Wed Jan 29 05:54:29 2020 UTC ()
Adopt <net/if_stats.h>.


(thorpej)
diff -r1.21 -r1.22 src/sys/dev/cadence/if_cemac.c

cvs diff -r1.21 -r1.22 src/sys/dev/cadence/if_cemac.c (switch to unified diff)

--- src/sys/dev/cadence/if_cemac.c 2019/05/28 07:41:48 1.21
+++ src/sys/dev/cadence/if_cemac.c 2020/01/29 05:54:29 1.22
@@ -1,1079 +1,1084 @@ @@ -1,1079 +1,1084 @@
1/* $NetBSD: if_cemac.c,v 1.21 2019/05/28 07:41:48 msaitoh Exp $ */ 1/* $NetBSD: if_cemac.c,v 1.22 2020/01/29 05:54:29 thorpej Exp $ */
2 2
3/* 3/*
4 * Copyright (c) 2015 Genetec Corporation. All rights reserved. 4 * Copyright (c) 2015 Genetec Corporation. All rights reserved.
5 * Written by Hashimoto Kenichi for Genetec Corporation. 5 * Written by Hashimoto Kenichi for Genetec Corporation.
6 * 6 *
7 * Based on arch/arm/at91/at91emac.c 7 * Based on arch/arm/at91/at91emac.c
8 * 8 *
9 * Copyright (c) 2007 Embedtronics Oy 9 * Copyright (c) 2007 Embedtronics Oy
10 * All rights reserved. 10 * All rights reserved.
11 * 11 *
12 * Copyright (c) 2004 Jesse Off 12 * Copyright (c) 2004 Jesse Off
13 * All rights reserved. 13 * All rights reserved.
14 * 14 *
15 * Redistribution and use in source and binary forms, with or without 15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions 16 * modification, are permitted provided that the following conditions
17 * are met: 17 * are met:
18 * 1. Redistributions of source code must retain the above copyright 18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer. 19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright 20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the 21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution. 22 * documentation and/or other materials provided with the distribution.
23 * 23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE. 34 * POSSIBILITY OF SUCH DAMAGE.
35 */ 35 */
36 36
37/* 37/*
38 * Cadence EMAC/GEM ethernet controller IP driver 38 * Cadence EMAC/GEM ethernet controller IP driver
39 * used by arm/at91, arm/zynq SoC 39 * used by arm/at91, arm/zynq SoC
40 */ 40 */
41 41
42#include <sys/cdefs.h> 42#include <sys/cdefs.h>
43__KERNEL_RCSID(0, "$NetBSD: if_cemac.c,v 1.21 2019/05/28 07:41:48 msaitoh Exp $"); 43__KERNEL_RCSID(0, "$NetBSD: if_cemac.c,v 1.22 2020/01/29 05:54:29 thorpej Exp $");
44 44
45#include <sys/types.h> 45#include <sys/types.h>
46#include <sys/param.h> 46#include <sys/param.h>
47#include <sys/systm.h> 47#include <sys/systm.h>
48#include <sys/ioctl.h> 48#include <sys/ioctl.h>
49#include <sys/kernel.h> 49#include <sys/kernel.h>
50#include <sys/proc.h> 50#include <sys/proc.h>
51#include <sys/malloc.h> 51#include <sys/malloc.h>
52#include <sys/time.h> 52#include <sys/time.h>
53#include <sys/device.h> 53#include <sys/device.h>
54#include <uvm/uvm_extern.h> 54#include <uvm/uvm_extern.h>
55 55
56#include <sys/bus.h> 56#include <sys/bus.h>
57#include <machine/intr.h> 57#include <machine/intr.h>
58 58
59#include <arm/cpufunc.h> 59#include <arm/cpufunc.h>
60 60
61#include <net/if.h> 61#include <net/if.h>
62#include <net/if_dl.h> 62#include <net/if_dl.h>
63#include <net/if_types.h> 63#include <net/if_types.h>
64#include <net/if_media.h> 64#include <net/if_media.h>
65#include <net/if_ether.h> 65#include <net/if_ether.h>
66#include <net/bpf.h> 66#include <net/bpf.h>
67 67
68#include <dev/mii/mii.h> 68#include <dev/mii/mii.h>
69#include <dev/mii/miivar.h> 69#include <dev/mii/miivar.h>
70 70
71#ifdef INET 71#ifdef INET
72#include <netinet/in.h> 72#include <netinet/in.h>
73#include <netinet/in_systm.h> 73#include <netinet/in_systm.h>
74#include <netinet/in_var.h> 74#include <netinet/in_var.h>
75#include <netinet/ip.h> 75#include <netinet/ip.h>
76#include <netinet/if_inarp.h> 76#include <netinet/if_inarp.h>
77#endif 77#endif
78 78
79#include <dev/cadence/cemacreg.h> 79#include <dev/cadence/cemacreg.h>
80#include <dev/cadence/if_cemacvar.h> 80#include <dev/cadence/if_cemacvar.h>
81 81
82#define DEFAULT_MDCDIV 32 82#define DEFAULT_MDCDIV 32
83 83
84#define CEMAC_READ(x) \ 84#define CEMAC_READ(x) \
85 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (x)) 85 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (x))
86#define CEMAC_WRITE(x, y) \ 86#define CEMAC_WRITE(x, y) \
87 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (x), (y)) 87 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (x), (y))
88#define CEMAC_GEM_WRITE(x, y) \ 88#define CEMAC_GEM_WRITE(x, y) \
89 do { \ 89 do { \
90 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) \ 90 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) \
91 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (GEM_##x), (y)); \ 91 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (GEM_##x), (y)); \
92 else \ 92 else \
93 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (ETH_##x), (y)); \ 93 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (ETH_##x), (y)); \
94 } while(0) 94 } while(0)
95 95
96#define RX_QLEN 64 96#define RX_QLEN 64
97#define TX_QLEN 2 /* I'm very sorry but that's where we can get */ 97#define TX_QLEN 2 /* I'm very sorry but that's where we can get */
98 98
99struct cemac_qmeta { 99struct cemac_qmeta {
100 struct mbuf *m; 100 struct mbuf *m;
101 bus_dmamap_t m_dmamap; 101 bus_dmamap_t m_dmamap;
102}; 102};
103 103
104struct cemac_softc { 104struct cemac_softc {
105 device_t sc_dev; 105 device_t sc_dev;
106 bus_space_tag_t sc_iot; 106 bus_space_tag_t sc_iot;
107 bus_space_handle_t sc_ioh; 107 bus_space_handle_t sc_ioh;
108 bus_dma_tag_t sc_dmat; 108 bus_dma_tag_t sc_dmat;
109 uint8_t sc_enaddr[ETHER_ADDR_LEN]; 109 uint8_t sc_enaddr[ETHER_ADDR_LEN];
110 struct ethercom sc_ethercom; 110 struct ethercom sc_ethercom;
111 mii_data_t sc_mii; 111 mii_data_t sc_mii;
112 112
113 void *rbqpage; 113 void *rbqpage;
114 unsigned rbqlen; 114 unsigned rbqlen;
115 bus_addr_t rbqpage_dsaddr; 115 bus_addr_t rbqpage_dsaddr;
116 bus_dmamap_t rbqpage_dmamap; 116 bus_dmamap_t rbqpage_dmamap;
117 void *tbqpage; 117 void *tbqpage;
118 unsigned tbqlen; 118 unsigned tbqlen;
119 bus_addr_t tbqpage_dsaddr; 119 bus_addr_t tbqpage_dsaddr;
120 bus_dmamap_t tbqpage_dmamap; 120 bus_dmamap_t tbqpage_dmamap;
121 121
122 volatile struct eth_dsc *RDSC; 122 volatile struct eth_dsc *RDSC;
123 int rxqi; 123 int rxqi;
124 struct cemac_qmeta rxq[RX_QLEN]; 124 struct cemac_qmeta rxq[RX_QLEN];
125 volatile struct eth_dsc *TDSC; 125 volatile struct eth_dsc *TDSC;
126 int txqi, txqc; 126 int txqi, txqc;
127 struct cemac_qmeta txq[TX_QLEN]; 127 struct cemac_qmeta txq[TX_QLEN];
128 callout_t cemac_tick_ch; 128 callout_t cemac_tick_ch;
129 129
130 int cemac_flags; 130 int cemac_flags;
131}; 131};
132 132
133static void cemac_init(struct cemac_softc *); 133static void cemac_init(struct cemac_softc *);
134static int cemac_gctx(struct cemac_softc *); 134static int cemac_gctx(struct cemac_softc *);
135static int cemac_mediachange(struct ifnet *); 135static int cemac_mediachange(struct ifnet *);
136static void cemac_mediastatus(struct ifnet *, struct ifmediareq *); 136static void cemac_mediastatus(struct ifnet *, struct ifmediareq *);
137static int cemac_mii_readreg(device_t, int, int, uint16_t *); 137static int cemac_mii_readreg(device_t, int, int, uint16_t *);
138static int cemac_mii_writereg(device_t, int, int, uint16_t); 138static int cemac_mii_writereg(device_t, int, int, uint16_t);
139static void cemac_statchg(struct ifnet *); 139static void cemac_statchg(struct ifnet *);
140static void cemac_tick(void *); 140static void cemac_tick(void *);
141static int cemac_ifioctl(struct ifnet *, u_long, void *); 141static int cemac_ifioctl(struct ifnet *, u_long, void *);
142static void cemac_ifstart(struct ifnet *); 142static void cemac_ifstart(struct ifnet *);
143static void cemac_ifwatchdog(struct ifnet *); 143static void cemac_ifwatchdog(struct ifnet *);
144static int cemac_ifinit(struct ifnet *); 144static int cemac_ifinit(struct ifnet *);
