (*pr)("\tnget %lu, nfail %lu, nput %lu\n", 1748 (*pr)("\tnget %lu, nfail %lu, nput %lu\n",
1749 pp->pr_nget, pp->pr_nfail, pp->pr_nput); 1749 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1750 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n", 1750 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1751 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle); 1751 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1752 1752
1753 if (print_pagelist == 0) 1753 if (print_pagelist == 0)
1754 goto skip_pagelist; 1754 goto skip_pagelist;
1755 1755
1756 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL) 1756 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1757 (*pr)("\n\tempty page list:\n"); 1757 (*pr)("\n\tempty page list:\n");
1758 pool_print_pagelist(pp, &pp->pr_emptypages, pr); 1758 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1759 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL) 1759 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1760 (*pr)("\n\tfull page list:\n"); 1760 (*pr)("\n\tfull page list:\n");
1761 pool_print_pagelist(pp, &pp->pr_fullpages, pr); 1761 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1762 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL) 1762 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1763 (*pr)("\n\tpartial-page list:\n"); 1763 (*pr)("\n\tpartial-page list:\n");
1764 pool_print_pagelist(pp, &pp->pr_partpages, pr); 1764 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1765 1765
1766 if (pp->pr_curpage == NULL) 1766 if (pp->pr_curpage == NULL)
1767 (*pr)("\tno current page\n"); 1767 (*pr)("\tno current page\n");
1768 else 1768 else
1769 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page); 1769 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1770 1770
1771 skip_pagelist: 1771 skip_pagelist:
1772 if (print_log == 0) 1772 if (print_log == 0)
1773 goto skip_log; 1773 goto skip_log;
1774 1774
1775 (*pr)("\n"); 1775 (*pr)("\n");
1776 1776
1777 skip_log: 1777 skip_log:
1778 1778
1779#define PR_GROUPLIST(pcg) \ 1779#define PR_GROUPLIST(pcg) \
1780 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \ 1780 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail); \
1781 for (i = 0; i < pcg->pcg_size; i++) { \ 1781 for (i = 0; i < pcg->pcg_size; i++) { \
1782 if (pcg->pcg_objects[i].pcgo_pa != \ 1782 if (pcg->pcg_objects[i].pcgo_pa != \
1783 POOL_PADDR_INVALID) { \ 1783 POOL_PADDR_INVALID) { \
1784 (*pr)("\t\t\t%p, 0x%llx\n", \ 1784 (*pr)("\t\t\t%p, 0x%llx\n", \
1785 pcg->pcg_objects[i].pcgo_va, \ 1785 pcg->pcg_objects[i].pcgo_va, \
1786 (unsigned long long) \ 1786 (unsigned long long) \
1787 pcg->pcg_objects[i].pcgo_pa); \ 1787 pcg->pcg_objects[i].pcgo_pa); \
1788 } else { \ 1788 } else { \
1789 (*pr)("\t\t\t%p\n", \ 1789 (*pr)("\t\t\t%p\n", \
1790 pcg->pcg_objects[i].pcgo_va); \ 1790 pcg->pcg_objects[i].pcgo_va); \
1791 } \ 1791 } \
1792 } 1792 }
1793 1793
1794 if (pc != NULL) { 1794 if (pc != NULL) {
1795 cpuhit = 0; 1795 cpuhit = 0;
1796 cpumiss = 0; 1796 cpumiss = 0;
1797 for (i = 0; i < __arraycount(pc->pc_cpus); i++) { 1797 for (i = 0; i < __arraycount(pc->pc_cpus); i++) {
1798 if ((cc = pc->pc_cpus[i]) == NULL) 1798 if ((cc = pc->pc_cpus[i]) == NULL)
1799 continue; 1799 continue;
1800 cpuhit += cc->cc_hits; 1800 cpuhit += cc->cc_hits;
1801 cpumiss += cc->cc_misses; 1801 cpumiss += cc->cc_misses;
1802 } 1802 }
1803 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss); 1803 (*pr)("\tcpu layer hits %llu misses %llu\n", cpuhit, cpumiss);
1804 (*pr)("\tcache layer hits %llu misses %llu\n", 1804 (*pr)("\tcache layer hits %llu misses %llu\n",
1805 pc->pc_hits, pc->pc_misses); 1805 pc->pc_hits, pc->pc_misses);
1806 (*pr)("\tcache layer entry uncontended %llu contended %llu\n", 1806 (*pr)("\tcache layer entry uncontended %llu contended %llu\n",
1807 pc->pc_hits + pc->pc_misses - pc->pc_contended, 1807 pc->pc_hits + pc->pc_misses - pc->pc_contended,
1808 pc->pc_contended); 1808 pc->pc_contended);
1809 (*pr)("\tcache layer empty groups %u full groups %u\n", 1809 (*pr)("\tcache layer empty groups %u full groups %u\n",
1810 pc->pc_nempty, pc->pc_nfull); 1810 pc->pc_nempty, pc->pc_nfull);
1811 if (print_cache) { 1811 if (print_cache) {
1812 (*pr)("\tfull cache groups:\n"); 1812 (*pr)("\tfull cache groups:\n");
1813 for (pcg = pc->pc_fullgroups; pcg != NULL; 1813 for (pcg = pc->pc_fullgroups; pcg != NULL;
1814 pcg = pcg->pcg_next) { 1814 pcg = pcg->pcg_next) {
1815 PR_GROUPLIST(pcg); 1815 PR_GROUPLIST(pcg);
1816 } 1816 }
1817 (*pr)("\tempty cache groups:\n"); 1817 (*pr)("\tempty cache groups:\n");
1818 for (pcg = pc->pc_emptygroups; pcg != NULL; 1818 for (pcg = pc->pc_emptygroups; pcg != NULL;
1819 pcg = pcg->pcg_next) { 1819 pcg = pcg->pcg_next) {
1820 PR_GROUPLIST(pcg); 1820 PR_GROUPLIST(pcg);
1821 } 1821 }
1822 } 1822 }
1823 } 1823 }
1824#undef PR_GROUPLIST 1824#undef PR_GROUPLIST
1825} 1825}
1826 1826
1827static int 1827static int
1828pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph) 1828pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1829{ 1829{
1830 struct pool_item *pi; 1830 struct pool_item *pi;
1831 void *page; 1831 void *page;
1832 int n; 1832 int n;
1833 1833
1834 if ((pp->pr_roflags & PR_NOALIGN) == 0) { 1834 if ((pp->pr_roflags & PR_NOALIGN) == 0) {
1835 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask); 1835 page = (void *)((uintptr_t)ph & pp->pr_alloc->pa_pagemask);
1836 if (page != ph->ph_page && 1836 if (page != ph->ph_page &&
1837 (pp->pr_roflags & PR_PHINPAGE) != 0) { 1837 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1838 if (label != NULL) 1838 if (label != NULL)
1839 printf("%s: ", label); 1839 printf("%s: ", label);
1840 printf("pool(%p:%s): page inconsistency: page %p;" 1840 printf("pool(%p:%s): page inconsistency: page %p;"
1841 " at page head addr %p (p %p)\n", pp, 1841 " at page head addr %p (p %p)\n", pp,
1842 pp->pr_wchan, ph->ph_page, 1842 pp->pr_wchan, ph->ph_page,
1843 ph, page); 1843 ph, page);
1844 return 1; 1844 return 1;
1845 } 1845 }
1846 } 1846 }
1847 1847
1848 if ((pp->pr_roflags & PR_USEBMAP) != 0) 1848 if ((pp->pr_roflags & PR_USEBMAP) != 0)
1849 return 0; 1849 return 0;
1850 1850
1851 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0; 1851 for (pi = LIST_FIRST(&ph->ph_itemlist), n = 0;
1852 pi != NULL; 1852 pi != NULL;
1853 pi = LIST_NEXT(pi,pi_list), n++) { 1853 pi = LIST_NEXT(pi,pi_list), n++) {
1854 1854
1855#ifdef POOL_CHECK_MAGIC 1855#ifdef POOL_CHECK_MAGIC
1856 if (pi->pi_magic != PI_MAGIC) { 1856 if (pi->pi_magic != PI_MAGIC) {
1857 if (label != NULL) 1857 if (label != NULL)
1858 printf("%s: ", label); 1858 printf("%s: ", label);
1859 printf("pool(%s): free list modified: magic=%x;" 1859 printf("pool(%s): free list modified: magic=%x;"
1860 " page %p; item ordinal %d; addr %p\n", 1860 " page %p; item ordinal %d; addr %p\n",
1861 pp->pr_wchan, pi->pi_magic, ph->ph_page, 1861 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1862 n, pi); 1862 n, pi);
1863 panic("pool"); 1863 panic("pool");
1864 } 1864 }
1865#endif 1865#endif
1866 if ((pp->pr_roflags & PR_NOALIGN) != 0) { 1866 if ((pp->pr_roflags & PR_NOALIGN) != 0) {
1867 continue; 1867 continue;
1868 } 1868 }
1869 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask); 1869 page = (void *)((uintptr_t)pi & pp->pr_alloc->pa_pagemask);
1870 if (page == ph->ph_page) 1870 if (page == ph->ph_page)
1871 continue; 1871 continue;
1872 1872
1873 if (label != NULL) 1873 if (label != NULL)
1874 printf("%s: ", label); 1874 printf("%s: ", label);
1875 printf("pool(%p:%s): page inconsistency: page %p;" 1875 printf("pool(%p:%s): page inconsistency: page %p;"
1876 " item ordinal %d; addr %p (p %p)\n", pp, 1876 " item ordinal %d; addr %p (p %p)\n", pp,
1877 pp->pr_wchan, ph->ph_page, 1877 pp->pr_wchan, ph->ph_page,
1878 n, pi, page); 1878 n, pi, page);
1879 return 1; 1879 return 1;
1880 } 1880 }
1881 return 0; 1881 return 0;
1882} 1882}
1883 1883
1884 1884
1885int 1885int
1886pool_chk(struct pool *pp, const char *label) 1886pool_chk(struct pool *pp, const char *label)
1887{ 1887{
1888 struct pool_item_header *ph; 1888 struct pool_item_header *ph;
1889 int r = 0; 1889 int r = 0;
1890 1890
1891 mutex_enter(&pp->pr_lock); 1891 mutex_enter(&pp->pr_lock);
1892 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) { 1892 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1893 r = pool_chk_page(pp, label, ph); 1893 r = pool_chk_page(pp, label, ph);
1894 if (r) { 1894 if (r) {
1895 goto out; 1895 goto out;
1896 } 1896 }
1897 } 1897 }
1898 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) { 1898 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1899 r = pool_chk_page(pp, label, ph); 1899 r = pool_chk_page(pp, label, ph);
1900 if (r) { 1900 if (r) {
1901 goto out; 1901 goto out;
1902 } 1902 }
1903 } 1903 }
1904 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) { 1904 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1905 r = pool_chk_page(pp, label, ph); 1905 r = pool_chk_page(pp, label, ph);
1906 if (r) { 1906 if (r) {
1907 goto out; 1907 goto out;
1908 } 1908 }
1909 } 1909 }
1910 1910
1911out: 1911out:
1912 mutex_exit(&pp->pr_lock); 1912 mutex_exit(&pp->pr_lock);
1913 return r; 1913 return r;
1914} 1914}
1915 1915
1916/* 1916/*
1917 * pool_cache_init: 1917 * pool_cache_init:
1918 * 1918 *
1919 * Initialize a pool cache. 1919 * Initialize a pool cache.
