Thu Jan 2 01:31:17 2020 UTC ()
mi_cpu_init: set ci_smt_primary early.


(ad)
diff -r1.3 -r1.4 src/sys/kern/subr_cpu.c

cvs diff -r1.3 -r1.4 src/sys/kern/subr_cpu.c (switch to unified diff)

--- src/sys/kern/subr_cpu.c 2019/12/21 12:53:53 1.3
+++ src/sys/kern/subr_cpu.c 2020/01/02 01:31:17 1.4
@@ -1,433 +1,437 @@ @@ -1,433 +1,437 @@
1/* $NetBSD: subr_cpu.c,v 1.3 2019/12/21 12:53:53 ad Exp $ */ 1/* $NetBSD: subr_cpu.c,v 1.4 2020/01/02 01:31:17 ad Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 2007, 2008, 2009, 2010, 2012, 2019 The NetBSD Foundation, Inc. 4 * Copyright (c) 2007, 2008, 2009, 2010, 2012, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * This code is derived from software contributed to The NetBSD Foundation 7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran. 8 * by Andrew Doran.
9 * 9 *
10 * Redistribution and use in source and binary forms, with or without 10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions 11 * modification, are permitted provided that the following conditions
12 * are met: 12 * are met:
13 * 1. Redistributions of source code must retain the above copyright 13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer. 14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright 15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the 16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution. 17 * documentation and/or other materials provided with the distribution.
18 * 18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE. 29 * POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31 31
32/*- 32/*-
33 * Copyright (c)2007 YAMAMOTO Takashi, 33 * Copyright (c)2007 YAMAMOTO Takashi,
34 * All rights reserved. 34 * All rights reserved.
35 * 35 *
36 * Redistribution and use in source and binary forms, with or without 36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions 37 * modification, are permitted provided that the following conditions
38 * are met: 38 * are met:
39 * 1. Redistributions of source code must retain the above copyright 39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer. 40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright 41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the 42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution. 43 * documentation and/or other materials provided with the distribution.
44 * 44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE. 55 * SUCH DAMAGE.
56 */ 56 */
57 57
58/* 58/*
59 * CPU related routines shared with rump. 59 * CPU related routines shared with rump.
60 */ 60 */
61 61
62#include <sys/cdefs.h> 62#include <sys/cdefs.h>
63__KERNEL_RCSID(0, "$NetBSD: subr_cpu.c,v 1.3 2019/12/21 12:53:53 ad Exp $"); 63__KERNEL_RCSID(0, "$NetBSD: subr_cpu.c,v 1.4 2020/01/02 01:31:17 ad Exp $");
64 64
65#include <sys/param.h> 65#include <sys/param.h>
66#include <sys/systm.h> 66#include <sys/systm.h>
67#include <sys/sched.h> 67#include <sys/sched.h>
68#include <sys/conf.h> 68#include <sys/conf.h>
69#include <sys/cpu.h> 69#include <sys/cpu.h>
70#include <sys/proc.h> 70#include <sys/proc.h>
71#include <sys/kernel.h> 71#include <sys/kernel.h>
72#include <sys/kmem.h> 72#include <sys/kmem.h>
73 73
74kmutex_t cpu_lock __cacheline_aligned; 74kmutex_t cpu_lock __cacheline_aligned;
75int ncpu __read_mostly; 75int ncpu __read_mostly;
76int ncpuonline __read_mostly; 76int ncpuonline __read_mostly;
77bool mp_online __read_mostly; 77bool mp_online __read_mostly;
78static bool cpu_topology_present __read_mostly; 78static bool cpu_topology_present __read_mostly;
79int64_t cpu_counts[CPU_COUNT_MAX]; 79int64_t cpu_counts[CPU_COUNT_MAX];
80 80
81/* An array of CPUs. There are ncpu entries. */ 81/* An array of CPUs. There are ncpu entries. */
82struct cpu_info **cpu_infos __read_mostly; 82struct cpu_info **cpu_infos __read_mostly;
83 83
84/* Note: set on mi_cpu_attach() and idle_loop(). */ 84/* Note: set on mi_cpu_attach() and idle_loop(). */
85kcpuset_t * kcpuset_attached __read_mostly = NULL; 85kcpuset_t * kcpuset_attached __read_mostly = NULL;
86kcpuset_t * kcpuset_running __read_mostly = NULL; 86kcpuset_t * kcpuset_running __read_mostly = NULL;
87 87
88static char cpu_model[128]; 88static char cpu_model[128];
89 89
90/* 90/*
91 * mi_cpu_init: early initialisation of MI CPU related structures. 91 * mi_cpu_init: early initialisation of MI CPU related structures.