145static void cemac_ifstop(struct ifnet *, int); 145static void cemac_ifstop(struct ifnet *, int);
146static void cemac_setaddr(struct ifnet *); 146static void cemac_setaddr(struct ifnet *);
147 147
148#ifdef CEMAC_DEBUG 148#ifdef CEMAC_DEBUG
149int cemac_debug = CEMAC_DEBUG; 149int cemac_debug = CEMAC_DEBUG;
150#define DPRINTFN(n, fmt) if (cemac_debug >= (n)) printf fmt 150#define DPRINTFN(n, fmt) if (cemac_debug >= (n)) printf fmt
151#else 151#else
152#define DPRINTFN(n, fmt) 152#define DPRINTFN(n, fmt)
153#endif 153#endif
154 154
155CFATTACH_DECL_NEW(cemac, sizeof(struct cemac_softc), 155CFATTACH_DECL_NEW(cemac, sizeof(struct cemac_softc),
156 cemac_match, cemac_attach, NULL, NULL); 156 cemac_match, cemac_attach, NULL, NULL);
157 157
158int 158int
159cemac_match_common(device_t parent, cfdata_t match, void *aux) 159cemac_match_common(device_t parent, cfdata_t match, void *aux)
160{ 160{
161 if (strcmp(match->cf_name, "cemac") == 0) 161 if (strcmp(match->cf_name, "cemac") == 0)
162 return 1; 162 return 1;
163 return 0; 163 return 0;
164} 164}
165 165
166void 166void
167cemac_attach_common(device_t self, bus_space_tag_t iot, 167cemac_attach_common(device_t self, bus_space_tag_t iot,
168 bus_space_handle_t ioh, bus_dma_tag_t dmat, int flags) 168 bus_space_handle_t ioh, bus_dma_tag_t dmat, int flags)
169{ 169{
170 struct cemac_softc *sc = device_private(self); 170 struct cemac_softc *sc = device_private(self);
171 prop_data_t enaddr; 171 prop_data_t enaddr;
172 uint32_t u; 172 uint32_t u;
173 173
174 174
175 sc->sc_dev = self; 175 sc->sc_dev = self;
176 sc->sc_ioh = ioh; 176 sc->sc_ioh = ioh;
177 sc->sc_iot = iot; 177 sc->sc_iot = iot;
178 sc->sc_dmat = dmat; 178 sc->sc_dmat = dmat;
179 sc->cemac_flags = flags; 179 sc->cemac_flags = flags;
180 180
181 aprint_naive("\n"); 181 aprint_naive("\n");
182 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) 182 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
183 aprint_normal(": Cadence Gigabit Ethernet Controller\n"); 183 aprint_normal(": Cadence Gigabit Ethernet Controller\n");
184 else 184 else
185 aprint_normal(": Cadence Ethernet Controller\n"); 185 aprint_normal(": Cadence Ethernet Controller\n");
186 186
187 /* configure emac: */ 187 /* configure emac: */
188 CEMAC_WRITE(ETH_CTL, 0); // disable everything 188 CEMAC_WRITE(ETH_CTL, 0); // disable everything
189 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts 189 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
190 CEMAC_WRITE(ETH_RBQP, 0); // clear receive 190 CEMAC_WRITE(ETH_RBQP, 0); // clear receive
191 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit 191 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
192 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) 192 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
193 CEMAC_WRITE(ETH_CFG, 193 CEMAC_WRITE(ETH_CFG,
194 GEM_CFG_CLK_64 | GEM_CFG_GEN | ETH_CFG_SPD | ETH_CFG_FD); 194 GEM_CFG_CLK_64 | GEM_CFG_GEN | ETH_CFG_SPD | ETH_CFG_FD);
195 else 195 else
196 CEMAC_WRITE(ETH_CFG, 196 CEMAC_WRITE(ETH_CFG,
197 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 197 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
198 //CEMAC_WRITE(ETH_TCR, 0); // send nothing 198 //CEMAC_WRITE(ETH_TCR, 0); // send nothing
199 //(void)CEMAC_READ(ETH_ISR); 199 //(void)CEMAC_READ(ETH_ISR);
200 u = CEMAC_READ(ETH_TSR); 200 u = CEMAC_READ(ETH_TSR);
201 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 201 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
202 | ETH_TSR_IDLE | ETH_TSR_RLE 202 | ETH_TSR_IDLE | ETH_TSR_RLE
203 | ETH_TSR_COL | ETH_TSR_OVR))); 203 | ETH_TSR_COL | ETH_TSR_OVR)));
204 u = CEMAC_READ(ETH_RSR); 204 u = CEMAC_READ(ETH_RSR);
205 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA))); 205 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
206 206
207 /* Fetch the Ethernet address from property if set. */ 207 /* Fetch the Ethernet address from property if set. */
208 enaddr = prop_dictionary_get(device_properties(self), "mac-address"); 208 enaddr = prop_dictionary_get(device_properties(self), "mac-address");
209 209
210 if (enaddr != NULL) { 210 if (enaddr != NULL) {
211 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA); 211 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
212 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN); 212 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
213 memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr), 213 memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
214 ETHER_ADDR_LEN); 214 ETHER_ADDR_LEN);
215 } else { 215 } else {
216 static const uint8_t hardcoded[ETHER_ADDR_LEN] = { 216 static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
217 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94 217 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
218 }; 218 };
219 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN); 219 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
220 } 220 }
221 221
222 cemac_init(sc); 222 cemac_init(sc);
223} 223}
224 224
225static int 225static int
226cemac_gctx(struct cemac_softc *sc) 226cemac_gctx(struct cemac_softc *sc)
227{ 227{
228 struct ifnet * ifp = &sc->sc_ethercom.ec_if; 228 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
229 uint32_t tsr; 229 uint32_t tsr;
230 230
231 tsr = CEMAC_READ(ETH_TSR); 231 tsr = CEMAC_READ(ETH_TSR);
232 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) { 232 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
233 // no space left 233 // no space left
234 if (!(tsr & ETH_TSR_BNQ)) 234 if (!(tsr & ETH_TSR_BNQ))
235 return 0; 235 return 0;
236 } else { 236 } else {
237 if (tsr & GEM_TSR_TXGO) 237 if (tsr & GEM_TSR_TXGO)
238 return 0; 238 return 0;
239 } 239 }
240 CEMAC_WRITE(ETH_TSR, tsr); 240 CEMAC_WRITE(ETH_TSR, tsr);
241 241
242 // free sent frames 242 // free sent frames
243 while (sc->txqc > (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM) ? 0 : 243 while (sc->txqc > (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM) ? 0 :
244 (tsr & ETH_TSR_IDLE ? 0 : 1))) { 244 (tsr & ETH_TSR_IDLE ? 0 : 1))) {
245 int bi = sc->txqi % TX_QLEN; 245 int bi = sc->txqi % TX_QLEN;
246 246
247 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n", 247 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
248 __FUNCTION__, bi, sc->TDSC[bi].Addr)); 248 __FUNCTION__, bi, sc->TDSC[bi].Addr));
249 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n", 249 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
250 __FUNCTION__, bi, sc->TDSC[bi].Info)); 250 __FUNCTION__, bi, sc->TDSC[bi].Info));
251 251
252 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0, 252 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
253 sc->txq[bi].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE); 253 sc->txq[bi].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
254 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap); 254 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
255 m_freem(sc->txq[bi].m); 255 m_freem(sc->txq[bi].m);
256 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", 256 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
257 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc)); 257 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc));
258 sc->txq[bi].m = NULL; 258 sc->txq[bi].m = NULL;
259 sc->txqi = (bi + 1) % TX_QLEN; 259 sc->txqi = (bi + 1) % TX_QLEN;
260 sc->txqc--; 260 sc->txqc--;
261 } 261 }
262 262
263 // mark we're free 263 // mark we're free
264 if (ifp->if_flags & IFF_OACTIVE) { 264 if (ifp->if_flags & IFF_OACTIVE) {
265 ifp->if_flags &= ~IFF_OACTIVE; 265 ifp->if_flags &= ~IFF_OACTIVE;
266 /* Disable transmit-buffer-free interrupt */ 266 /* Disable transmit-buffer-free interrupt */
267 /*CEMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/ 267 /*CEMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
268 } 268 }
269 269
270 return 1; 270 return 1;
271} 271}
272 272
273int 273int