1920 */ 1920 */
1921pool_cache_t 1921pool_cache_t
1922pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags, 1922pool_cache_init(size_t size, u_int align, u_int align_offset, u_int flags,
1923 const char *wchan, struct pool_allocator *palloc, int ipl, 1923 const char *wchan, struct pool_allocator *palloc, int ipl,
1924 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg) 1924 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), void *arg)
1925{ 1925{
1926 pool_cache_t pc; 1926 pool_cache_t pc;
1927 1927
1928 pc = pool_get(&cache_pool, PR_WAITOK); 1928 pc = pool_get(&cache_pool, PR_WAITOK);
1929 if (pc == NULL) 1929 if (pc == NULL)
1930 return NULL; 1930 return NULL;
1931 1931
1932 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan, 1932 pool_cache_bootstrap(pc, size, align, align_offset, flags, wchan,
1933 palloc, ipl, ctor, dtor, arg); 1933 palloc, ipl, ctor, dtor, arg);
1934 1934
1935 return pc; 1935 return pc;
1936} 1936}
1937 1937
1938/* 1938/*
1939 * pool_cache_bootstrap: 1939 * pool_cache_bootstrap:
1940 * 1940 *
1941 * Kernel-private version of pool_cache_init(). The caller 1941 * Kernel-private version of pool_cache_init(). The caller
1942 * provides initial storage. 1942 * provides initial storage.
1943 */ 1943 */
1944void 1944void
1945pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align, 1945pool_cache_bootstrap(pool_cache_t pc, size_t size, u_int align,
1946 u_int align_offset, u_int flags, const char *wchan, 1946 u_int align_offset, u_int flags, const char *wchan,
1947 struct pool_allocator *palloc, int ipl, 1947 struct pool_allocator *palloc, int ipl,
1948 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *), 1948 int (*ctor)(void *, void *, int), void (*dtor)(void *, void *),
1949 void *arg) 1949 void *arg)
1950{ 1950{
1951 CPU_INFO_ITERATOR cii; 1951 CPU_INFO_ITERATOR cii;
1952 pool_cache_t pc1; 1952 pool_cache_t pc1;
1953 struct cpu_info *ci; 1953 struct cpu_info *ci;
1954 struct pool *pp; 1954 struct pool *pp;
1955 1955
1956 pp = &pc->pc_pool; 1956 pp = &pc->pc_pool;
1957 if (palloc == NULL && ipl == IPL_NONE) { 1957 if (palloc == NULL && ipl == IPL_NONE) {
1958 if (size > PAGE_SIZE) { 1958 if (size > PAGE_SIZE) {
1959 int bigidx = pool_bigidx(size); 1959 int bigidx = pool_bigidx(size);
1960 1960
1961 palloc = &pool_allocator_big[bigidx]; 1961 palloc = &pool_allocator_big[bigidx];
 1962 flags |= PR_NOALIGN;
1962 } else 1963 } else
1963 palloc = &pool_allocator_nointr; 1964 palloc = &pool_allocator_nointr;
1964 } 1965 }
1965 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl); 1966 pool_init(pp, size, align, align_offset, flags, wchan, palloc, ipl);
1966 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl); 1967 mutex_init(&pc->pc_lock, MUTEX_DEFAULT, ipl);
1967 1968
1968 if (ctor == NULL) { 1969 if (ctor == NULL) {
1969 ctor = (int (*)(void *, void *, int))nullop; 1970 ctor = (int (*)(void *, void *, int))nullop;
1970 } 1971 }
1971 if (dtor == NULL) { 1972 if (dtor == NULL) {
1972 dtor = (void (*)(void *, void *))nullop; 1973 dtor = (void (*)(void *, void *))nullop;
1973 } 1974 }
1974 1975
1975 pc->pc_emptygroups = NULL; 1976 pc->pc_emptygroups = NULL;
1976 pc->pc_fullgroups = NULL; 1977 pc->pc_fullgroups = NULL;
1977 pc->pc_partgroups = NULL; 1978 pc->pc_partgroups = NULL;
1978 pc->pc_ctor = ctor; 1979 pc->pc_ctor = ctor;
1979 pc->pc_dtor = dtor; 1980 pc->pc_dtor = dtor;
1980 pc->pc_arg = arg; 1981 pc->pc_arg = arg;
1981 pc->pc_hits = 0; 1982 pc->pc_hits = 0;
1982 pc->pc_misses = 0; 1983 pc->pc_misses = 0;
1983 pc->pc_nempty = 0; 1984 pc->pc_nempty = 0;
1984 pc->pc_npart = 0; 1985 pc->pc_npart = 0;
1985 pc->pc_nfull = 0; 1986 pc->pc_nfull = 0;
1986 pc->pc_contended = 0; 1987 pc->pc_contended = 0;
1987 pc->pc_refcnt = 0; 1988 pc->pc_refcnt = 0;
1988 pc->pc_freecheck = NULL; 1989 pc->pc_freecheck = NULL;
1989 1990
1990 if ((flags & PR_LARGECACHE) != 0) { 1991 if ((flags & PR_LARGECACHE) != 0) {
1991 pc->pc_pcgsize = PCG_NOBJECTS_LARGE; 1992 pc->pc_pcgsize = PCG_NOBJECTS_LARGE;
1992 pc->pc_pcgpool = &pcg_large_pool; 1993 pc->pc_pcgpool = &pcg_large_pool;
1993 } else { 1994 } else {
1994 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL; 1995 pc->pc_pcgsize = PCG_NOBJECTS_NORMAL;
1995 pc->pc_pcgpool = &pcg_normal_pool; 1996 pc->pc_pcgpool = &pcg_normal_pool;
1996 } 1997 }
1997 1998
1998 /* Allocate per-CPU caches. */ 1999 /* Allocate per-CPU caches. */
1999 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus)); 2000 memset(pc->pc_cpus, 0, sizeof(pc->pc_cpus));
2000 pc->pc_ncpu = 0; 2001 pc->pc_ncpu = 0;
2001 if (ncpu < 2) { 2002 if (ncpu < 2) {
2002 /* XXX For sparc: boot CPU is not attached yet. */ 2003 /* XXX For sparc: boot CPU is not attached yet. */
2003 pool_cache_cpu_init1(curcpu(), pc); 2004 pool_cache_cpu_init1(curcpu(), pc);
2004 } else { 2005 } else {
2005 for (CPU_INFO_FOREACH(cii, ci)) { 2006 for (CPU_INFO_FOREACH(cii, ci)) {
2006 pool_cache_cpu_init1(ci, pc); 2007 pool_cache_cpu_init1(ci, pc);
2007 } 2008 }
2008 } 2009 }
2009 2010
2010 /* Add to list of all pools. */ 2011 /* Add to list of all pools. */
2011 if (__predict_true(!cold)) 2012 if (__predict_true(!cold))
2012 mutex_enter(&pool_head_lock); 2013 mutex_enter(&pool_head_lock);
2013 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) { 2014 TAILQ_FOREACH(pc1, &pool_cache_head, pc_cachelist) {
2014 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0) 2015 if (strcmp(pc1->pc_pool.pr_wchan, pc->pc_pool.pr_wchan) > 0)
2015 break; 2016 break;
2016 } 2017 }
2017 if (pc1 == NULL) 2018 if (pc1 == NULL)
2018 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist); 2019 TAILQ_INSERT_TAIL(&pool_cache_head, pc, pc_cachelist);
2019 else 2020 else
2020 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist); 2021 TAILQ_INSERT_BEFORE(pc1, pc, pc_cachelist);
2021 if (__predict_true(!cold)) 2022 if (__predict_true(!cold))
2022 mutex_exit(&pool_head_lock); 2023 mutex_exit(&pool_head_lock);
2023 2024
2024 membar_sync(); 2025 membar_sync();
2025 pp->pr_cache = pc; 2026 pp->pr_cache = pc;
2026} 2027}
2027 2028
2028/* 2029/*
2029 * pool_cache_destroy: 2030 * pool_cache_destroy:
2030 * 2031 *
2031 * Destroy a pool cache. 2032 * Destroy a pool cache.