92 * 92 *
93 * Note: may not block and memory allocator is not yet available. 93 * Note: may not block and memory allocator is not yet available.
94 */ 94 */
95void 95void
96mi_cpu_init(void) 96mi_cpu_init(void)
97{ 97{
 98 struct cpu_info *ci;
98 99
99 mutex_init(&cpu_lock, MUTEX_DEFAULT, IPL_NONE); 100 mutex_init(&cpu_lock, MUTEX_DEFAULT, IPL_NONE);
100 101
101 kcpuset_create(&kcpuset_attached, true); 102 kcpuset_create(&kcpuset_attached, true);
102 kcpuset_create(&kcpuset_running, true); 103 kcpuset_create(&kcpuset_running, true);
103 kcpuset_set(kcpuset_running, 0); 104 kcpuset_set(kcpuset_running, 0);
 105
 106 ci = curcpu();
 107 ci->ci_smt_primary = ci;
104} 108}
105 109
106int 110int
107cpu_setmodel(const char *fmt, ...) 111cpu_setmodel(const char *fmt, ...)
108{ 112{
109 int len; 113 int len;
110 va_list ap; 114 va_list ap;
111 115
112 va_start(ap, fmt); 116 va_start(ap, fmt);
113 len = vsnprintf(cpu_model, sizeof(cpu_model), fmt, ap); 117 len = vsnprintf(cpu_model, sizeof(cpu_model), fmt, ap);
114 va_end(ap); 118 va_end(ap);
115 return len; 119 return len;
116} 120}
117 121
118const char * 122const char *
119cpu_getmodel(void) 123cpu_getmodel(void)
120{ 124{
121 return cpu_model; 125 return cpu_model;
122} 126}
123 127
124bool 128bool
125cpu_softintr_p(void) 129cpu_softintr_p(void)
126{ 130{
127 131
128 return (curlwp->l_pflag & LP_INTR) != 0; 132 return (curlwp->l_pflag & LP_INTR) != 0;
129} 133}
130 134
131/* 135/*
132 * Collect CPU topology information as each CPU is attached. This can be 136 * Collect CPU topology information as each CPU is attached. This can be
133 * called early during boot, so we need to be careful what we do. 137 * called early during boot, so we need to be careful what we do.
134 */ 138 */
135void 139void
136cpu_topology_set(struct cpu_info *ci, u_int package_id, u_int core_id, 140cpu_topology_set(struct cpu_info *ci, u_int package_id, u_int core_id,
137 u_int smt_id, u_int numa_id) 141 u_int smt_id, u_int numa_id)
138{ 142{
139 enum cpu_rel rel; 143 enum cpu_rel rel;
140 144
141 cpu_topology_present = true; 145 cpu_topology_present = true;
142 ci->ci_package_id = package_id; 146 ci->ci_package_id = package_id;
143 ci->ci_core_id = core_id; 147 ci->ci_core_id = core_id;
144 ci->ci_smt_id = smt_id; 148 ci->ci_smt_id = smt_id;
145 ci->ci_numa_id = numa_id; 149 ci->ci_numa_id = numa_id;
146 for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) { 150 for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
147 ci->ci_sibling[rel] = ci; 151 ci->ci_sibling[rel] = ci;
148 ci->ci_nsibling[rel] = 1; 152 ci->ci_nsibling[rel] = 1;
149 } 153 }
150} 154}
151 155
152/* 156/*
153 * Link a CPU into the given circular list. 157 * Link a CPU into the given circular list.