274cemac_intr(void *arg) 274cemac_intr(void *arg)
275{ 275{
276 struct cemac_softc *sc = (struct cemac_softc *)arg; 276 struct cemac_softc *sc = (struct cemac_softc *)arg;
277 struct ifnet * ifp = &sc->sc_ethercom.ec_if; 277 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
278 uint32_t imr, isr, ctl; 278 uint32_t imr, isr, ctl;
279#ifdef CEMAC_DEBUG 279#ifdef CEMAC_DEBUG
280 uint32_t rsr; 280 uint32_t rsr;
281#endif 281#endif
282 int bi; 282 int bi;
283 283
284 imr = ~CEMAC_READ(ETH_IMR); 284 imr = ~CEMAC_READ(ETH_IMR);
285 if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE | 285 if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE |
286 ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM))) { 286 ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM))) {
287 // interrupt not enabled, can't be us 287 // interrupt not enabled, can't be us
288 return 0; 288 return 0;
289 } 289 }
290 290
291 isr = CEMAC_READ(ETH_ISR); 291 isr = CEMAC_READ(ETH_ISR);
292 CEMAC_WRITE(ETH_ISR, isr); 292 CEMAC_WRITE(ETH_ISR, isr);
293 isr &= imr; 293 isr &= imr;
294#ifdef CEMAC_DEBUG 294#ifdef CEMAC_DEBUG
295 rsr = CEMAC_READ(ETH_RSR); // get receive status register 295 rsr = CEMAC_READ(ETH_RSR); // get receive status register
296#endif 296#endif
297 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr)); 297 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
298 298
 299 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
299 if (isr & ETH_ISR_RBNA) { // out of receive buffers 300 if (isr & ETH_ISR_RBNA) { // out of receive buffers
300 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt 301 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
301 ctl = CEMAC_READ(ETH_CTL); // get current control register value 302 ctl = CEMAC_READ(ETH_CTL); // get current control register value
302 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver 303 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
303 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit 304 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
304 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver 305 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
305 ifp->if_ierrors++; 306 if_statinc_ref(nsr, if_ierrors);
306 ifp->if_ipackets++; 307 if_statinc_ref(nsr, if_ipackets);
307 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__)); 308 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
308 } 309 }
309 if (isr & ETH_ISR_ROVR) { 310 if (isr & ETH_ISR_ROVR) {
310 CEMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt 311 CEMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
311 ifp->if_ierrors++; 312 if_statinc_ref(nsr, if_ierrors);
312 ifp->if_ipackets++; 313 if_statinc_ref(nsr, if_ipackets);
313 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__)); 314 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
314 } 315 }
315 316
316 if (isr & ETH_ISR_RCOM) { // packet has been received! 317 if (isr & ETH_ISR_RCOM) { // packet has been received!
317 uint32_t nfo; 318 uint32_t nfo;
318 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info)); 319 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
319 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) { 320 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
320 int fl, csum; 321 int fl, csum;
321 struct mbuf *m; 322 struct mbuf *m;
322 323
323 nfo = sc->RDSC[bi].Info; 324 nfo = sc->RDSC[bi].Info;
324 fl = (nfo & ETH_RDSC_I_LEN) - 4; 325 fl = (nfo & ETH_RDSC_I_LEN) - 4;
325 DPRINTFN(2,("## nfo=0x%08X\n", nfo)); 326 DPRINTFN(2,("## nfo=0x%08X\n", nfo));
326 327
327 MGETHDR(m, M_DONTWAIT, MT_DATA); 328 MGETHDR(m, M_DONTWAIT, MT_DATA);
328 if (m != NULL) MCLGET(m, M_DONTWAIT); 329 if (m != NULL) MCLGET(m, M_DONTWAIT);
329 if (m != NULL && (m->m_flags & M_EXT)) { 330 if (m != NULL && (m->m_flags & M_EXT)) {
330 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0, 331 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
331 MCLBYTES, BUS_DMASYNC_POSTREAD); 332 MCLBYTES, BUS_DMASYNC_POSTREAD);
332 bus_dmamap_unload(sc->sc_dmat, 333 bus_dmamap_unload(sc->sc_dmat,
333 sc->rxq[bi].m_dmamap); 334 sc->rxq[bi].m_dmamap);
334 m_set_rcvif(sc->rxq[bi].m, ifp); 335 m_set_rcvif(sc->rxq[bi].m, ifp);
335 sc->rxq[bi].m->m_pkthdr.len = 336 sc->rxq[bi].m->m_pkthdr.len =
336 sc->rxq[bi].m->m_len = fl; 337 sc->rxq[bi].m->m_len = fl;
337 switch (nfo & ETH_RDSC_I_CHKSUM) { 338 switch (nfo & ETH_RDSC_I_CHKSUM) {
338 case ETH_RDSC_I_CHKSUM_IP: 339 case ETH_RDSC_I_CHKSUM_IP:
339 csum = M_CSUM_IPv4; 340 csum = M_CSUM_IPv4;
340 break; 341 break;
341 case ETH_RDSC_I_CHKSUM_UDP: 342 case ETH_RDSC_I_CHKSUM_UDP:
342 csum = M_CSUM_IPv4 | M_CSUM_UDPv4 | 343 csum = M_CSUM_IPv4 | M_CSUM_UDPv4 |
343 M_CSUM_UDPv6; 344 M_CSUM_UDPv6;
344 break; 345 break;
345 case ETH_RDSC_I_CHKSUM_TCP: 346 case ETH_RDSC_I_CHKSUM_TCP:
346 csum = M_CSUM_IPv4 | M_CSUM_TCPv4 | 347 csum = M_CSUM_IPv4 | M_CSUM_TCPv4 |
347 M_CSUM_TCPv6; 348 M_CSUM_TCPv6;
348 break; 349 break;
349 default: 350 default:
350 csum = 0; 351 csum = 0;
351 break; 352 break;
352 } 353 }
353 sc->rxq[bi].m->m_pkthdr.csum_flags = csum; 354 sc->rxq[bi].m->m_pkthdr.csum_flags = csum;
354 DPRINTFN(2,("received %u bytes packet\n", fl)); 355 DPRINTFN(2,("received %u bytes packet\n", fl));
355 if_percpuq_enqueue(ifp->if_percpuq, 356 if_percpuq_enqueue(ifp->if_percpuq,
356 sc->rxq[bi].m); 357 sc->rxq[bi].m);
357 if (mtod(m, intptr_t) & 3) 358 if (mtod(m, intptr_t) & 3)
358 m_adj(m, mtod(m, intptr_t) & 3); 359 m_adj(m, mtod(m, intptr_t) & 3);
359 sc->rxq[bi].m = m; 360 sc->rxq[bi].m = m;
360 bus_dmamap_load(sc->sc_dmat, 361 bus_dmamap_load(sc->sc_dmat,
361 sc->rxq[bi].m_dmamap, 362 sc->rxq[bi].m_dmamap,
362 m->m_ext.ext_buf, MCLBYTES, 363 m->m_ext.ext_buf, MCLBYTES,
363 NULL, BUS_DMA_NOWAIT); 364 NULL, BUS_DMA_NOWAIT);
364 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0, 365 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
365 MCLBYTES, BUS_DMASYNC_PREREAD); 366 MCLBYTES, BUS_DMASYNC_PREREAD);
366 sc->RDSC[bi].Info = 0; 367 sc->RDSC[bi].Info = 0;
367 sc->RDSC[bi].Addr = 368 sc->RDSC[bi].Addr =
368 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr 369 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
369 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0); 370 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
370 } else { 371 } else {
371 /* Drop packets until we can get replacement 372 /* Drop packets until we can get replacement
372 * empty mbufs for the RXDQ. 373 * empty mbufs for the RXDQ.
373 */ 374 */
374 if (m != NULL) 375 if (m != NULL)
375 m_freem(m); 376 m_freem(m);
376 ifp->if_ierrors++; 377 if_statinc_ref(nsr, if_ierrors);
377 } 378 }
378 sc->rxqi++; 379 sc->rxqi++;
379 } 380 }
380 } 381 }
381 382
 383 IF_STAT_PUTREF(ifp);
 384
382 if (cemac_gctx(sc) > 0) 385 if (cemac_gctx(sc) > 0)
383 if_schedule_deferred_start(ifp); 386 if_schedule_deferred_start(ifp);
384#if 0 // reloop 387#if 0 // reloop
385 irq = CEMAC_READ(IntStsC); 388 irq = CEMAC_READ(IntStsC);
386 if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0) 389 if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
387 goto begin; 390 goto begin;
388#endif 391#endif
389 392
390 return (1); 393 return (1);
391} 394}
392 395
393 396
394static void 397static void
395cemac_init(struct cemac_softc *sc) 398cemac_init(struct cemac_softc *sc)
396{ 399{
397 bus_dma_segment_t segs; 400 bus_dma_segment_t segs;
398 int rsegs, err, i; 401 int rsegs, err, i;
399 struct ifnet * ifp = &sc->sc_ethercom.ec_if; 402 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
400 struct mii_data * const mii = &sc->sc_mii; 403 struct mii_data * const mii = &sc->sc_mii;
401 uint32_t u; 404 uint32_t u;
402#if 0 405#if 0
403 int mdcdiv = DEFAULT_MDCDIV; 406 int mdcdiv = DEFAULT_MDCDIV;
404#endif 407#endif
405 408
406 callout_init(&sc->cemac_tick_ch, 0); 409 callout_init(&sc->cemac_tick_ch, 0);
407 410
408 // ok... 411 // ok...