2032 */ 2033 */
2033void 2034void
2034pool_cache_destroy(pool_cache_t pc) 2035pool_cache_destroy(pool_cache_t pc)
2035{ 2036{
2036 2037
2037 pool_cache_bootstrap_destroy(pc); 2038 pool_cache_bootstrap_destroy(pc);
2038 pool_put(&cache_pool, pc); 2039 pool_put(&cache_pool, pc);
2039} 2040}
2040 2041
2041/* 2042/*
2042 * pool_cache_bootstrap_destroy: 2043 * pool_cache_bootstrap_destroy:
2043 * 2044 *
2044 * Destroy a pool cache. 2045 * Destroy a pool cache.
2045 */ 2046 */
2046void 2047void
2047pool_cache_bootstrap_destroy(pool_cache_t pc) 2048pool_cache_bootstrap_destroy(pool_cache_t pc)
2048{ 2049{
2049 struct pool *pp = &pc->pc_pool; 2050 struct pool *pp = &pc->pc_pool;
2050 u_int i; 2051 u_int i;
2051 2052
2052 /* Remove it from the global list. */ 2053 /* Remove it from the global list. */
2053 mutex_enter(&pool_head_lock); 2054 mutex_enter(&pool_head_lock);
2054 while (pc->pc_refcnt != 0) 2055 while (pc->pc_refcnt != 0)
2055 cv_wait(&pool_busy, &pool_head_lock); 2056 cv_wait(&pool_busy, &pool_head_lock);
2056 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist); 2057 TAILQ_REMOVE(&pool_cache_head, pc, pc_cachelist);
2057 mutex_exit(&pool_head_lock); 2058 mutex_exit(&pool_head_lock);
2058 2059
2059 /* First, invalidate the entire cache. */ 2060 /* First, invalidate the entire cache. */
2060 pool_cache_invalidate(pc); 2061 pool_cache_invalidate(pc);
2061 2062
2062 /* Disassociate it from the pool. */ 2063 /* Disassociate it from the pool. */
2063 mutex_enter(&pp->pr_lock); 2064 mutex_enter(&pp->pr_lock);
2064 pp->pr_cache = NULL; 2065 pp->pr_cache = NULL;
2065 mutex_exit(&pp->pr_lock); 2066 mutex_exit(&pp->pr_lock);
2066 2067
2067 /* Destroy per-CPU data */ 2068 /* Destroy per-CPU data */
2068 for (i = 0; i < __arraycount(pc->pc_cpus); i++) 2069 for (i = 0; i < __arraycount(pc->pc_cpus); i++)
2069 pool_cache_invalidate_cpu(pc, i); 2070 pool_cache_invalidate_cpu(pc, i);
2070 2071
2071 /* Finally, destroy it. */ 2072 /* Finally, destroy it. */
2072 mutex_destroy(&pc->pc_lock); 2073 mutex_destroy(&pc->pc_lock);
2073 pool_destroy(pp); 2074 pool_destroy(pp);
2074} 2075}
2075 2076
2076/* 2077/*
2077 * pool_cache_cpu_init1: 2078 * pool_cache_cpu_init1:
2078 * 2079 *
2079 * Called for each pool_cache whenever a new CPU is attached. 2080 * Called for each pool_cache whenever a new CPU is attached.
2080 */ 2081 */
2081static void 2082static void
2082pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc) 2083pool_cache_cpu_init1(struct cpu_info *ci, pool_cache_t pc)
2083{ 2084{
2084 pool_cache_cpu_t *cc; 2085 pool_cache_cpu_t *cc;
2085 int index; 2086 int index;
2086 2087
2087 index = ci->ci_index; 2088 index = ci->ci_index;
2088 2089
2089 KASSERT(index < __arraycount(pc->pc_cpus)); 2090 KASSERT(index < __arraycount(pc->pc_cpus));
2090 2091
2091 if ((cc = pc->pc_cpus[index]) != NULL) { 2092 if ((cc = pc->pc_cpus[index]) != NULL) {
2092 KASSERT(cc->cc_cpuindex == index); 2093 KASSERT(cc->cc_cpuindex == index);
2093 return; 2094 return;
2094 } 2095 }
2095 2096
2096 /* 2097 /*
2097 * The first CPU is 'free'. This needs to be the case for 2098 * The first CPU is 'free'. This needs to be the case for
2098 * bootstrap - we may not be able to allocate yet. 2099 * bootstrap - we may not be able to allocate yet.
2099 */ 2100 */
2100 if (pc->pc_ncpu == 0) { 2101 if (pc->pc_ncpu == 0) {
2101 cc = &pc->pc_cpu0; 2102 cc = &pc->pc_cpu0;
2102 pc->pc_ncpu = 1; 2103 pc->pc_ncpu = 1;
2103 } else { 2104 } else {
2104 mutex_enter(&pc->pc_lock); 2105 mutex_enter(&pc->pc_lock);
2105 pc->pc_ncpu++; 2106 pc->pc_ncpu++;
2106 mutex_exit(&pc->pc_lock); 2107 mutex_exit(&pc->pc_lock);
2107 cc = pool_get(&cache_cpu_pool, PR_WAITOK); 2108 cc = pool_get(&cache_cpu_pool, PR_WAITOK);
2108 } 2109 }
2109 2110
2110 cc->cc_ipl = pc->pc_pool.pr_ipl; 2111 cc->cc_ipl = pc->pc_pool.pr_ipl;
2111 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl); 2112 cc->cc_iplcookie = makeiplcookie(cc->cc_ipl);
2112 cc->cc_cache = pc; 2113 cc->cc_cache = pc;
2113 cc->cc_cpuindex = index; 2114 cc->cc_cpuindex = index;
2114 cc->cc_hits = 0; 2115 cc->cc_hits = 0;
2115 cc->cc_misses = 0; 2116 cc->cc_misses = 0;
2116 cc->cc_current = __UNCONST(&pcg_dummy); 2117 cc->cc_current = __UNCONST(&pcg_dummy);
2117 cc->cc_previous = __UNCONST(&pcg_dummy); 2118 cc->cc_previous = __UNCONST(&pcg_dummy);
2118 2119
2119 pc->pc_cpus[index] = cc; 2120 pc->pc_cpus[index] = cc;
2120} 2121}
2121 2122
2122/* 2123/*
2123 * pool_cache_cpu_init: 2124 * pool_cache_cpu_init:
2124 * 2125 *
2125 * Called whenever a new CPU is attached. 2126 * Called whenever a new CPU is attached.
2126 */ 2127 */
2127void 2128void
2128pool_cache_cpu_init(struct cpu_info *ci) 2129pool_cache_cpu_init(struct cpu_info *ci)
2129{ 2130{
2130 pool_cache_t pc; 2131 pool_cache_t pc;
2131 2132
2132 mutex_enter(&pool_head_lock); 2133 mutex_enter(&pool_head_lock);
2133 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) { 2134 TAILQ_FOREACH(pc, &pool_cache_head, pc_cachelist) {
2134 pc->pc_refcnt++; 2135 pc->pc_refcnt++;
2135 mutex_exit(&pool_head_lock); 2136 mutex_exit(&pool_head_lock);
2136 2137
2137 pool_cache_cpu_init1(ci, pc); 2138 pool_cache_cpu_init1(ci, pc);
2138 2139
2139 mutex_enter(&pool_head_lock); 2140 mutex_enter(&pool_head_lock);
2140 pc->pc_refcnt--; 2141 pc->pc_refcnt--;
2141 cv_broadcast(&pool_busy); 2142 cv_broadcast(&pool_busy);
2142 } 2143 }
2143 mutex_exit(&pool_head_lock); 2144 mutex_exit(&pool_head_lock);
2144} 2145}
2145 2146
2146/* 2147/*
2147 * pool_cache_reclaim: 2148 * pool_cache_reclaim:
2148 * 2149 *
2149 * Reclaim memory from a pool cache. 2150 * Reclaim memory from a pool cache.
2150 */ 2151 */
2151bool 2152bool
2152pool_cache_reclaim(pool_cache_t pc) 2153pool_cache_reclaim(pool_cache_t pc)
2153{ 2154{
2154 2155
2155 return pool_reclaim(&pc->pc_pool); 2156 return pool_reclaim(&pc->pc_pool);
2156} 2157}
2157 2158
2158static void 2159static void
2159pool_cache_destruct_object1(pool_cache_t pc, void *object) 2160pool_cache_destruct_object1(pool_cache_t pc, void *object)
2160{ 2161{
2161 (*pc->pc_dtor)(pc->pc_arg, object); 2162 (*pc->pc_dtor)(pc->pc_arg, object);
2162 pool_put(&pc->pc_pool, object); 2163 pool_put(&pc->pc_pool, object);
2163} 2164}
2164 2165
2165/* 2166/*
2166 * pool_cache_destruct_object: 2167 * pool_cache_destruct_object:
2167 * 2168 *
2168 * Force destruction of an object and its release back into 2169 * Force destruction of an object and its release back into
2169 * the pool. 2170 * the pool.
2170 */ 2171 */
2171void 2172void
2172pool_cache_destruct_object(pool_cache_t pc, void *object) 2173pool_cache_destruct_object(pool_cache_t pc, void *object)
2173{ 2174{
2174 2175
2175 FREECHECK_IN(&pc->pc_freecheck, object); 2176 FREECHECK_IN(&pc->pc_freecheck, object);
2176 2177
2177 pool_cache_destruct_object1(pc, object); 2178 pool_cache_destruct_object1(pc, object);
2178} 2179}
2179 2180
2180/* 2181/*
2181 * pool_cache_invalidate_groups: 2182 * pool_cache_invalidate_groups:
2182 * 2183 *
2183 * Invalidate a chain of groups and destruct all objects. 2184 * Invalidate a chain of groups and destruct all objects.