154 */ 158 */
155static void 159static void
156cpu_topology_link(struct cpu_info *ci, struct cpu_info *ci2, enum cpu_rel rel) 160cpu_topology_link(struct cpu_info *ci, struct cpu_info *ci2, enum cpu_rel rel)
157{ 161{
158 struct cpu_info *ci3; 162 struct cpu_info *ci3;
159 163
160 /* Walk to the end of the existing circular list and append. */ 164 /* Walk to the end of the existing circular list and append. */
161 for (ci3 = ci2;; ci3 = ci3->ci_sibling[rel]) { 165 for (ci3 = ci2;; ci3 = ci3->ci_sibling[rel]) {
162 ci3->ci_nsibling[rel]++; 166 ci3->ci_nsibling[rel]++;
163 if (ci3->ci_sibling[rel] == ci2) { 167 if (ci3->ci_sibling[rel] == ci2) {
164 break; 168 break;
165 } 169 }
166 } 170 }
167 ci->ci_sibling[rel] = ci2; 171 ci->ci_sibling[rel] = ci2;
168 ci3->ci_sibling[rel] = ci; 172 ci3->ci_sibling[rel] = ci;
169 ci->ci_nsibling[rel] = ci3->ci_nsibling[rel]; 173 ci->ci_nsibling[rel] = ci3->ci_nsibling[rel];
170} 174}
171 175
172/* 176/*
173 * Print out the topology lists. 177 * Print out the topology lists.
174 */ 178 */
175static void 179static void
176cpu_topology_dump(void) 180cpu_topology_dump(void)
177{ 181{
178#if DEBUG  182#if DEBUG
179 CPU_INFO_ITERATOR cii; 183 CPU_INFO_ITERATOR cii;
180 struct cpu_info *ci, *ci2; 184 struct cpu_info *ci, *ci2;
181 const char *names[] = { "core", "package", "peer", "smt" }; 185 const char *names[] = { "core", "package", "peer", "smt" };
182 enum cpu_rel rel; 186 enum cpu_rel rel;
183 int i; 187 int i;
184 188
185 for (CPU_INFO_FOREACH(cii, ci)) { 189 for (CPU_INFO_FOREACH(cii, ci)) {
186 for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) { 190 for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
187 printf("%s has %d %s siblings:", cpu_name(ci), 191 printf("%s has %d %s siblings:", cpu_name(ci),
188 ci->ci_nsibling[rel], names[rel]); 192 ci->ci_nsibling[rel], names[rel]);
189 ci2 = ci->ci_sibling[rel]; 193 ci2 = ci->ci_sibling[rel];
190 i = 0; 194 i = 0;
191 do { 195 do {
192 printf(" %s", cpu_name(ci2)); 196 printf(" %s", cpu_name(ci2));
193 ci2 = ci2->ci_sibling[rel]; 197 ci2 = ci2->ci_sibling[rel];
194 } while (++i < 64 && ci2 != ci->ci_sibling[rel]); 198 } while (++i < 64 && ci2 != ci->ci_sibling[rel]);
195 if (i == 64) { 199 if (i == 64) {
196 printf(" GAVE UP"); 200 printf(" GAVE UP");
197 } 201 }
198 printf("\n"); 202 printf("\n");
199 } 203 }
200 } 204 }
201#endif /* DEBUG */ 205#endif /* DEBUG */
202} 206}
203 207
204/* 208/*
205 * Fake up topology info if we have none, or if what we got was bogus. 209 * Fake up topology info if we have none, or if what we got was bogus.
206 * Don't override ci_package_id, etc, if cpu_topology_present is set. 210 * Don't override ci_package_id, etc, if cpu_topology_present is set.
207 * MD code also uses these. 211 * MD code also uses these.