409 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything 412 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
410 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts 413 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
411 CEMAC_WRITE(ETH_RBQP, 0); // clear receive 414 CEMAC_WRITE(ETH_RBQP, 0); // clear receive
412 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit 415 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
413 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) 416 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
414 CEMAC_WRITE(ETH_CFG, 417 CEMAC_WRITE(ETH_CFG,
415 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 418 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
416 else 419 else
417 CEMAC_WRITE(ETH_CFG, 420 CEMAC_WRITE(ETH_CFG,
418 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 421 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
419 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) { 422 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
420 CEMAC_WRITE(GEM_DMA_CFG, 423 CEMAC_WRITE(GEM_DMA_CFG,
421 __SHIFTIN((MCLBYTES + 63) / 64, GEM_DMA_CFG_RX_BUF_SIZE) | 424 __SHIFTIN((MCLBYTES + 63) / 64, GEM_DMA_CFG_RX_BUF_SIZE) |
422 __SHIFTIN(3, GEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL) | 425 __SHIFTIN(3, GEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL) |
423 GEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL | 426 GEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL |
424 __SHIFTIN(16, GEM_DMA_CFG_AHB_FIXED_BURST_LEN) | 427 __SHIFTIN(16, GEM_DMA_CFG_AHB_FIXED_BURST_LEN) |
425 GEM_DMA_CFG_DISC_WHEN_NO_AHB); 428 GEM_DMA_CFG_DISC_WHEN_NO_AHB);
426 } 429 }
427// CEMAC_WRITE(ETH_TCR, 0); // send nothing 430// CEMAC_WRITE(ETH_TCR, 0); // send nothing
428// (void)CEMAC_READ(ETH_ISR); 431// (void)CEMAC_READ(ETH_ISR);
429 u = CEMAC_READ(ETH_TSR); 432 u = CEMAC_READ(ETH_TSR);
430 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 433 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
431 | ETH_TSR_IDLE | ETH_TSR_RLE 434 | ETH_TSR_IDLE | ETH_TSR_RLE
432 | ETH_TSR_COL | ETH_TSR_OVR))); 435 | ETH_TSR_COL | ETH_TSR_OVR)));
433 u = CEMAC_READ(ETH_RSR); 436 u = CEMAC_READ(ETH_RSR);
434 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA))); 437 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
435 438
436#if 0 439#if 0
437 if (device_cfdata(sc->sc_dev)->cf_flags) 440 if (device_cfdata(sc->sc_dev)->cf_flags)
438 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags; 441 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
439#endif 442#endif
440 /* set ethernet address */ 443 /* set ethernet address */
441 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24) 444 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
442 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8) 445 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
443 | (sc->sc_enaddr[0])); 446 | (sc->sc_enaddr[0]));
444 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8) 447 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
445 | (sc->sc_enaddr[4])); 448 | (sc->sc_enaddr[4]));
446 CEMAC_GEM_WRITE(SA2L, 0); 449 CEMAC_GEM_WRITE(SA2L, 0);
447 CEMAC_GEM_WRITE(SA2H, 0); 450 CEMAC_GEM_WRITE(SA2H, 0);
448 CEMAC_GEM_WRITE(SA3L, 0); 451 CEMAC_GEM_WRITE(SA3L, 0);
449 CEMAC_GEM_WRITE(SA3H, 0); 452 CEMAC_GEM_WRITE(SA3H, 0);
450 CEMAC_GEM_WRITE(SA4L, 0); 453 CEMAC_GEM_WRITE(SA4L, 0);
451 CEMAC_GEM_WRITE(SA4H, 0); 454 CEMAC_GEM_WRITE(SA4H, 0);
452 455
453 /* Allocate a page of memory for receive queue descriptors */ 456 /* Allocate a page of memory for receive queue descriptors */
454 sc->rbqlen = (ETH_DSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE; 457 sc->rbqlen = (ETH_DSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
455 sc->rbqlen *= PAGE_SIZE; 458 sc->rbqlen *= PAGE_SIZE;
456 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen)); 459 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
457 460
458 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0, 461 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
459 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary 462 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
460 &segs, 1, &rsegs, BUS_DMA_WAITOK); 463 &segs, 1, &rsegs, BUS_DMA_WAITOK);
461 if (err == 0) { 464 if (err == 0) {
462 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__)); 465 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
463 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen, 466 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
464 &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT)); 467 &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
465 } 468 }
466 if (err == 0) { 469 if (err == 0) {
467 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__)); 470 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
468 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1, 471 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
469 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK, 472 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
470 &sc->rbqpage_dmamap); 473 &sc->rbqpage_dmamap);
471 } 474 }
472 if (err == 0) { 475 if (err == 0) {
473 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__)); 476 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
474 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap, 477 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
475 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK); 478 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
476 } 479 }
477 if (err != 0) 480 if (err != 0)
478 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev)); 481 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
479 482
480 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr; 483 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
481 memset(sc->rbqpage, 0, sc->rbqlen); 484 memset(sc->rbqpage, 0, sc->rbqlen);
482 485
483 /* Allocate a page of memory for transmit queue descriptors */ 486 /* Allocate a page of memory for transmit queue descriptors */
484 sc->tbqlen = (ETH_DSC_SIZE * (TX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE; 487 sc->tbqlen = (ETH_DSC_SIZE * (TX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
485 sc->tbqlen *= PAGE_SIZE; 488 sc->tbqlen *= PAGE_SIZE;
486 DPRINTFN(1,("%s: tbqlen=%i\n", __FUNCTION__, sc->tbqlen)); 489 DPRINTFN(1,("%s: tbqlen=%i\n", __FUNCTION__, sc->tbqlen));
487 490
488 err = bus_dmamem_alloc(sc->sc_dmat, sc->tbqlen, 0, 491 err = bus_dmamem_alloc(sc->sc_dmat, sc->tbqlen, 0,
489 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary 492 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
490 &segs, 1, &rsegs, BUS_DMA_WAITOK); 493 &segs, 1, &rsegs, BUS_DMA_WAITOK);
491 if (err == 0) { 494 if (err == 0) {
492 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__)); 495 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
493 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->tbqlen, 496 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->tbqlen,
494 &sc->tbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT)); 497 &sc->tbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
495 } 498 }
496 if (err == 0) { 499 if (err == 0) {
497 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__)); 500 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
498 err = bus_dmamap_create(sc->sc_dmat, sc->tbqlen, 1, 501 err = bus_dmamap_create(sc->sc_dmat, sc->tbqlen, 1,
499 sc->tbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK, 502 sc->tbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
500 &sc->tbqpage_dmamap); 503 &sc->tbqpage_dmamap);
501 } 504 }
502 if (err == 0) { 505 if (err == 0) {
503 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__)); 506 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
504 err = bus_dmamap_load(sc->sc_dmat, sc->tbqpage_dmamap, 507 err = bus_dmamap_load(sc->sc_dmat, sc->tbqpage_dmamap,
505 sc->tbqpage, sc->tbqlen, NULL, BUS_DMA_WAITOK); 508 sc->tbqpage, sc->tbqlen, NULL, BUS_DMA_WAITOK);
506 } 509 }
507 if (err != 0) 510 if (err != 0)
508 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev)); 511 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
509 512
510 sc->tbqpage_dsaddr = sc->tbqpage_dmamap->dm_segs[0].ds_addr; 513 sc->tbqpage_dsaddr = sc->tbqpage_dmamap->dm_segs[0].ds_addr;
511 memset(sc->tbqpage, 0, sc->tbqlen); 514 memset(sc->tbqpage, 0, sc->tbqlen);
512 515
513 /* Set up pointers to start of each queue in kernel addr space. 516 /* Set up pointers to start of each queue in kernel addr space.