2184 */ 2185 */
2185static void 2186static void
2186pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg) 2187pool_cache_invalidate_groups(pool_cache_t pc, pcg_t *pcg)
2187{ 2188{
2188 void *object; 2189 void *object;
2189 pcg_t *next; 2190 pcg_t *next;
2190 int i; 2191 int i;
2191 2192
2192 for (; pcg != NULL; pcg = next) { 2193 for (; pcg != NULL; pcg = next) {
2193 next = pcg->pcg_next; 2194 next = pcg->pcg_next;
2194 2195
2195 for (i = 0; i < pcg->pcg_avail; i++) { 2196 for (i = 0; i < pcg->pcg_avail; i++) {
2196 object = pcg->pcg_objects[i].pcgo_va; 2197 object = pcg->pcg_objects[i].pcgo_va;
2197 pool_cache_destruct_object1(pc, object); 2198 pool_cache_destruct_object1(pc, object);
2198 } 2199 }
2199 2200
2200 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) { 2201 if (pcg->pcg_size == PCG_NOBJECTS_LARGE) {
2201 pool_put(&pcg_large_pool, pcg); 2202 pool_put(&pcg_large_pool, pcg);
2202 } else { 2203 } else {
2203 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL); 2204 KASSERT(pcg->pcg_size == PCG_NOBJECTS_NORMAL);
2204 pool_put(&pcg_normal_pool, pcg); 2205 pool_put(&pcg_normal_pool, pcg);
2205 } 2206 }
2206 } 2207 }
2207} 2208}
2208 2209
2209/* 2210/*
2210 * pool_cache_invalidate: 2211 * pool_cache_invalidate:
2211 * 2212 *
2212 * Invalidate a pool cache (destruct and release all of the 2213 * Invalidate a pool cache (destruct and release all of the
2213 * cached objects). Does not reclaim objects from the pool. 2214 * cached objects). Does not reclaim objects from the pool.
2214 * 2215 *
2215 * Note: For pool caches that provide constructed objects, there 2216 * Note: For pool caches that provide constructed objects, there
2216 * is an assumption that another level of synchronization is occurring 2217 * is an assumption that another level of synchronization is occurring
2217 * between the input to the constructor and the cache invalidation. 2218 * between the input to the constructor and the cache invalidation.
2218 * 2219 *
2219 * Invalidation is a costly process and should not be called from 2220 * Invalidation is a costly process and should not be called from
2220 * interrupt context. 2221 * interrupt context.
2221 */ 2222 */
2222void 2223void
2223pool_cache_invalidate(pool_cache_t pc) 2224pool_cache_invalidate(pool_cache_t pc)
2224{ 2225{
2225 uint64_t where; 2226 uint64_t where;
2226 pcg_t *full, *empty, *part; 2227 pcg_t *full, *empty, *part;
2227 2228
2228 KASSERT(!cpu_intr_p() && !cpu_softintr_p()); 2229 KASSERT(!cpu_intr_p() && !cpu_softintr_p());
2229 2230
2230 if (ncpu < 2 || !mp_online) { 2231 if (ncpu < 2 || !mp_online) {
2231 /* 2232 /*
2232 * We might be called early enough in the boot process 2233 * We might be called early enough in the boot process
2233 * for the CPU data structures to not be fully initialized. 2234 * for the CPU data structures to not be fully initialized.
2234 * In this case, transfer the content of the local CPU's 2235 * In this case, transfer the content of the local CPU's
2235 * cache back into global cache as only this CPU is currently 2236 * cache back into global cache as only this CPU is currently
2236 * running. 2237 * running.
2237 */ 2238 */
2238 pool_cache_transfer(pc); 2239 pool_cache_transfer(pc);
2239 } else { 2240 } else {
2240 /* 2241 /*
2241 * Signal all CPUs that they must transfer their local 2242 * Signal all CPUs that they must transfer their local
2242 * cache back to the global pool then wait for the xcall to 2243 * cache back to the global pool then wait for the xcall to
2243 * complete. 2244 * complete.
2244 */ 2245 */
2245 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer, 2246 where = xc_broadcast(0, (xcfunc_t)pool_cache_transfer,
2246 pc, NULL); 2247 pc, NULL);
2247 xc_wait(where); 2248 xc_wait(where);
2248 } 2249 }
2249 2250
2250 /* Empty pool caches, then invalidate objects */ 2251 /* Empty pool caches, then invalidate objects */
2251 mutex_enter(&pc->pc_lock); 2252 mutex_enter(&pc->pc_lock);
2252 full = pc->pc_fullgroups; 2253 full = pc->pc_fullgroups;
2253 empty = pc->pc_emptygroups; 2254 empty = pc->pc_emptygroups;
2254 part = pc->pc_partgroups; 2255 part = pc->pc_partgroups;
2255 pc->pc_fullgroups = NULL; 2256 pc->pc_fullgroups = NULL;
2256 pc->pc_emptygroups = NULL; 2257 pc->pc_emptygroups = NULL;
2257 pc->pc_partgroups = NULL; 2258 pc->pc_partgroups = NULL;
2258 pc->pc_nfull = 0; 2259 pc->pc_nfull = 0;
2259 pc->pc_nempty = 0; 2260 pc->pc_nempty = 0;
2260 pc->pc_npart = 0; 2261 pc->pc_npart = 0;
2261 mutex_exit(&pc->pc_lock); 2262 mutex_exit(&pc->pc_lock);
2262 2263
2263 pool_cache_invalidate_groups(pc, full); 2264 pool_cache_invalidate_groups(pc, full);
2264 pool_cache_invalidate_groups(pc, empty); 2265 pool_cache_invalidate_groups(pc, empty);
2265 pool_cache_invalidate_groups(pc, part); 2266 pool_cache_invalidate_groups(pc, part);
2266} 2267}
2267 2268
2268/* 2269/*
2269 * pool_cache_invalidate_cpu: 2270 * pool_cache_invalidate_cpu:
2270 * 2271 *
2271 * Invalidate all CPU-bound cached objects in pool cache, the CPU being 2272 * Invalidate all CPU-bound cached objects in pool cache, the CPU being
2272 * identified by its associated index. 2273 * identified by its associated index.
2273 * It is caller's responsibility to ensure that no operation is 2274 * It is caller's responsibility to ensure that no operation is
2274 * taking place on this pool cache while doing this invalidation. 2275 * taking place on this pool cache while doing this invalidation.
2275 * WARNING: as no inter-CPU locking is enforced, trying to invalidate 2276 * WARNING: as no inter-CPU locking is enforced, trying to invalidate
2276 * pool cached objects from a CPU different from the one currently running 2277 * pool cached objects from a CPU different from the one currently running
2277 * may result in an undefined behaviour. 2278 * may result in an undefined behaviour.
2278 */ 2279 */
2279static void 2280static void
2280pool_cache_invalidate_cpu(pool_cache_t pc, u_int index) 2281pool_cache_invalidate_cpu(pool_cache_t pc, u_int index)
2281{ 2282{
2282 pool_cache_cpu_t *cc; 2283 pool_cache_cpu_t *cc;
2283 pcg_t *pcg; 2284 pcg_t *pcg;
2284 2285
2285 if ((cc = pc->pc_cpus[index]) == NULL) 2286 if ((cc = pc->pc_cpus[index]) == NULL)
2286 return; 2287 return;
2287 2288
2288 if ((pcg = cc->cc_current) != &pcg_dummy) { 2289 if ((pcg = cc->cc_current) != &pcg_dummy) {
2289 pcg->pcg_next = NULL; 2290 pcg->pcg_next = NULL;
2290 pool_cache_invalidate_groups(pc, pcg); 2291 pool_cache_invalidate_groups(pc, pcg);
2291 } 2292 }
2292 if ((pcg = cc->cc_previous) != &pcg_dummy) { 2293 if ((pcg = cc->cc_previous) != &pcg_dummy) {
2293 pcg->pcg_next = NULL; 2294 pcg->pcg_next = NULL;
2294 pool_cache_invalidate_groups(pc, pcg); 2295 pool_cache_invalidate_groups(pc, pcg);
2295 } 2296 }
2296 if (cc != &pc->pc_cpu0) 2297 if (cc != &pc->pc_cpu0)
2297 pool_put(&cache_cpu_pool, cc); 2298 pool_put(&cache_cpu_pool, cc);
2298 2299
2299} 2300}
2300 2301
2301void 2302void
2302pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg) 2303pool_cache_set_drain_hook(pool_cache_t pc, void (*fn)(void *, int), void *arg)
2303{ 2304{
2304 2305
2305 pool_set_drain_hook(&pc->pc_pool, fn, arg); 2306 pool_set_drain_hook(&pc->pc_pool, fn, arg);
2306} 2307}
2307 2308
2308void 2309void
2309pool_cache_setlowat(pool_cache_t pc, int n) 2310pool_cache_setlowat(pool_cache_t pc, int n)
2310{ 2311{
2311 2312
2312 pool_setlowat(&pc->pc_pool, n); 2313 pool_setlowat(&pc->pc_pool, n);
2313} 2314}
2314 2315
2315void 2316void
2316pool_cache_sethiwat(pool_cache_t pc, int n) 2317pool_cache_sethiwat(pool_cache_t pc, int n)
2317{ 2318{
2318 2319
2319 pool_sethiwat(&pc->pc_pool, n); 2320 pool_sethiwat(&pc->pc_pool, n);
2320} 2321}
2321 2322
2322void 2323void
2323pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap) 2324pool_cache_sethardlimit(pool_cache_t pc, int n, const char *warnmess, int ratecap)
2324{ 2325{
2325 2326
2326 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap); 2327 pool_sethardlimit(&pc->pc_pool, n, warnmess, ratecap);
2327} 2328}
2328 2329
2329static bool __noinline 2330static bool __noinline
2330pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp, 2331pool_cache_get_slow(pool_cache_cpu_t *cc, int s, void **objectp,
2331 paddr_t *pap, int flags) 2332 paddr_t *pap, int flags)
2332{ 2333{
2333 pcg_t *pcg, *cur; 2334 pcg_t *pcg, *cur;
2334 uint64_t ncsw; 2335 uint64_t ncsw;
2335 pool_cache_t pc; 2336 pool_cache_t pc;
2336 void *object; 2337 void *object;
2337 2338
2338 KASSERT(cc->cc_current->pcg_avail == 0); 2339 KASSERT(cc->cc_current->pcg_avail == 0);
2339 KASSERT(cc->cc_previous->pcg_avail == 0); 2340 KASSERT(cc->cc_previous->pcg_avail == 0);
2340 2341
2341 pc = cc->cc_cache; 2342 pc = cc->cc_cache;
2342 cc->cc_misses++; 2343 cc->cc_misses++;
2343 2344
2344 /* 2345 /*
2345 * Nothing was available locally. Try and grab a group 2346 * Nothing was available locally. Try and grab a group
2346 * from the cache. 2347 * from the cache.