208 */ 212 */
209static void 213static void
210cpu_topology_fake(void) 214cpu_topology_fake(void)
211{ 215{
212 CPU_INFO_ITERATOR cii; 216 CPU_INFO_ITERATOR cii;
213 struct cpu_info *ci; 217 struct cpu_info *ci;
214 enum cpu_rel rel; 218 enum cpu_rel rel;
215 219
216 for (CPU_INFO_FOREACH(cii, ci)) { 220 for (CPU_INFO_FOREACH(cii, ci)) {
217 for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) { 221 for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
218 ci->ci_sibling[rel] = ci; 222 ci->ci_sibling[rel] = ci;
219 ci->ci_nsibling[rel] = 1; 223 ci->ci_nsibling[rel] = 1;
220 } 224 }
221 if (!cpu_topology_present) { 225 if (!cpu_topology_present) {
222 ci->ci_package_id = cpu_index(ci); 226 ci->ci_package_id = cpu_index(ci);
223 } 227 }
224 ci->ci_smt_primary = ci; 228 ci->ci_smt_primary = ci;
225 ci->ci_schedstate.spc_flags |= SPCF_SMTPRIMARY; 229 ci->ci_schedstate.spc_flags |= SPCF_SMTPRIMARY;
226 } 230 }
227 cpu_topology_dump(); 231 cpu_topology_dump();
228} 232}
229 233
230/* 234/*
231 * Fix up basic CPU topology info. Right now that means attach each CPU to 235 * Fix up basic CPU topology info. Right now that means attach each CPU to
232 * circular lists of its siblings in the same core, and in the same package.  236 * circular lists of its siblings in the same core, and in the same package.
233 */ 237 */
234void 238void
235cpu_topology_init(void) 239cpu_topology_init(void)
236{ 240{
237 CPU_INFO_ITERATOR cii, cii2; 241 CPU_INFO_ITERATOR cii, cii2;
238 struct cpu_info *ci, *ci2, *ci3; 242 struct cpu_info *ci, *ci2, *ci3;
239 u_int ncore, npackage, npeer, minsmt; 243 u_int ncore, npackage, npeer, minsmt;
240 bool symmetric; 244 bool symmetric;
241 245
242 if (!cpu_topology_present) { 246 if (!cpu_topology_present) {
243 cpu_topology_fake(); 247 cpu_topology_fake();
244 return; 248 return;
245 } 249 }
246 250
247 /* Find siblings in same core and package. */ 251 /* Find siblings in same core and package. */
248 for (CPU_INFO_FOREACH(cii, ci)) { 252 for (CPU_INFO_FOREACH(cii, ci)) {
249 for (CPU_INFO_FOREACH(cii2, ci2)) { 253 for (CPU_INFO_FOREACH(cii2, ci2)) {
250 /* Avoid bad things happening. */ 254 /* Avoid bad things happening. */
251 if (ci2->ci_package_id == ci->ci_package_id && 255 if (ci2->ci_package_id == ci->ci_package_id &&
252 ci2->ci_core_id == ci->ci_core_id && 256 ci2->ci_core_id == ci->ci_core_id &&
253 ci2->ci_smt_id == ci->ci_smt_id && 257 ci2->ci_smt_id == ci->ci_smt_id &&
254 ci2 != ci) { 258 ci2 != ci) {
255 printf("cpu_topology_init: info bogus, " 259 printf("cpu_topology_init: info bogus, "
256 "faking it\n"); 260 "faking it\n");
257 cpu_topology_fake(); 261 cpu_topology_fake();
258 return; 262 return;
259 } 263 }
260 if (ci2 == ci || 264 if (ci2 == ci ||
261 ci2->ci_package_id != ci->ci_package_id) { 265 ci2->ci_package_id != ci->ci_package_id) {
262 continue; 266 continue;
263 } 267 }
264 /* Find CPUs in the same core. */ 268 /* Find CPUs in the same core. */
265 if (ci->ci_nsibling[CPUREL_CORE] == 1 && 269 if (ci->ci_nsibling[CPUREL_CORE] == 1 &&
266 ci->ci_core_id == ci2->ci_core_id) { 270 ci->ci_core_id == ci2->ci_core_id) {