514 * Each descriptor queue or status queue entry uses 2 words 517 * Each descriptor queue or status queue entry uses 2 words
515 */ 518 */
516 sc->RDSC = (void *)sc->rbqpage; 519 sc->RDSC = (void *)sc->rbqpage;
517 sc->TDSC = (void *)sc->tbqpage; 520 sc->TDSC = (void *)sc->tbqpage;
518 521
519 /* init TX queue */ 522 /* init TX queue */
520 for (i = 0; i < TX_QLEN; i++) { 523 for (i = 0; i < TX_QLEN; i++) {
521 sc->TDSC[i].Addr = 0; 524 sc->TDSC[i].Addr = 0;
522 sc->TDSC[i].Info = ETH_TDSC_I_USED | 525 sc->TDSC[i].Info = ETH_TDSC_I_USED |
523 (i == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0); 526 (i == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
524 } 527 }
525 528
526 /* Populate the RXQ with mbufs */ 529 /* Populate the RXQ with mbufs */
527 sc->rxqi = 0; 530 sc->rxqi = 0;
528 for (i = 0; i < RX_QLEN; i++) { 531 for (i = 0; i < RX_QLEN; i++) {
529 struct mbuf *m; 532 struct mbuf *m;
530 533
531 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE, 534 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
532 BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap); 535 BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
533 if (err) { 536 if (err) {
534 panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err); 537 panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
535 } 538 }
536 MGETHDR(m, M_WAIT, MT_DATA); 539 MGETHDR(m, M_WAIT, MT_DATA);
537 MCLGET(m, M_WAIT); 540 MCLGET(m, M_WAIT);
538 sc->rxq[i].m = m; 541 sc->rxq[i].m = m;
539 if (mtod(m, intptr_t) & 3) { 542 if (mtod(m, intptr_t) & 3) {
540 m_adj(m, mtod(m, intptr_t) & 3); 543 m_adj(m, mtod(m, intptr_t) & 3);
541 } 544 }
542 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap, 545 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
543 m->m_ext.ext_buf, MCLBYTES, NULL, 546 m->m_ext.ext_buf, MCLBYTES, NULL,
544 BUS_DMA_WAITOK); 547 BUS_DMA_WAITOK);
545 if (err) { 548 if (err) {
546 panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err); 549 panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
547 } 550 }
548 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr 551 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
549 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0); 552 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
550 sc->RDSC[i].Info = 0; 553 sc->RDSC[i].Info = 0;
551 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0, 554 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
552 MCLBYTES, BUS_DMASYNC_PREREAD); 555 MCLBYTES, BUS_DMASYNC_PREREAD);
553 } 556 }
554 557
555 /* prepare transmit queue */ 558 /* prepare transmit queue */
556 for (i = 0; i < TX_QLEN; i++) { 559 for (i = 0; i < TX_QLEN; i++) {
557 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 560 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
558 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW), 561 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
559 &sc->txq[i].m_dmamap); 562 &sc->txq[i].m_dmamap);
560 if (err) 563 if (err)
561 panic("ARGH #1"); 564 panic("ARGH #1");
562 sc->txq[i].m = NULL; 565 sc->txq[i].m = NULL;
563 } 566 }
564 567
565 /* Program each queue's start addr, cur addr, and len registers 568 /* Program each queue's start addr, cur addr, and len registers
566 * with the physical addresses. 569 * with the physical addresses.
567 */ 570 */
568 CEMAC_WRITE(ETH_RBQP, (uint32_t)sc->rbqpage_dsaddr); 571 CEMAC_WRITE(ETH_RBQP, (uint32_t)sc->rbqpage_dsaddr);
569 CEMAC_WRITE(ETH_TBQP, (uint32_t)sc->tbqpage_dsaddr); 572 CEMAC_WRITE(ETH_TBQP, (uint32_t)sc->tbqpage_dsaddr);
570 573
571 /* Divide HCLK by 32 for MDC clock */ 574 /* Divide HCLK by 32 for MDC clock */
572 sc->sc_ethercom.ec_mii = mii; 575 sc->sc_ethercom.ec_mii = mii;
573 mii->mii_ifp = ifp; 576 mii->mii_ifp = ifp;
574 mii->mii_readreg = cemac_mii_readreg; 577 mii->mii_readreg = cemac_mii_readreg;
575 mii->mii_writereg = cemac_mii_writereg; 578 mii->mii_writereg = cemac_mii_writereg;
576 mii->mii_statchg = cemac_statchg; 579 mii->mii_statchg = cemac_statchg;
577 ifmedia_init(&mii->mii_media, IFM_IMASK, cemac_mediachange, 580 ifmedia_init(&mii->mii_media, IFM_IMASK, cemac_mediachange,
578 cemac_mediastatus); 581 cemac_mediastatus);
579 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 582 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
580 MII_OFFSET_ANY, 0); 583 MII_OFFSET_ANY, 0);
581 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 584 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
582 585
583#if 0 586#if 0
584 // enable / disable interrupts 587 // enable / disable interrupts
585 CEMAC_WRITE(ETH_IDR, -1); 588 CEMAC_WRITE(ETH_IDR, -1);
586 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE 589 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
587 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM); 590 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
588// (void)CEMAC_READ(ETH_ISR); // why 591// (void)CEMAC_READ(ETH_ISR); // why
589 592
590 // enable transmitter / receiver 593 // enable transmitter / receiver
591 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR 594 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
592 | ETH_CTL_CSR | ETH_CTL_MPE); 595 | ETH_CTL_CSR | ETH_CTL_MPE);
593#endif 596#endif
594 /* 597 /*
595 * We can support hardware checksumming. 598 * We can support hardware checksumming.
596 */ 599 */
597 ifp->if_capabilities |= 600 ifp->if_capabilities |=
598 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 601 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
599 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 602 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
600 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx | 603 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
601 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx | 604 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
602 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx; 605 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
603 606
604 /* 607 /*
605 * We can support 802.1Q VLAN-sized frames. 608 * We can support 802.1Q VLAN-sized frames.
606 */ 609 */
607 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 610 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
608 611
609 strcpy(ifp->if_xname, device_xname(sc->sc_dev)); 612 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
610 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 613 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
611 ifp->if_ioctl = cemac_ifioctl; 614 ifp->if_ioctl = cemac_ifioctl;
612 ifp->if_start = cemac_ifstart; 615 ifp->if_start = cemac_ifstart;
613 ifp->if_watchdog = cemac_ifwatchdog; 616 ifp->if_watchdog = cemac_ifwatchdog;
614 ifp->if_init = cemac_ifinit; 617 ifp->if_init = cemac_ifinit;
615 ifp->if_stop = cemac_ifstop; 618 ifp->if_stop = cemac_ifstop;
616 ifp->if_timer = 0; 619 ifp->if_timer = 0;
617 ifp->if_softc = sc; 620 ifp->if_softc = sc;
618 IFQ_SET_READY(&ifp->if_snd); 621 IFQ_SET_READY(&ifp->if_snd);
619 if_attach(ifp); 622 if_attach(ifp);
620 if_deferred_start_init(ifp, NULL); 623 if_deferred_start_init(ifp, NULL);
621 ether_ifattach(ifp, (sc)->sc_enaddr); 624 ether_ifattach(ifp, (sc)->sc_enaddr);
622} 625}
623 626
624static int 627static int
625cemac_mediachange(struct ifnet *ifp) 628cemac_mediachange(struct ifnet *ifp)
626{ 629{
627 if (ifp->if_flags & IFF_UP) 630 if (ifp->if_flags & IFF_UP)
628 cemac_ifinit(ifp); 631 cemac_ifinit(ifp);
629 return (0); 632 return (0);
630} 633}
631 634
632static void 635static void
633cemac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 636cemac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
634{ 637{
635 struct cemac_softc *sc = ifp->if_softc; 638 struct cemac_softc *sc = ifp->if_softc;
636 639
637 mii_pollstat(&sc->sc_mii); 640 mii_pollstat(&sc->sc_mii);
638 ifmr->ifm_active = sc->sc_mii.mii_media_active; 641 ifmr->ifm_active = sc->sc_mii.mii_media_active;
639 ifmr->ifm_status = sc->sc_mii.mii_media_status; 642 ifmr->ifm_status = sc->sc_mii.mii_media_status;
640} 643}
641 644
642 645
643static int 646static int
644cemac_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 647cemac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
645{ 648{
646 struct cemac_softc *sc; 649 struct cemac_softc *sc;
647 650
648 sc = device_private(self); 651 sc = device_private(self);
649 652
650 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD 653 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
651 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA) 654 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
652 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA) 655 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
653 | ETH_MAN_CODE_IEEE802_3)); 656 | ETH_MAN_CODE_IEEE802_3));
654 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE)) 657 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
655 ; 658 ;
656 659
657 *val = CEMAC_READ(ETH_MAN) & ETH_MAN_DATA; 660 *val = CEMAC_READ(ETH_MAN) & ETH_MAN_DATA;
658 return 0; 661 return 0;
659} 662}
660 663
661static int 664static int
662cemac_mii_writereg(device_t self, int phy, int reg, uint16_t val) 665cemac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
663{ 666{
664 struct cemac_softc *sc; 667 struct cemac_softc *sc;
665 668
666 sc = device_private(self); 669 sc = device_private(self);
667 670
668 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR 671 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
669 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA) 672 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
670 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA) 673 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
671 | ETH_MAN_CODE_IEEE802_3 674 | ETH_MAN_CODE_IEEE802_3
672 | (val & ETH_MAN_DATA))); 675 | (val & ETH_MAN_DATA)));
673 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE)) 676 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
674 ; 677 ;
675 678
676 return 0; 679 return 0;
677} 680}
678 681
679 682
680static void 683static void
681cemac_statchg(struct ifnet *ifp) 684cemac_statchg(struct ifnet *ifp)
682{ 685{
683 struct cemac_softc *sc = ifp->if_softc; 686 struct cemac_softc *sc = ifp->if_softc;
684 struct mii_data *mii = &sc->sc_mii; 687 struct mii_data *mii = &sc->sc_mii;
685 uint32_t reg; 688 uint32_t reg;
686 689
687 /* 690 /*
688 * We must keep the MAC and the PHY in sync as 691 * We must keep the MAC and the PHY in sync as
689 * to the status of full-duplex! 692 * to the status of full-duplex!