2347 */ 2348 */
2348 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2349 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2349 ncsw = curlwp->l_ncsw; 2350 ncsw = curlwp->l_ncsw;
2350 mutex_enter(&pc->pc_lock); 2351 mutex_enter(&pc->pc_lock);
2351 pc->pc_contended++; 2352 pc->pc_contended++;
2352 2353
2353 /* 2354 /*
2354 * If we context switched while locking, then 2355 * If we context switched while locking, then
2355 * our view of the per-CPU data is invalid: 2356 * our view of the per-CPU data is invalid:
2356 * retry. 2357 * retry.
2357 */ 2358 */
2358 if (curlwp->l_ncsw != ncsw) { 2359 if (curlwp->l_ncsw != ncsw) {
2359 mutex_exit(&pc->pc_lock); 2360 mutex_exit(&pc->pc_lock);
2360 return true; 2361 return true;
2361 } 2362 }
2362 } 2363 }
2363 2364
2364 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) { 2365 if (__predict_true((pcg = pc->pc_fullgroups) != NULL)) {
2365 /* 2366 /*
2366 * If there's a full group, release our empty 2367 * If there's a full group, release our empty
2367 * group back to the cache. Install the full 2368 * group back to the cache. Install the full
2368 * group as cc_current and return. 2369 * group as cc_current and return.
2369 */ 2370 */
2370 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) { 2371 if (__predict_true((cur = cc->cc_current) != &pcg_dummy)) {
2371 KASSERT(cur->pcg_avail == 0); 2372 KASSERT(cur->pcg_avail == 0);
2372 cur->pcg_next = pc->pc_emptygroups; 2373 cur->pcg_next = pc->pc_emptygroups;
2373 pc->pc_emptygroups = cur; 2374 pc->pc_emptygroups = cur;
2374 pc->pc_nempty++; 2375 pc->pc_nempty++;
2375 } 2376 }
2376 KASSERT(pcg->pcg_avail == pcg->pcg_size); 2377 KASSERT(pcg->pcg_avail == pcg->pcg_size);
2377 cc->cc_current = pcg; 2378 cc->cc_current = pcg;
2378 pc->pc_fullgroups = pcg->pcg_next; 2379 pc->pc_fullgroups = pcg->pcg_next;
2379 pc->pc_hits++; 2380 pc->pc_hits++;
2380 pc->pc_nfull--; 2381 pc->pc_nfull--;
2381 mutex_exit(&pc->pc_lock); 2382 mutex_exit(&pc->pc_lock);
2382 return true; 2383 return true;
2383 } 2384 }
2384 2385
2385 /* 2386 /*
2386 * Nothing available locally or in cache. Take the slow 2387 * Nothing available locally or in cache. Take the slow
2387 * path: fetch a new object from the pool and construct 2388 * path: fetch a new object from the pool and construct
2388 * it. 2389 * it.
2389 */ 2390 */
2390 pc->pc_misses++; 2391 pc->pc_misses++;
2391 mutex_exit(&pc->pc_lock); 2392 mutex_exit(&pc->pc_lock);
2392 splx(s); 2393 splx(s);
2393 2394
2394 object = pool_get(&pc->pc_pool, flags); 2395 object = pool_get(&pc->pc_pool, flags);
2395 *objectp = object; 2396 *objectp = object;
2396 if (__predict_false(object == NULL)) { 2397 if (__predict_false(object == NULL)) {
2397 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT); 2398 KASSERT((flags & (PR_WAITOK|PR_NOWAIT)) == PR_NOWAIT);
2398 return false; 2399 return false;
2399 } 2400 }
2400 2401
2401 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) { 2402 if (__predict_false((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0)) {
2402 pool_put(&pc->pc_pool, object); 2403 pool_put(&pc->pc_pool, object);
2403 *objectp = NULL; 2404 *objectp = NULL;
2404 return false; 2405 return false;
2405 } 2406 }
2406 2407
2407 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0); 2408 KASSERT((((vaddr_t)object) & (pc->pc_pool.pr_align - 1)) == 0);
2408 2409
2409 if (pap != NULL) { 2410 if (pap != NULL) {
2410#ifdef POOL_VTOPHYS 2411#ifdef POOL_VTOPHYS
2411 *pap = POOL_VTOPHYS(object); 2412 *pap = POOL_VTOPHYS(object);
2412#else 2413#else
2413 *pap = POOL_PADDR_INVALID; 2414 *pap = POOL_PADDR_INVALID;
2414#endif 2415#endif
2415 } 2416 }
2416 2417
2417 FREECHECK_OUT(&pc->pc_freecheck, object); 2418 FREECHECK_OUT(&pc->pc_freecheck, object);
2418 pool_cache_kleak_fill(pc, object); 2419 pool_cache_kleak_fill(pc, object);
2419 return false; 2420 return false;
2420} 2421}
2421 2422
2422/* 2423/*
2423 * pool_cache_get{,_paddr}: 2424 * pool_cache_get{,_paddr}:
2424 * 2425 *
2425 * Get an object from a pool cache (optionally returning 2426 * Get an object from a pool cache (optionally returning
2426 * the physical address of the object). 2427 * the physical address of the object).
2427 */ 2428 */
2428void * 2429void *
2429pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap) 2430pool_cache_get_paddr(pool_cache_t pc, int flags, paddr_t *pap)
2430{ 2431{
2431 pool_cache_cpu_t *cc; 2432 pool_cache_cpu_t *cc;
2432 pcg_t *pcg; 2433 pcg_t *pcg;
2433 void *object; 2434 void *object;
2434 int s; 2435 int s;
2435 2436
2436 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK)); 2437 KASSERT(!(flags & PR_NOWAIT) != !(flags & PR_WAITOK));
2437 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) || 2438 KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()) ||
2438 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL), 2439 (pc->pc_pool.pr_ipl != IPL_NONE || cold || panicstr != NULL),
2439 "%s: [%s] is IPL_NONE, but called from interrupt context", 2440 "%s: [%s] is IPL_NONE, but called from interrupt context",
2440 __func__, pc->pc_pool.pr_wchan); 2441 __func__, pc->pc_pool.pr_wchan);
2441 2442
2442 if (flags & PR_WAITOK) { 2443 if (flags & PR_WAITOK) {
2443 ASSERT_SLEEPABLE(); 2444 ASSERT_SLEEPABLE();
2444 } 2445 }
2445 2446
2446 /* Lock out interrupts and disable preemption. */ 2447 /* Lock out interrupts and disable preemption. */
2447 s = splvm(); 2448 s = splvm();
2448 while (/* CONSTCOND */ true) { 2449 while (/* CONSTCOND */ true) {
2449 /* Try and allocate an object from the current group. */ 2450 /* Try and allocate an object from the current group. */
2450 cc = pc->pc_cpus[curcpu()->ci_index]; 2451 cc = pc->pc_cpus[curcpu()->ci_index];
2451 KASSERT(cc->cc_cache == pc); 2452 KASSERT(cc->cc_cache == pc);
2452 pcg = cc->cc_current; 2453 pcg = cc->cc_current;
2453 if (__predict_true(pcg->pcg_avail > 0)) { 2454 if (__predict_true(pcg->pcg_avail > 0)) {
2454 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va; 2455 object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;
2455 if (__predict_false(pap != NULL)) 2456 if (__predict_false(pap != NULL))
2456 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa; 2457 *pap = pcg->pcg_objects[pcg->pcg_avail].pcgo_pa;
2457#if defined(DIAGNOSTIC) 2458#if defined(DIAGNOSTIC)
2458 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL; 2459 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = NULL;
2459 KASSERT(pcg->pcg_avail < pcg->pcg_size); 2460 KASSERT(pcg->pcg_avail < pcg->pcg_size);
2460 KASSERT(object != NULL); 2461 KASSERT(object != NULL);
2461#endif 2462#endif
2462 cc->cc_hits++; 2463 cc->cc_hits++;
2463 splx(s); 2464 splx(s);
2464 FREECHECK_OUT(&pc->pc_freecheck, object); 2465 FREECHECK_OUT(&pc->pc_freecheck, object);
2465 pool_redzone_fill(&pc->pc_pool, object); 2466 pool_redzone_fill(&pc->pc_pool, object);
2466 pool_cache_kleak_fill(pc, object); 2467 pool_cache_kleak_fill(pc, object);
2467 return object; 2468 return object;
2468 } 2469 }
2469 2470
2470 /* 2471 /*
2471 * That failed. If the previous group isn't empty, swap 2472 * That failed. If the previous group isn't empty, swap
2472 * it with the current group and allocate from there. 2473 * it with the current group and allocate from there.
2473 */ 2474 */
2474 pcg = cc->cc_previous; 2475 pcg = cc->cc_previous;
2475 if (__predict_true(pcg->pcg_avail > 0)) { 2476 if (__predict_true(pcg->pcg_avail > 0)) {
2476 cc->cc_previous = cc->cc_current; 2477 cc->cc_previous = cc->cc_current;
2477 cc->cc_current = pcg; 2478 cc->cc_current = pcg;
2478 continue; 2479 continue;
2479 } 2480 }
2480 2481
2481 /* 2482 /*
2482 * Can't allocate from either group: try the slow path. 2483 * Can't allocate from either group: try the slow path.
2483 * If get_slow() allocated an object for us, or if 2484 * If get_slow() allocated an object for us, or if
2484 * no more objects are available, it will return false. 2485 * no more objects are available, it will return false.
2485 * Otherwise, we need to retry. 2486 * Otherwise, we need to retry.