267 cpu_topology_link(ci, ci2, CPUREL_CORE); 271 cpu_topology_link(ci, ci2, CPUREL_CORE);
268 } 272 }
269 /* Find CPUs in the same package. */ 273 /* Find CPUs in the same package. */
270 if (ci->ci_nsibling[CPUREL_PACKAGE] == 1) { 274 if (ci->ci_nsibling[CPUREL_PACKAGE] == 1) {
271 cpu_topology_link(ci, ci2, CPUREL_PACKAGE); 275 cpu_topology_link(ci, ci2, CPUREL_PACKAGE);
272 } 276 }
273 if (ci->ci_nsibling[CPUREL_CORE] > 1 && 277 if (ci->ci_nsibling[CPUREL_CORE] > 1 &&
274 ci->ci_nsibling[CPUREL_PACKAGE] > 1) { 278 ci->ci_nsibling[CPUREL_PACKAGE] > 1) {
275 break; 279 break;
276 } 280 }
277 } 281 }
278 } 282 }
279 283
280 /* Find peers in other packages, and peer SMTs in same package. */ 284 /* Find peers in other packages, and peer SMTs in same package. */
281 for (CPU_INFO_FOREACH(cii, ci)) { 285 for (CPU_INFO_FOREACH(cii, ci)) {
282 if (ci->ci_nsibling[CPUREL_PEER] <= 1) { 286 if (ci->ci_nsibling[CPUREL_PEER] <= 1) {
283 for (CPU_INFO_FOREACH(cii2, ci2)) { 287 for (CPU_INFO_FOREACH(cii2, ci2)) {
284 if (ci != ci2 && 288 if (ci != ci2 &&
285 ci->ci_package_id != ci2->ci_package_id && 289 ci->ci_package_id != ci2->ci_package_id &&
286 ci->ci_core_id == ci2->ci_core_id && 290 ci->ci_core_id == ci2->ci_core_id &&
287 ci->ci_smt_id == ci2->ci_smt_id) { 291 ci->ci_smt_id == ci2->ci_smt_id) {
288 cpu_topology_link(ci, ci2, 292 cpu_topology_link(ci, ci2,
289 CPUREL_PEER); 293 CPUREL_PEER);
290 break; 294 break;
291 } 295 }
292 } 296 }
293 } 297 }
294 if (ci->ci_nsibling[CPUREL_SMT] <= 1) { 298 if (ci->ci_nsibling[CPUREL_SMT] <= 1) {
295 for (CPU_INFO_FOREACH(cii2, ci2)) { 299 for (CPU_INFO_FOREACH(cii2, ci2)) {
296 if (ci != ci2 && 300 if (ci != ci2 &&
297 ci->ci_package_id == ci2->ci_package_id && 301 ci->ci_package_id == ci2->ci_package_id &&
298 ci->ci_core_id != ci2->ci_core_id && 302 ci->ci_core_id != ci2->ci_core_id &&
299 ci->ci_smt_id == ci2->ci_smt_id) { 303 ci->ci_smt_id == ci2->ci_smt_id) {
300 cpu_topology_link(ci, ci2, 304 cpu_topology_link(ci, ci2,
301 CPUREL_SMT); 305 CPUREL_SMT);
302 break; 306 break;
303 } 307 }
304 } 308 }
305 } 309 }
306 } 310 }
307 311
308 /* Determine whether the topology is bogus/symmetric. */ 312 /* Determine whether the topology is bogus/symmetric. */
309 npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE]; 313 npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE];
310 ncore = curcpu()->ci_nsibling[CPUREL_CORE]; 314 ncore = curcpu()->ci_nsibling[CPUREL_CORE];
311 npeer = curcpu()->ci_nsibling[CPUREL_PEER]; 315 npeer = curcpu()->ci_nsibling[CPUREL_PEER];
312 symmetric = true; 316 symmetric = true;
313 for (CPU_INFO_FOREACH(cii, ci)) { 317 for (CPU_INFO_FOREACH(cii, ci)) {
314 if (npackage != ci->ci_nsibling[CPUREL_PACKAGE] || 318 if (npackage != ci->ci_nsibling[CPUREL_PACKAGE] ||
315 ncore != ci->ci_nsibling[CPUREL_CORE] || 319 ncore != ci->ci_nsibling[CPUREL_CORE] ||
316 npeer != ci->ci_nsibling[CPUREL_PEER]) { 320 npeer != ci->ci_nsibling[CPUREL_PEER]) {
317 symmetric = false; 321 symmetric = false;
318 } 322 }
319 } 323 }
320 cpu_topology_dump(); 324 cpu_topology_dump();
321 if (symmetric == false) { 325 if (symmetric == false) {