690 */ 693 */
691 reg = CEMAC_READ(ETH_CFG); 694 reg = CEMAC_READ(ETH_CFG);
692 reg &= ~ETH_CFG_FD; 695 reg &= ~ETH_CFG_FD;
693 if (sc->sc_mii.mii_media_active & IFM_FDX) 696 if (sc->sc_mii.mii_media_active & IFM_FDX)
694 reg |= ETH_CFG_FD; 697 reg |= ETH_CFG_FD;
695 698
696 reg &= ~ETH_CFG_SPD; 699 reg &= ~ETH_CFG_SPD;
697 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) 700 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
698 reg &= ~GEM_CFG_GEN; 701 reg &= ~GEM_CFG_GEN;
699 switch (IFM_SUBTYPE(mii->mii_media_active)) { 702 switch (IFM_SUBTYPE(mii->mii_media_active)) {
700 case IFM_10_T: 703 case IFM_10_T:
701 break; 704 break;
702 case IFM_100_TX: 705 case IFM_100_TX:
703 reg |= ETH_CFG_SPD; 706 reg |= ETH_CFG_SPD;
704 break; 707 break;
705 case IFM_1000_T: 708 case IFM_1000_T:
706 reg |= ETH_CFG_SPD | GEM_CFG_GEN; 709 reg |= ETH_CFG_SPD | GEM_CFG_GEN;
707 break; 710 break;
708 default: 711 default:
709 break; 712 break;
710 } 713 }
711 CEMAC_WRITE(ETH_CFG, reg); 714 CEMAC_WRITE(ETH_CFG, reg);
712} 715}
713 716
714static void 717static void
715cemac_tick(void *arg) 718cemac_tick(void *arg)
716{ 719{
717 struct cemac_softc* sc = (struct cemac_softc *)arg; 720 struct cemac_softc* sc = (struct cemac_softc *)arg;
718 struct ifnet * ifp = &sc->sc_ethercom.ec_if; 721 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
719 int s; 722 int s;
720 723
721 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) 724 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
722 ifp->if_collisions += CEMAC_READ(GEM_SCOL) + CEMAC_READ(GEM_MCOL); 725 if_statadd(ifp, if_collisions,
 726 CEMAC_READ(GEM_SCOL) + CEMAC_READ(GEM_MCOL));
723 else 727 else
724 ifp->if_collisions += CEMAC_READ(ETH_SCOL) + CEMAC_READ(ETH_MCOL); 728 if_statadd(ifp, if_collisions,
 729 CEMAC_READ(ETH_SCOL) + CEMAC_READ(ETH_MCOL));
725 730
726 /* These misses are ok, they will happen if the RAM/CPU can't keep up */ 731 /* These misses are ok, they will happen if the RAM/CPU can't keep up */
727 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) { 732 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
728 uint32_t misses = CEMAC_READ(ETH_DRFC); 733 uint32_t misses = CEMAC_READ(ETH_DRFC);
729 if (misses > 0) 734 if (misses > 0)
730 aprint_normal_ifnet(ifp, "%d rx misses\n", misses); 735 aprint_normal_ifnet(ifp, "%d rx misses\n", misses);
731 } 736 }
732 737
733 s = splnet(); 738 s = splnet();
734 if (cemac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) 739 if (cemac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
735 cemac_ifstart(ifp); 740 cemac_ifstart(ifp);
736 splx(s); 741 splx(s);
737 742
738 mii_tick(&sc->sc_mii); 743 mii_tick(&sc->sc_mii);
739 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc); 744 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
740} 745}
741 746
742 747
743static int 748static int
744cemac_ifioctl(struct ifnet *ifp, u_long cmd, void *data) 749cemac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
745{ 750{
746 int s, error; 751 int s, error;
747 752
748 s = splnet(); 753 s = splnet();
749 switch (cmd) { 754 switch (cmd) {
750 default: 755 default:
751 error = ether_ioctl(ifp, cmd, data); 756 error = ether_ioctl(ifp, cmd, data);
752 if (error != ENETRESET) 757 if (error != ENETRESET)
753 break; 758 break;
754 error = 0; 759 error = 0;
755 760
756 if (cmd == SIOCSIFCAP) { 761 if (cmd == SIOCSIFCAP) {
757 error = (*ifp->if_init)(ifp); 762 error = (*ifp->if_init)(ifp);
758 } else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 763 } else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
759 ; 764 ;
760 else if (ifp->if_flags & IFF_RUNNING) { 765 else if (ifp->if_flags & IFF_RUNNING) {
761 cemac_setaddr(ifp); 766 cemac_setaddr(ifp);
762 } 767 }
763 } 768 }
764 splx(s); 769 splx(s);
765 return error; 770 return error;
766} 771}
767 772
768static void 773static void
769cemac_ifstart(struct ifnet *ifp) 774cemac_ifstart(struct ifnet *ifp)
770{ 775{
771 struct cemac_softc *sc = (struct cemac_softc *)ifp->if_softc; 776 struct cemac_softc *sc = (struct cemac_softc *)ifp->if_softc;
772 struct mbuf *m; 777 struct mbuf *m;
773 bus_dma_segment_t *segs; 778 bus_dma_segment_t *segs;
774 int s, bi, err, nsegs; 779 int s, bi, err, nsegs;
775 780
776 s = splnet(); 781 s = splnet();
777start: 782start:
778 if (cemac_gctx(sc) == 0) { 783 if (cemac_gctx(sc) == 0) {
779 /* Enable transmit-buffer-free interrupt */ 784 /* Enable transmit-buffer-free interrupt */
780 CEMAC_WRITE(ETH_IER, ETH_ISR_TBRE); 785 CEMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
781 ifp->if_flags |= IFF_OACTIVE; 786 ifp->if_flags |= IFF_OACTIVE;
782 ifp->if_timer = 10; 787 ifp->if_timer = 10;
783 splx(s); 788 splx(s);
784 return; 789 return;
785 } 790 }
786 791
787 ifp->if_timer = 0; 792 ifp->if_timer = 0;
788 793
789 IFQ_POLL(&ifp->if_snd, m); 794 IFQ_POLL(&ifp->if_snd, m);
790 if (m == NULL) { 795 if (m == NULL) {
791 splx(s); 796 splx(s);
792 return; 797 return;
793 } 798 }
794 799
795 bi = (sc->txqi + sc->txqc) % TX_QLEN; 800 bi = (sc->txqi + sc->txqc) % TX_QLEN;
796 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m, 801 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
797 BUS_DMA_NOWAIT)) || 802 BUS_DMA_NOWAIT)) ||
798 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 || 803 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
799 sc->txq[bi].m_dmamap->dm_nsegs > 1) { 804 sc->txq[bi].m_dmamap->dm_nsegs > 1) {
800 /* Copy entire mbuf chain to new single */ 805 /* Copy entire mbuf chain to new single */
801 struct mbuf *mn; 806 struct mbuf *mn;
802 807
803 if (err == 0) 808 if (err == 0)
804 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap); 809 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
805 810
806 MGETHDR(mn, M_DONTWAIT, MT_DATA); 811 MGETHDR(mn, M_DONTWAIT, MT_DATA);
807 if (mn == NULL) goto stop; 812 if (mn == NULL) goto stop;
808 if (m->m_pkthdr.len > MHLEN) { 813 if (m->m_pkthdr.len > MHLEN) {
809 MCLGET(mn, M_DONTWAIT); 814 MCLGET(mn, M_DONTWAIT);
810 if ((mn->m_flags & M_EXT) == 0) { 815 if ((mn->m_flags & M_EXT) == 0) {
811 m_freem(mn); 816 m_freem(mn);
812 goto stop; 817 goto stop;
813 } 818 }
814 } 819 }
815 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *)); 820 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
816 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len; 821 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
817 IFQ_DEQUEUE(&ifp->if_snd, m); 822 IFQ_DEQUEUE(&ifp->if_snd, m);
818 m_freem(m); 823 m_freem(m);
819 m = mn; 824 m = mn;
820 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m, 825 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
821 BUS_DMA_NOWAIT); 826 BUS_DMA_NOWAIT);
822 } else { 827 } else {
823 IFQ_DEQUEUE(&ifp->if_snd, m); 828 IFQ_DEQUEUE(&ifp->if_snd, m);
824 } 829 }
825 830
826 bpf_mtap(ifp, m, BPF_D_OUT); 831 bpf_mtap(ifp, m, BPF_D_OUT);
827 832
828 nsegs = sc->txq[bi].m_dmamap->dm_nsegs; 833 nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
829 segs = sc->txq[bi].m_dmamap->dm_segs; 834 segs = sc->txq[bi].m_dmamap->dm_segs;
830 if (nsegs > 1) 835 if (nsegs > 1)
831 panic("#### ARGH #2"); 836 panic("#### ARGH #2");
832 837
833 sc->txq[bi].m = m; 838 sc->txq[bi].m = m;
834 sc->txqc++; 839 sc->txqc++;
835 840
836 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", 841 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n",
837 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr, 842 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
838 (unsigned)m->m_pkthdr.len)); 843 (unsigned)m->m_pkthdr.len));
839#ifdef DIAGNOSTIC 844#ifdef DIAGNOSTIC
840 if (sc->txqc > TX_QLEN) 845 if (sc->txqc > TX_QLEN)
841 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN); 846 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
842#endif 847#endif
843 848
844 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0, 849 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
845 sc->txq[bi].m_dmamap->dm_mapsize, 850 sc->txq[bi].m_dmamap->dm_mapsize,
846 BUS_DMASYNC_PREWRITE); 851 BUS_DMASYNC_PREWRITE);
847 852
848 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) { 853 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
849 sc->TDSC[bi].Addr = segs->ds_addr; 854 sc->TDSC[bi].Addr = segs->ds_addr;
850 sc->TDSC[bi].Info = __SHIFTIN(m->m_pkthdr.len, ETH_TDSC_I_LEN) | 855 sc->TDSC[bi].Info = __SHIFTIN(m->m_pkthdr.len, ETH_TDSC_I_LEN) |