2486 */ 2487 */
2487 if (!pool_cache_get_slow(cc, s, &object, pap, flags)) 2488 if (!pool_cache_get_slow(cc, s, &object, pap, flags))
2488 break; 2489 break;
2489 } 2490 }
2490 2491
2491 /* 2492 /*
2492 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but 2493 * We would like to KASSERT(object || (flags & PR_NOWAIT)), but
2493 * pool_cache_get can fail even in the PR_WAITOK case, if the 2494 * pool_cache_get can fail even in the PR_WAITOK case, if the
2494 * constructor fails. 2495 * constructor fails.
2495 */ 2496 */
2496 return object; 2497 return object;
2497} 2498}
2498 2499
2499static bool __noinline 2500static bool __noinline
2500pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object) 2501pool_cache_put_slow(pool_cache_cpu_t *cc, int s, void *object)
2501{ 2502{
2502 struct lwp *l = curlwp; 2503 struct lwp *l = curlwp;
2503 pcg_t *pcg, *cur; 2504 pcg_t *pcg, *cur;
2504 uint64_t ncsw; 2505 uint64_t ncsw;
2505 pool_cache_t pc; 2506 pool_cache_t pc;
2506 2507
2507 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size); 2508 KASSERT(cc->cc_current->pcg_avail == cc->cc_current->pcg_size);
2508 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size); 2509 KASSERT(cc->cc_previous->pcg_avail == cc->cc_previous->pcg_size);
2509 2510
2510 pc = cc->cc_cache; 2511 pc = cc->cc_cache;
2511 pcg = NULL; 2512 pcg = NULL;
2512 cc->cc_misses++; 2513 cc->cc_misses++;
2513 ncsw = l->l_ncsw; 2514 ncsw = l->l_ncsw;
2514 2515
2515 /* 2516 /*
2516 * If there are no empty groups in the cache then allocate one 2517 * If there are no empty groups in the cache then allocate one
2517 * while still unlocked. 2518 * while still unlocked.
2518 */ 2519 */
2519 if (__predict_false(pc->pc_emptygroups == NULL)) { 2520 if (__predict_false(pc->pc_emptygroups == NULL)) {
2520 if (__predict_true(!pool_cache_disable)) { 2521 if (__predict_true(!pool_cache_disable)) {
2521 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT); 2522 pcg = pool_get(pc->pc_pcgpool, PR_NOWAIT);
2522 } 2523 }
2523 /* 2524 /*
2524 * If pool_get() blocked, then our view of 2525 * If pool_get() blocked, then our view of
2525 * the per-CPU data is invalid: retry. 2526 * the per-CPU data is invalid: retry.
2526 */ 2527 */
2527 if (__predict_false(l->l_ncsw != ncsw)) { 2528 if (__predict_false(l->l_ncsw != ncsw)) {
2528 if (pcg != NULL) { 2529 if (pcg != NULL) {
2529 pool_put(pc->pc_pcgpool, pcg); 2530 pool_put(pc->pc_pcgpool, pcg);
2530 } 2531 }
2531 return true; 2532 return true;
2532 } 2533 }
2533 if (__predict_true(pcg != NULL)) { 2534 if (__predict_true(pcg != NULL)) {
2534 pcg->pcg_avail = 0; 2535 pcg->pcg_avail = 0;
2535 pcg->pcg_size = pc->pc_pcgsize; 2536 pcg->pcg_size = pc->pc_pcgsize;
2536 } 2537 }
2537 } 2538 }
2538 2539
2539 /* Lock the cache. */ 2540 /* Lock the cache. */
2540 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) { 2541 if (__predict_false(!mutex_tryenter(&pc->pc_lock))) {
2541 mutex_enter(&pc->pc_lock); 2542 mutex_enter(&pc->pc_lock);
2542 pc->pc_contended++; 2543 pc->pc_contended++;
2543 2544
2544 /* 2545 /*
2545 * If we context switched while locking, then our view of 2546 * If we context switched while locking, then our view of
2546 * the per-CPU data is invalid: retry. 2547 * the per-CPU data is invalid: retry.
2547 */ 2548 */
2548 if (__predict_false(l->l_ncsw != ncsw)) { 2549 if (__predict_false(l->l_ncsw != ncsw)) {
2549 mutex_exit(&pc->pc_lock); 2550 mutex_exit(&pc->pc_lock);
2550 if (pcg != NULL) { 2551 if (pcg != NULL) {
2551 pool_put(pc->pc_pcgpool, pcg); 2552 pool_put(pc->pc_pcgpool, pcg);
2552 } 2553 }
2553 return true; 2554 return true;
2554 } 2555 }
2555 } 2556 }
2556 2557
2557 /* If there are no empty groups in the cache then allocate one. */ 2558 /* If there are no empty groups in the cache then allocate one. */
2558 if (pcg == NULL && pc->pc_emptygroups != NULL) { 2559 if (pcg == NULL && pc->pc_emptygroups != NULL) {
2559 pcg = pc->pc_emptygroups; 2560 pcg = pc->pc_emptygroups;
2560 pc->pc_emptygroups = pcg->pcg_next; 2561 pc->pc_emptygroups = pcg->pcg_next;
2561 pc->pc_nempty--; 2562 pc->pc_nempty--;
2562 } 2563 }
2563 2564
2564 /* 2565 /*
2565 * If there's a empty group, release our full group back 2566 * If there's a empty group, release our full group back
2566 * to the cache. Install the empty group to the local CPU 2567 * to the cache. Install the empty group to the local CPU
2567 * and return. 2568 * and return.
2568 */ 2569 */
2569 if (pcg != NULL) { 2570 if (pcg != NULL) {
2570 KASSERT(pcg->pcg_avail == 0); 2571 KASSERT(pcg->pcg_avail == 0);
2571 if (__predict_false(cc->cc_previous == &pcg_dummy)) { 2572 if (__predict_false(cc->cc_previous == &pcg_dummy)) {
2572 cc->cc_previous = pcg; 2573 cc->cc_previous = pcg;
2573 } else { 2574 } else {
2574 cur = cc->cc_current; 2575 cur = cc->cc_current;
2575 if (__predict_true(cur != &pcg_dummy)) { 2576 if (__predict_true(cur != &pcg_dummy)) {
2576 KASSERT(cur->pcg_avail == cur->pcg_size); 2577 KASSERT(cur->pcg_avail == cur->pcg_size);
2577 cur->pcg_next = pc->pc_fullgroups; 2578 cur->pcg_next = pc->pc_fullgroups;
2578 pc->pc_fullgroups = cur; 2579 pc->pc_fullgroups = cur;
2579 pc->pc_nfull++; 2580 pc->pc_nfull++;
2580 } 2581 }
2581 cc->cc_current = pcg; 2582 cc->cc_current = pcg;
2582 } 2583 }
2583 pc->pc_hits++; 2584 pc->pc_hits++;
2584 mutex_exit(&pc->pc_lock); 2585 mutex_exit(&pc->pc_lock);
2585 return true; 2586 return true;
2586 } 2587 }
2587 2588
2588 /* 2589 /*
2589 * Nothing available locally or in cache, and we didn't 2590 * Nothing available locally or in cache, and we didn't
2590 * allocate an empty group. Take the slow path and destroy 2591 * allocate an empty group. Take the slow path and destroy
2591 * the object here and now. 2592 * the object here and now.
2592 */ 2593 */
2593 pc->pc_misses++; 2594 pc->pc_misses++;
2594 mutex_exit(&pc->pc_lock); 2595 mutex_exit(&pc->pc_lock);
2595 splx(s); 2596 splx(s);
2596 pool_cache_destruct_object(pc, object); 2597 pool_cache_destruct_object(pc, object);
2597 2598
2598 return false; 2599 return false;
2599} 2600}
2600 2601
2601/* 2602/*
2602 * pool_cache_put{,_paddr}: 2603 * pool_cache_put{,_paddr}:
2603 * 2604 *
2604 * Put an object back to the pool cache (optionally caching the 2605 * Put an object back to the pool cache (optionally caching the
2605 * physical address of the object). 2606 * physical address of the object).
2606 */ 2607 */
2607void 2608void
2608pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa) 2609pool_cache_put_paddr(pool_cache_t pc, void *object, paddr_t pa)
2609{ 2610{
2610 pool_cache_cpu_t *cc; 2611 pool_cache_cpu_t *cc;
2611 pcg_t *pcg; 2612 pcg_t *pcg;
2612 int s; 2613 int s;
2613 2614
2614 KASSERT(object != NULL); 2615 KASSERT(object != NULL);
2615 pool_cache_redzone_check(pc, object); 2616 pool_cache_redzone_check(pc, object);
2616 FREECHECK_IN(&pc->pc_freecheck, object); 2617 FREECHECK_IN(&pc->pc_freecheck, object);
2617 2618
2618 if (pool_cache_put_quarantine(pc, object, pa)) { 2619 if (pool_cache_put_quarantine(pc, object, pa)) {
2619 return; 2620 return;
2620 } 2621 }
2621 2622
2622 /* Lock out interrupts and disable preemption. */ 2623 /* Lock out interrupts and disable preemption. */
2623 s = splvm(); 2624 s = splvm();
2624 while (/* CONSTCOND */ true) { 2625 while (/* CONSTCOND */ true) {
2625 /* If the current group isn't full, release it there. */ 2626 /* If the current group isn't full, release it there. */
2626 cc = pc->pc_cpus[curcpu()->ci_index]; 2627 cc = pc->pc_cpus[curcpu()->ci_index];
2627 KASSERT(cc->cc_cache == pc); 2628 KASSERT(cc->cc_cache == pc);
2628 pcg = cc->cc_current; 2629 pcg = cc->cc_current;
2629 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2630 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2630 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object; 2631 pcg->pcg_objects[pcg->pcg_avail].pcgo_va = object;
2631 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa; 2632 pcg->pcg_objects[pcg->pcg_avail].pcgo_pa = pa;
2632 pcg->pcg_avail++; 2633 pcg->pcg_avail++;
2633 cc->cc_hits++; 2634 cc->cc_hits++;
2634 splx(s); 2635 splx(s);
2635 return; 2636 return;
2636 } 2637 }
2637 2638
2638 /* 2639 /*
2639 * That failed. If the previous group isn't full, swap 2640 * That failed. If the previous group isn't full, swap
2640 * it with the current group and try again. 2641 * it with the current group and try again.