322 printf("cpu_topology_init: not symmetric, faking it\n"); 326 printf("cpu_topology_init: not symmetric, faking it\n");
323 cpu_topology_fake(); 327 cpu_topology_fake();
324 return; 328 return;
325 } 329 }
326 330
327 /* Identify SMT primary in each core. */ 331 /* Identify SMT primary in each core. */
328 for (CPU_INFO_FOREACH(cii, ci)) { 332 for (CPU_INFO_FOREACH(cii, ci)) {
329 ci2 = ci3 = ci; 333 ci2 = ci3 = ci;
330 minsmt = ci->ci_smt_id; 334 minsmt = ci->ci_smt_id;
331 do { 335 do {
332 if (ci2->ci_smt_id < minsmt) { 336 if (ci2->ci_smt_id < minsmt) {
333 ci3 = ci2; 337 ci3 = ci2;
334 minsmt = ci2->ci_smt_id; 338 minsmt = ci2->ci_smt_id;
335 } 339 }
336 ci2 = ci2->ci_sibling[CPUREL_CORE]; 340 ci2 = ci2->ci_sibling[CPUREL_CORE];
337 } while (ci2 != ci); 341 } while (ci2 != ci);
338 342
339 /* 343 /*
340 * Mark the SMT primary, and walk back over the list 344 * Mark the SMT primary, and walk back over the list
341 * pointing secondaries to the primary. 345 * pointing secondaries to the primary.
342 */ 346 */
343 ci3->ci_schedstate.spc_flags |= SPCF_SMTPRIMARY; 347 ci3->ci_schedstate.spc_flags |= SPCF_SMTPRIMARY;
344 ci2 = ci; 348 ci2 = ci;
345 do { 349 do {
346 ci2->ci_smt_primary = ci3; 350 ci2->ci_smt_primary = ci3;
347 ci2 = ci2->ci_sibling[CPUREL_CORE]; 351 ci2 = ci2->ci_sibling[CPUREL_CORE];
348 } while (ci2 != ci); 352 } while (ci2 != ci);
349 } 353 }
350} 354}
351 355
352/* 356/*
353 * Adjust one count, for a counter that's NOT updated from interrupt 357 * Adjust one count, for a counter that's NOT updated from interrupt
354 * context. Hardly worth making an inline due to preemption stuff. 358 * context. Hardly worth making an inline due to preemption stuff.
355 */ 359 */
356void 360void
357cpu_count(enum cpu_count idx, int64_t delta) 361cpu_count(enum cpu_count idx, int64_t delta)
358{ 362{
359 lwp_t *l = curlwp; 363 lwp_t *l = curlwp;
360 KPREEMPT_DISABLE(l); 364 KPREEMPT_DISABLE(l);
361 l->l_cpu->ci_counts[idx] += delta; 365 l->l_cpu->ci_counts[idx] += delta;
362 KPREEMPT_ENABLE(l); 366 KPREEMPT_ENABLE(l);
363} 367}
364 368
365/* 369/*
366 * Fetch fresh sum total for all counts. Expensive - don't call often. 370 * Fetch fresh sum total for all counts. Expensive - don't call often.
367 */ 371 */
368void 372void
369cpu_count_sync_all(void) 373cpu_count_sync_all(void)
370{ 374{
371 CPU_INFO_ITERATOR cii; 375 CPU_INFO_ITERATOR cii;
372 struct cpu_info *ci; 376 struct cpu_info *ci;
373 int64_t sum[CPU_COUNT_MAX], *ptr; 377 int64_t sum[CPU_COUNT_MAX], *ptr;
374 enum cpu_count i; 378 enum cpu_count i;
375 int s; 379 int s;
376 380
377 KASSERT(sizeof(ci->ci_counts) == sizeof(cpu_counts)); 381 KASSERT(sizeof(ci->ci_counts) == sizeof(cpu_counts));
378 382
379 if (__predict_true(mp_online)) { 383 if (__predict_true(mp_online)) {
380 memset(sum, 0, sizeof(sum)); 384 memset(sum, 0, sizeof(sum));
381 /* 385 /*
382 * We want this to be reasonably quick, so any value we get 386 * We want this to be reasonably quick, so any value we get
383 * isn't totally out of whack, so don't let the current LWP 387 * isn't totally out of whack, so don't let the current LWP
384 * get preempted. 388 * get preempted.