851 ETH_TDSC_I_LAST_BUF | (bi == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0); 856 ETH_TDSC_I_LAST_BUF | (bi == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
852 857
853 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n", 858 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
854 __FUNCTION__, bi, sc->TDSC[bi].Addr)); 859 __FUNCTION__, bi, sc->TDSC[bi].Addr));
855 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n", 860 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
856 __FUNCTION__, bi, sc->TDSC[bi].Info)); 861 __FUNCTION__, bi, sc->TDSC[bi].Info));
857 862
858 uint32_t ctl = CEMAC_READ(ETH_CTL) | GEM_CTL_STARTTX; 863 uint32_t ctl = CEMAC_READ(ETH_CTL) | GEM_CTL_STARTTX;
859 CEMAC_WRITE(ETH_CTL, ctl); 864 CEMAC_WRITE(ETH_CTL, ctl);
860 DPRINTFN(3,("%s: ETH_CTL 0x%08x\n", __FUNCTION__, CEMAC_READ(ETH_CTL))); 865 DPRINTFN(3,("%s: ETH_CTL 0x%08x\n", __FUNCTION__, CEMAC_READ(ETH_CTL)));
861 } else { 866 } else {
862 CEMAC_WRITE(ETH_TAR, segs->ds_addr); 867 CEMAC_WRITE(ETH_TAR, segs->ds_addr);
863 CEMAC_WRITE(ETH_TCR, m->m_pkthdr.len); 868 CEMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
864 } 869 }
865 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) 870 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
866 goto start; 871 goto start;
867stop: 872stop:
868 873
869 splx(s); 874 splx(s);
870 return; 875 return;
871} 876}
872 877
873static void 878static void
874cemac_ifwatchdog(struct ifnet *ifp) 879cemac_ifwatchdog(struct ifnet *ifp)
875{ 880{
876 struct cemac_softc *sc = (struct cemac_softc *)ifp->if_softc; 881 struct cemac_softc *sc = (struct cemac_softc *)ifp->if_softc;
877 882
878 if ((ifp->if_flags & IFF_RUNNING) == 0) 883 if ((ifp->if_flags & IFF_RUNNING) == 0)
879 return; 884 return;
880 aprint_error_ifnet(ifp, "device timeout, CTL = 0x%08x, CFG = 0x%08x\n", 885 aprint_error_ifnet(ifp, "device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
881 CEMAC_READ(ETH_CTL), CEMAC_READ(ETH_CFG)); 886 CEMAC_READ(ETH_CTL), CEMAC_READ(ETH_CFG));
882} 887}
883 888
884static int 889static int
885cemac_ifinit(struct ifnet *ifp) 890cemac_ifinit(struct ifnet *ifp)
886{ 891{
887 struct cemac_softc *sc = ifp->if_softc; 892 struct cemac_softc *sc = ifp->if_softc;
888 uint32_t dma, cfg; 893 uint32_t dma, cfg;
889 int s = splnet(); 894 int s = splnet();
890 895
891 callout_stop(&sc->cemac_tick_ch); 896 callout_stop(&sc->cemac_tick_ch);
892 897
893 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) { 898 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
894 899
895 if (ifp->if_capenable & 900 if (ifp->if_capenable &
896 (IFCAP_CSUM_IPv4_Tx | 901 (IFCAP_CSUM_IPv4_Tx |
897 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | 902 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
898 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) { 903 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) {
899 dma = CEMAC_READ(GEM_DMA_CFG); 904 dma = CEMAC_READ(GEM_DMA_CFG);
900 dma |= GEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN; 905 dma |= GEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN;
901 CEMAC_WRITE(GEM_DMA_CFG, dma); 906 CEMAC_WRITE(GEM_DMA_CFG, dma);
902 } 907 }
903 if (ifp->if_capenable & 908 if (ifp->if_capenable &
904 (IFCAP_CSUM_IPv4_Rx | 909 (IFCAP_CSUM_IPv4_Rx |
905 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | 910 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
906 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) { 911 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) {
907 cfg = CEMAC_READ(ETH_CFG); 912 cfg = CEMAC_READ(ETH_CFG);
908 cfg |= GEM_CFG_RX_CHKSUM_OFFLD_EN; 913 cfg |= GEM_CFG_RX_CHKSUM_OFFLD_EN;
909 CEMAC_WRITE(ETH_CFG, cfg); 914 CEMAC_WRITE(ETH_CFG, cfg);
910 } 915 }
911 } 916 }
912 917
913 // enable interrupts 918 // enable interrupts
914 CEMAC_WRITE(ETH_IDR, -1); 919 CEMAC_WRITE(ETH_IDR, -1);
915 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE 920 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
916 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM); 921 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
917 922
918 // enable transmitter / receiver 923 // enable transmitter / receiver
919 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR 924 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
920 | ETH_CTL_CSR | ETH_CTL_MPE); 925 | ETH_CTL_CSR | ETH_CTL_MPE);
921 926
922 mii_mediachg(&sc->sc_mii); 927 mii_mediachg(&sc->sc_mii);
923 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc); 928 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
924 ifp->if_flags |= IFF_RUNNING; 929 ifp->if_flags |= IFF_RUNNING;
925 splx(s); 930 splx(s);
926 return 0; 931 return 0;
927} 932}
928 933
929static void 934static void
930cemac_ifstop(struct ifnet *ifp, int disable) 935cemac_ifstop(struct ifnet *ifp, int disable)
931{ 936{
932// uint32_t u; 937// uint32_t u;
933 struct cemac_softc *sc = ifp->if_softc; 938 struct cemac_softc *sc = ifp->if_softc;
934 939
935#if 0 940#if 0
936 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything 941 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
937 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts 942 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
938// CEMAC_WRITE(ETH_RBQP, 0); // clear receive 943// CEMAC_WRITE(ETH_RBQP, 0); // clear receive
939 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) 944 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
940 CEMAC_WRITE(ETH_CFG, 945 CEMAC_WRITE(ETH_CFG,
941 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 946 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
942 else 947 else
943 CEMAC_WRITE(ETH_CFG, 948 CEMAC_WRITE(ETH_CFG,
944 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG); 949 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
945// CEMAC_WRITE(ETH_TCR, 0); // send nothing 950// CEMAC_WRITE(ETH_TCR, 0); // send nothing
946// (void)CEMAC_READ(ETH_ISR); 951// (void)CEMAC_READ(ETH_ISR);
947 u = CEMAC_READ(ETH_TSR); 952 u = CEMAC_READ(ETH_TSR);
948 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ 953 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
949 | ETH_TSR_IDLE | ETH_TSR_RLE 954 | ETH_TSR_IDLE | ETH_TSR_RLE
950 | ETH_TSR_COL | ETH_TSR_OVR))); 955 | ETH_TSR_COL | ETH_TSR_OVR)));
951 u = CEMAC_READ(ETH_RSR); 956 u = CEMAC_READ(ETH_RSR);
952 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA))); 957 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
953#endif 958#endif
954 callout_stop(&sc->cemac_tick_ch); 959 callout_stop(&sc->cemac_tick_ch);
955 960
956 /* Down the MII. */ 961 /* Down the MII. */
957 mii_down(&sc->sc_mii); 962 mii_down(&sc->sc_mii);
958 963
959 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 964 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
960 ifp->if_timer = 0; 965 ifp->if_timer = 0;
961 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE; 966 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
962} 967}
963 968
964static void 969static void
965cemac_setaddr(struct ifnet *ifp) 970cemac_setaddr(struct ifnet *ifp)
966{ 971{
967 struct cemac_softc *sc = ifp->if_softc; 972 struct cemac_softc *sc = ifp->if_softc;
968 struct ethercom *ec = &sc->sc_ethercom; 973 struct ethercom *ec = &sc->sc_ethercom;
969 struct ether_multi *enm; 974 struct ether_multi *enm;
970 struct ether_multistep step; 975 struct ether_multistep step;
971 uint8_t ias[3][ETHER_ADDR_LEN]; 976 uint8_t ias[3][ETHER_ADDR_LEN];
972 uint32_t h, nma = 0, hashes[2] = { 0, 0 }; 977 uint32_t h, nma = 0, hashes[2] = { 0, 0 };
973 uint32_t ctl = CEMAC_READ(ETH_CTL); 978 uint32_t ctl = CEMAC_READ(ETH_CTL);
974 uint32_t cfg = CEMAC_READ(ETH_CFG); 979 uint32_t cfg = CEMAC_READ(ETH_CFG);
975 980
976 /* disable receiver temporarily */ 981 /* disable receiver temporarily */
977 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); 982 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
978 983
979 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI); 984 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
980 985
981 if (ifp->if_flags & IFF_PROMISC) { 986 if (ifp->if_flags & IFF_PROMISC) {
982 cfg |= ETH_CFG_CAF; 987 cfg |= ETH_CFG_CAF;
983 } else { 988 } else {
984 cfg &= ~ETH_CFG_CAF; 989 cfg &= ~ETH_CFG_CAF;
985 } 990 }
986 991
987 // ETH_CFG_BIG? 992 // ETH_CFG_BIG?