2641 */ 2642 */
2642 pcg = cc->cc_previous; 2643 pcg = cc->cc_previous;
2643 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) { 2644 if (__predict_true(pcg->pcg_avail < pcg->pcg_size)) {
2644 cc->cc_previous = cc->cc_current; 2645 cc->cc_previous = cc->cc_current;
2645 cc->cc_current = pcg; 2646 cc->cc_current = pcg;
2646 continue; 2647 continue;
2647 } 2648 }
2648 2649
2649 /* 2650 /*
2650 * Can't free to either group: try the slow path. 2651 * Can't free to either group: try the slow path.
2651 * If put_slow() releases the object for us, it 2652 * If put_slow() releases the object for us, it
2652 * will return false. Otherwise we need to retry. 2653 * will return false. Otherwise we need to retry.
2653 */ 2654 */
2654 if (!pool_cache_put_slow(cc, s, object)) 2655 if (!pool_cache_put_slow(cc, s, object))
2655 break; 2656 break;
2656 } 2657 }
2657} 2658}
2658 2659
2659/* 2660/*
2660 * pool_cache_transfer: 2661 * pool_cache_transfer:
2661 * 2662 *
2662 * Transfer objects from the per-CPU cache to the global cache. 2663 * Transfer objects from the per-CPU cache to the global cache.
2663 * Run within a cross-call thread. 2664 * Run within a cross-call thread.
2664 */ 2665 */
2665static void 2666static void
2666pool_cache_transfer(pool_cache_t pc) 2667pool_cache_transfer(pool_cache_t pc)
2667{ 2668{
2668 pool_cache_cpu_t *cc; 2669 pool_cache_cpu_t *cc;
2669 pcg_t *prev, *cur, **list; 2670 pcg_t *prev, *cur, **list;
2670 int s; 2671 int s;
2671 2672
2672 s = splvm(); 2673 s = splvm();
2673 mutex_enter(&pc->pc_lock); 2674 mutex_enter(&pc->pc_lock);
2674 cc = pc->pc_cpus[curcpu()->ci_index]; 2675 cc = pc->pc_cpus[curcpu()->ci_index];
2675 cur = cc->cc_current; 2676 cur = cc->cc_current;
2676 cc->cc_current = __UNCONST(&pcg_dummy); 2677 cc->cc_current = __UNCONST(&pcg_dummy);
2677 prev = cc->cc_previous; 2678 prev = cc->cc_previous;
2678 cc->cc_previous = __UNCONST(&pcg_dummy); 2679 cc->cc_previous = __UNCONST(&pcg_dummy);
2679 if (cur != &pcg_dummy) { 2680 if (cur != &pcg_dummy) {
2680 if (cur->pcg_avail == cur->pcg_size) { 2681 if (cur->pcg_avail == cur->pcg_size) {
2681 list = &pc->pc_fullgroups; 2682 list = &pc->pc_fullgroups;
2682 pc->pc_nfull++; 2683 pc->pc_nfull++;
2683 } else if (cur->pcg_avail == 0) { 2684 } else if (cur->pcg_avail == 0) {
2684 list = &pc->pc_emptygroups; 2685 list = &pc->pc_emptygroups;
2685 pc->pc_nempty++; 2686 pc->pc_nempty++;
2686 } else { 2687 } else {
2687 list = &pc->pc_partgroups; 2688 list = &pc->pc_partgroups;
2688 pc->pc_npart++; 2689 pc->pc_npart++;
2689 } 2690 }
2690 cur->pcg_next = *list; 2691 cur->pcg_next = *list;
2691 *list = cur; 2692 *list = cur;
2692 } 2693 }
2693 if (prev != &pcg_dummy) { 2694 if (prev != &pcg_dummy) {
2694 if (prev->pcg_avail == prev->pcg_size) { 2695 if (prev->pcg_avail == prev->pcg_size) {
2695 list = &pc->pc_fullgroups; 2696 list = &pc->pc_fullgroups;
2696 pc->pc_nfull++; 2697 pc->pc_nfull++;
2697 } else if (prev->pcg_avail == 0) { 2698 } else if (prev->pcg_avail == 0) {
2698 list = &pc->pc_emptygroups; 2699 list = &pc->pc_emptygroups;
2699 pc->pc_nempty++; 2700 pc->pc_nempty++;
2700 } else { 2701 } else {
2701 list = &pc->pc_partgroups; 2702 list = &pc->pc_partgroups;
2702 pc->pc_npart++; 2703 pc->pc_npart++;
2703 } 2704 }
2704 prev->pcg_next = *list; 2705 prev->pcg_next = *list;
2705 *list = prev; 2706 *list = prev;
2706 } 2707 }
2707 mutex_exit(&pc->pc_lock); 2708 mutex_exit(&pc->pc_lock);
2708 splx(s); 2709 splx(s);
2709} 2710}
2710 2711
2711/* 2712/*
2712 * Pool backend allocators. 2713 * Pool backend allocators.
2713 * 2714 *
2714 * Each pool has a backend allocator that handles allocation, deallocation, 2715 * Each pool has a backend allocator that handles allocation, deallocation,
2715 * and any additional draining that might be needed. 2716 * and any additional draining that might be needed.
2716 * 2717 *
2717 * We provide two standard allocators: 2718 * We provide two standard allocators:
2718 * 2719 *
2719 * pool_allocator_kmem - the default when no allocator is specified 2720 * pool_allocator_kmem - the default when no allocator is specified
2720 * 2721 *
2721 * pool_allocator_nointr - used for pools that will not be accessed 2722 * pool_allocator_nointr - used for pools that will not be accessed
2722 * in interrupt context. 2723 * in interrupt context.
2723 */ 2724 */
2724void *pool_page_alloc(struct pool *, int); 2725void *pool_page_alloc(struct pool *, int);
2725void pool_page_free(struct pool *, void *); 2726void pool_page_free(struct pool *, void *);
2726 2727
2727struct pool_allocator pool_allocator_kmem = { 2728struct pool_allocator pool_allocator_kmem = {
2728 .pa_alloc = pool_page_alloc, 2729 .pa_alloc = pool_page_alloc,
2729 .pa_free = pool_page_free, 2730 .pa_free = pool_page_free,
2730 .pa_pagesz = 0 2731 .pa_pagesz = 0
2731}; 2732};
2732 2733
2733struct pool_allocator pool_allocator_nointr = { 2734struct pool_allocator pool_allocator_nointr = {
2734 .pa_alloc = pool_page_alloc, 2735 .pa_alloc = pool_page_alloc,
2735 .pa_free = pool_page_free, 2736 .pa_free = pool_page_free,
2736 .pa_pagesz = 0 2737 .pa_pagesz = 0
2737}; 2738};
2738 2739
2739struct pool_allocator pool_allocator_big[] = { 2740struct pool_allocator pool_allocator_big[] = {
2740 { 2741 {
2741 .pa_alloc = pool_page_alloc, 2742 .pa_alloc = pool_page_alloc,
2742 .pa_free = pool_page_free, 2743 .pa_free = pool_page_free,
2743 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0), 2744 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 0),
2744 }, 2745 },
2745 { 2746 {
2746 .pa_alloc = pool_page_alloc, 2747 .pa_alloc = pool_page_alloc,
2747 .pa_free = pool_page_free, 2748 .pa_free = pool_page_free,
2748 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1), 2749 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 1),
2749 }, 2750 },
2750 { 2751 {
2751 .pa_alloc = pool_page_alloc, 2752 .pa_alloc = pool_page_alloc,
2752 .pa_free = pool_page_free, 2753 .pa_free = pool_page_free,
2753 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2), 2754 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 2),
2754 }, 2755 },
2755 { 2756 {
2756 .pa_alloc = pool_page_alloc, 2757 .pa_alloc = pool_page_alloc,
2757 .pa_free = pool_page_free, 2758 .pa_free = pool_page_free,
2758 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3), 2759 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 3),
2759 }, 2760 },
2760 { 2761 {
2761 .pa_alloc = pool_page_alloc, 2762 .pa_alloc = pool_page_alloc,
2762 .pa_free = pool_page_free, 2763 .pa_free = pool_page_free,
2763 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4), 2764 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 4),
2764 }, 2765 },
2765 { 2766 {
2766 .pa_alloc = pool_page_alloc, 2767 .pa_alloc = pool_page_alloc,
2767 .pa_free = pool_page_free, 2768 .pa_free = pool_page_free,
2768 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5), 2769 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 5),
2769 }, 2770 },
2770 { 2771 {
2771 .pa_alloc = pool_page_alloc, 2772 .pa_alloc = pool_page_alloc,
2772 .pa_free = pool_page_free, 2773 .pa_free = pool_page_free,
2773 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6), 2774 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 6),
2774 }, 2775 },
2775 { 2776 {
2776 .pa_alloc = pool_page_alloc, 2777 .pa_alloc = pool_page_alloc,
2777 .pa_free = pool_page_free, 2778 .pa_free = pool_page_free,
2778 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7), 2779 .pa_pagesz = 1 << (POOL_ALLOCATOR_BIG_BASE + 7),
2779 } 2780 }
2780}; 2781};
2781 2782
2782static int 2783static int
2783pool_bigidx(size_t size) 2784pool_bigidx(size_t size)
2784{ 2785{
2785 int i; 2786 int i;
2786 2787
2787 for (i = 0; i < __arraycount(pool_allocator_big); i++) { 2788 for (i = 0; i < __arraycount(pool_allocator_big); i++) {
2788 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size) 2789 if (1 << (i + POOL_ALLOCATOR_BIG_BASE) >= size)
2789 return i; 2790 return i;
2790 } 2791 }
2791 panic("pool item size %zu too large, use a custom allocator", size); 2792 panic("pool item size %zu too large, use a custom allocator", size);
2792} 2793}
2793 2794
2794static void * 2795static void *
2795pool_allocator_alloc(struct pool *pp, int flags) 2796pool_allocator_alloc(struct pool *pp, int flags)
2796{ 2797{
2797 struct pool_allocator *pa = pp->pr_alloc; 2798 struct pool_allocator *pa = pp->pr_alloc;
2798 void *res; 2799 void *res;
2799 2800
2800 res = (*pa->pa_alloc)(pp, flags); 2801 res = (*pa->pa_alloc)(pp, flags);
2801 if (res == NULL && (flags & PR_WAITOK) == 0) { 2802 if (res == NULL && (flags & PR_WAITOK) == 0) {
2802 /* 2803 /*
2803 * We only run the drain hook here if PR_NOWAIT. 2804 * We only run the drain hook here if PR_NOWAIT.