385 */ 389 */
386 s = splvm(); 390 s = splvm();
387 curcpu()->ci_counts[CPU_COUNT_SYNC_ALL]++; 391 curcpu()->ci_counts[CPU_COUNT_SYNC_ALL]++;
388 for (CPU_INFO_FOREACH(cii, ci)) { 392 for (CPU_INFO_FOREACH(cii, ci)) {
389 ptr = ci->ci_counts; 393 ptr = ci->ci_counts;
390 for (i = 0; i < CPU_COUNT_MAX; i += 8) { 394 for (i = 0; i < CPU_COUNT_MAX; i += 8) {
391 sum[i+0] += ptr[i+0]; 395 sum[i+0] += ptr[i+0];
392 sum[i+1] += ptr[i+1]; 396 sum[i+1] += ptr[i+1];
393 sum[i+2] += ptr[i+2]; 397 sum[i+2] += ptr[i+2];
394 sum[i+3] += ptr[i+3]; 398 sum[i+3] += ptr[i+3];
395 sum[i+4] += ptr[i+4]; 399 sum[i+4] += ptr[i+4];
396 sum[i+5] += ptr[i+5]; 400 sum[i+5] += ptr[i+5];
397 sum[i+6] += ptr[i+6]; 401 sum[i+6] += ptr[i+6];
398 sum[i+7] += ptr[i+7]; 402 sum[i+7] += ptr[i+7];
399 } 403 }
400 KASSERT(i == CPU_COUNT_MAX); 404 KASSERT(i == CPU_COUNT_MAX);
401 } 405 }
402 memcpy(cpu_counts, sum, sizeof(cpu_counts)); 406 memcpy(cpu_counts, sum, sizeof(cpu_counts));
403 splx(s); 407 splx(s);
404 } else { 408 } else {
405 memcpy(cpu_counts, curcpu()->ci_counts, sizeof(cpu_counts)); 409 memcpy(cpu_counts, curcpu()->ci_counts, sizeof(cpu_counts));
406 } 410 }
407} 411}
408 412
409/* 413/*
410 * Fetch a fresh sum total for one single count. Expensive - don't call often. 414 * Fetch a fresh sum total for one single count. Expensive - don't call often.
411 */ 415 */
412int64_t 416int64_t
413cpu_count_sync(enum cpu_count count) 417cpu_count_sync(enum cpu_count count)
414{ 418{
415 CPU_INFO_ITERATOR cii; 419 CPU_INFO_ITERATOR cii;
416 struct cpu_info *ci; 420 struct cpu_info *ci;
417 int64_t sum; 421 int64_t sum;
418 int s; 422 int s;
419 423
420 if (__predict_true(mp_online)) { 424 if (__predict_true(mp_online)) {
421 s = splvm(); 425 s = splvm();
422 curcpu()->ci_counts[CPU_COUNT_SYNC_ONE]++; 426 curcpu()->ci_counts[CPU_COUNT_SYNC_ONE]++;
423 sum = 0; 427 sum = 0;
424 for (CPU_INFO_FOREACH(cii, ci)) { 428 for (CPU_INFO_FOREACH(cii, ci)) {
425 sum += ci->ci_counts[count]; 429 sum += ci->ci_counts[count];
426 } 430 }
427 splx(s); 431 splx(s);
428 } else { 432 } else {
429 /* XXX Early boot, iterator might not be available. */ 433 /* XXX Early boot, iterator might not be available. */
430 sum = curcpu()->ci_counts[count]; 434 sum = curcpu()->ci_counts[count];
431 } 435 }
432 return cpu_counts[count] = sum; 436 return cpu_counts[count] = sum;
433} 437}