2804 * In other cases, the hook will be run in 2805 * In other cases, the hook will be run in
2805 * pool_reclaim(). 2806 * pool_reclaim().
2806 */ 2807 */
2807 if (pp->pr_drain_hook != NULL) { 2808 if (pp->pr_drain_hook != NULL) {
2808 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags); 2809 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
2809 res = (*pa->pa_alloc)(pp, flags); 2810 res = (*pa->pa_alloc)(pp, flags);
2810 } 2811 }
2811 } 2812 }
2812 return res; 2813 return res;
2813} 2814}
2814 2815
2815static void 2816static void
2816pool_allocator_free(struct pool *pp, void *v) 2817pool_allocator_free(struct pool *pp, void *v)
2817{ 2818{
2818 struct pool_allocator *pa = pp->pr_alloc; 2819 struct pool_allocator *pa = pp->pr_alloc;
2819 2820
2820 if (pp->pr_redzone) { 2821 if (pp->pr_redzone) {
2821 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0); 2822 kasan_mark(v, pa->pa_pagesz, pa->pa_pagesz, 0);
2822 } 2823 }
2823 (*pa->pa_free)(pp, v); 2824 (*pa->pa_free)(pp, v);
2824} 2825}
2825 2826
2826void * 2827void *
2827pool_page_alloc(struct pool *pp, int flags) 2828pool_page_alloc(struct pool *pp, int flags)
2828{ 2829{
2829 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2830 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2830 vmem_addr_t va; 2831 vmem_addr_t va;
2831 int ret; 2832 int ret;
2832 2833
2833 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz, 2834 ret = uvm_km_kmem_alloc(kmem_va_arena, pp->pr_alloc->pa_pagesz,
2834 vflags | VM_INSTANTFIT, &va); 2835 vflags | VM_INSTANTFIT, &va);
2835 2836
2836 return ret ? NULL : (void *)va; 2837 return ret ? NULL : (void *)va;
2837} 2838}
2838 2839
2839void 2840void
2840pool_page_free(struct pool *pp, void *v) 2841pool_page_free(struct pool *pp, void *v)
2841{ 2842{
2842 2843
2843 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz); 2844 uvm_km_kmem_free(kmem_va_arena, (vaddr_t)v, pp->pr_alloc->pa_pagesz);
2844} 2845}
2845 2846
2846static void * 2847static void *
2847pool_page_alloc_meta(struct pool *pp, int flags) 2848pool_page_alloc_meta(struct pool *pp, int flags)
2848{ 2849{
2849 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP; 2850 const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
2850 vmem_addr_t va; 2851 vmem_addr_t va;
2851 int ret; 2852 int ret;
2852 2853
2853 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz, 2854 ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
2854 vflags | VM_INSTANTFIT, &va); 2855 vflags | VM_INSTANTFIT, &va);
2855 2856
2856 return ret ? NULL : (void *)va; 2857 return ret ? NULL : (void *)va;
2857} 2858}
2858 2859
2859static void 2860static void
2860pool_page_free_meta(struct pool *pp, void *v) 2861pool_page_free_meta(struct pool *pp, void *v)
2861{ 2862{
2862 2863
2863 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz); 2864 vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
2864} 2865}
2865 2866
2866#ifdef KLEAK 2867#ifdef KLEAK
2867static void 2868static void
2868pool_kleak_fill(struct pool *pp, void *p) 2869pool_kleak_fill(struct pool *pp, void *p)
2869{ 2870{
2870 if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) { 2871 if (__predict_false(pp->pr_roflags & PR_NOTOUCH)) {
2871 return; 2872 return;
2872 } 2873 }
2873 kleak_fill_area(p, pp->pr_size); 2874 kleak_fill_area(p, pp->pr_size);
2874} 2875}
2875 2876
2876static void 2877static void
2877pool_cache_kleak_fill(pool_cache_t pc, void *p) 2878pool_cache_kleak_fill(pool_cache_t pc, void *p)
2878{ 2879{
2879 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) { 2880 if (__predict_false(pc_has_ctor(pc) || pc_has_dtor(pc))) {
2880 return; 2881 return;
2881 } 2882 }
2882 pool_kleak_fill(&pc->pc_pool, p); 2883 pool_kleak_fill(&pc->pc_pool, p);
2883} 2884}
2884#endif 2885#endif
2885 2886
2886#ifdef POOL_QUARANTINE 2887#ifdef POOL_QUARANTINE
2887static void 2888static void
2888pool_quarantine_init(struct pool *pp) 2889pool_quarantine_init(struct pool *pp)
2889{ 2890{
2890 pp->pr_quar.rotor = 0; 2891 pp->pr_quar.rotor = 0;
2891 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar)); 2892 memset(&pp->pr_quar, 0, sizeof(pp->pr_quar));
2892} 2893}
2893 2894
2894static void 2895static void
2895pool_quarantine_flush(struct pool *pp) 2896pool_quarantine_flush(struct pool *pp)
2896{ 2897{
2897 pool_quar_t *quar = &pp->pr_quar; 2898 pool_quar_t *quar = &pp->pr_quar;
2898 struct pool_pagelist pq; 2899 struct pool_pagelist pq;
2899 size_t i; 2900 size_t i;
2900 2901
2901 LIST_INIT(&pq); 2902 LIST_INIT(&pq);
2902 2903
2903 mutex_enter(&pp->pr_lock); 2904 mutex_enter(&pp->pr_lock);
2904 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) { 2905 for (i = 0; i < POOL_QUARANTINE_DEPTH; i++) {
2905 if (quar->list[i] == 0) 2906 if (quar->list[i] == 0)
2906 continue; 2907 continue;
2907 pool_do_put(pp, (void *)quar->list[i], &pq); 2908 pool_do_put(pp, (void *)quar->list[i], &pq);
2908 } 2909 }
2909 mutex_exit(&pp->pr_lock); 2910 mutex_exit(&pp->pr_lock);
2910 2911
2911 pr_pagelist_free(pp, &pq); 2912 pr_pagelist_free(pp, &pq);
2912} 2913}
2913 2914
2914static bool 2915static bool
2915pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq) 2916pool_put_quarantine(struct pool *pp, void *v, struct pool_pagelist *pq)
2916{ 2917{
2917 pool_quar_t *quar = &pp->pr_quar; 2918 pool_quar_t *quar = &pp->pr_quar;
2918 uintptr_t old; 2919 uintptr_t old;
2919 2920
2920 if (pp->pr_roflags & PR_NOTOUCH) { 2921 if (pp->pr_roflags & PR_NOTOUCH) {
2921 return false; 2922 return false;
2922 } 2923 }
2923 2924
2924 pool_redzone_check(pp, v); 2925 pool_redzone_check(pp, v);
2925 2926
2926 old = quar->list[quar->rotor]; 2927 old = quar->list[quar->rotor];
2927 quar->list[quar->rotor] = (uintptr_t)v; 2928 quar->list[quar->rotor] = (uintptr_t)v;
2928 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH; 2929 quar->rotor = (quar->rotor + 1) % POOL_QUARANTINE_DEPTH;
2929 if (old != 0) { 2930 if (old != 0) {
2930 pool_do_put(pp, (void *)old, pq); 2931 pool_do_put(pp, (void *)old, pq);
2931 } 2932 }
2932 2933
2933 return true; 2934 return true;
2934} 2935}
2935 2936
2936static bool 2937static bool
2937pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa) 2938pool_cache_put_quarantine(pool_cache_t pc, void *p, paddr_t pa)
2938{ 2939{
2939 pool_cache_destruct_object(pc, p); 2940 pool_cache_destruct_object(pc, p);
2940 return true; 2941 return true;
2941} 2942}
2942#endif 2943#endif
2943 2944
2944#ifdef POOL_REDZONE 2945#ifdef POOL_REDZONE
2945#if defined(_LP64) 2946#if defined(_LP64)
2946# define PRIME 0x9e37fffffffc0000UL 2947# define PRIME 0x9e37fffffffc0000UL
2947#else /* defined(_LP64) */ 2948#else /* defined(_LP64) */
2948# define PRIME 0x9e3779b1 2949# define PRIME 0x9e3779b1
2949#endif /* defined(_LP64) */ 2950#endif /* defined(_LP64) */
2950#define STATIC_BYTE 0xFE 2951#define STATIC_BYTE 0xFE
2951CTASSERT(POOL_REDZONE_SIZE > 1); 2952CTASSERT(POOL_REDZONE_SIZE > 1);
2952 2953
2953#ifndef KASAN 2954#ifndef KASAN
2954static inline uint8_t 2955static inline uint8_t
2955pool_pattern_generate(const void *p) 2956pool_pattern_generate(const void *p)
2956{ 2957{
2957 return (uint8_t)(((uintptr_t)p) * PRIME 2958 return (uint8_t)(((uintptr_t)p) * PRIME
2958 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT); 2959 >> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
2959} 2960}
2960#endif 2961#endif