988 993
989 ifp->if_flags &= ~IFF_ALLMULTI; 994 ifp->if_flags &= ~IFF_ALLMULTI;
990 995
991 ETHER_LOCK(ec); 996 ETHER_LOCK(ec);
992 ETHER_FIRST_MULTI(step, ec, enm); 997 ETHER_FIRST_MULTI(step, ec, enm);
993 while (enm != NULL) { 998 while (enm != NULL) {
994 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 999 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
995 /* 1000 /*
996 * We must listen to a range of multicast addresses. 1001 * We must listen to a range of multicast addresses.
997 * For now, just accept all multicasts, rather than 1002 * For now, just accept all multicasts, rather than
998 * trying to set only those filter bits needed to match 1003 * trying to set only those filter bits needed to match
999 * the range. (At this time, the only use of address 1004 * the range. (At this time, the only use of address
1000 * ranges is for IP multicast routing, for which the 1005 * ranges is for IP multicast routing, for which the
1001 * range is big enough to require all bits set.) 1006 * range is big enough to require all bits set.)
1002 */ 1007 */
1003 cfg |= ETH_CFG_MTI; 1008 cfg |= ETH_CFG_MTI;
1004 hashes[0] = 0xffffffffUL; 1009 hashes[0] = 0xffffffffUL;
1005 hashes[1] = 0xffffffffUL; 1010 hashes[1] = 0xffffffffUL;
1006 ifp->if_flags |= IFF_ALLMULTI; 1011 ifp->if_flags |= IFF_ALLMULTI;
1007 nma = 0; 1012 nma = 0;
1008 break; 1013 break;
1009 } 1014 }
1010 1015
1011 if (nma < 3) { 1016 if (nma < 3) {
1012 /* We can program 3 perfect address filters for mcast */ 1017 /* We can program 3 perfect address filters for mcast */
1013 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN); 1018 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
1014 } else { 1019 } else {
1015 /* 1020 /*
1016 * XXX: Datasheet is not very clear here, I'm not sure 1021 * XXX: Datasheet is not very clear here, I'm not sure
1017 * if I'm doing this right. --joff 1022 * if I'm doing this right. --joff
1018 */ 1023 */
1019 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 1024 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1020 1025
1021 /* Just want the 6 most-significant bits. */ 1026 /* Just want the 6 most-significant bits. */
1022 h = h >> 26; 1027 h = h >> 26;
1023#if 0 1028#if 0
1024 hashes[h / 32] |= (1 << (h % 32)); 1029 hashes[h / 32] |= (1 << (h % 32));
1025#else 1030#else
1026 hashes[0] = 0xffffffffUL; 1031 hashes[0] = 0xffffffffUL;
1027 hashes[1] = 0xffffffffUL; 1032 hashes[1] = 0xffffffffUL;
1028#endif 1033#endif
1029 cfg |= ETH_CFG_MTI; 1034 cfg |= ETH_CFG_MTI;
1030 } 1035 }
1031 ETHER_NEXT_MULTI(step, enm); 1036 ETHER_NEXT_MULTI(step, enm);
1032 nma++; 1037 nma++;
1033 } 1038 }
1034 ETHER_UNLOCK(ec); 1039 ETHER_UNLOCK(ec);
1035 1040
1036 // program... 1041 // program...
1037 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 1042 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
1038 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2], 1043 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
1039 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5])); 1044 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
1040 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24) 1045 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
1041 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8) 1046 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
1042 | (sc->sc_enaddr[0])); 1047 | (sc->sc_enaddr[0]));
1043 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8) 1048 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
1044 | (sc->sc_enaddr[4])); 1049 | (sc->sc_enaddr[4]));
1045 if (nma > 0) { 1050 if (nma > 0) {
1046 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 1051 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
1047 ias[0][0], ias[0][1], ias[0][2], 1052 ias[0][0], ias[0][1], ias[0][2],
1048 ias[0][3], ias[0][4], ias[0][5])); 1053 ias[0][3], ias[0][4], ias[0][5]));
1049 CEMAC_WRITE(ETH_SA2L, (ias[0][3] << 24) 1054 CEMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
1050 | (ias[0][2] << 16) | (ias[0][1] << 8) 1055 | (ias[0][2] << 16) | (ias[0][1] << 8)
1051 | (ias[0][0])); 1056 | (ias[0][0]));
1052 CEMAC_WRITE(ETH_SA2H, (ias[0][4] << 8) 1057 CEMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
1053 | (ias[0][5])); 1058 | (ias[0][5]));
1054 } 1059 }
1055 if (nma > 1) { 1060 if (nma > 1) {
1056 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 1061 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
1057 ias[1][0], ias[1][1], ias[1][2], 1062 ias[1][0], ias[1][1], ias[1][2],
1058 ias[1][3], ias[1][4], ias[1][5])); 1063 ias[1][3], ias[1][4], ias[1][5]));
1059 CEMAC_WRITE(ETH_SA3L, (ias[1][3] << 24) 1064 CEMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
1060 | (ias[1][2] << 16) | (ias[1][1] << 8) 1065 | (ias[1][2] << 16) | (ias[1][1] << 8)
1061 | (ias[1][0])); 1066 | (ias[1][0]));
1062 CEMAC_WRITE(ETH_SA3H, (ias[1][4] << 8) 1067 CEMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
1063 | (ias[1][5])); 1068 | (ias[1][5]));
1064 } 1069 }
1065 if (nma > 2) { 1070 if (nma > 2) {
1066 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__, 1071 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
1067 ias[2][0], ias[2][1], ias[2][2], 1072 ias[2][0], ias[2][1], ias[2][2],
1068 ias[2][3], ias[2][4], ias[2][5])); 1073 ias[2][3], ias[2][4], ias[2][5]));
1069 CEMAC_WRITE(ETH_SA4L, (ias[2][3] << 24) 1074 CEMAC_WRITE(ETH_SA4L, (ias[2][3] << 24)
1070 | (ias[2][2] << 16) | (ias[2][1] << 8) 1075 | (ias[2][2] << 16) | (ias[2][1] << 8)
1071 | (ias[2][0])); 1076 | (ias[2][0]));
1072 CEMAC_WRITE(ETH_SA4H, (ias[2][4] << 8) 1077 CEMAC_WRITE(ETH_SA4H, (ias[2][4] << 8)
1073 | (ias[2][5])); 1078 | (ias[2][5]));
1074 } 1079 }
1075 CEMAC_GEM_WRITE(HSH, hashes[0]); 1080 CEMAC_GEM_WRITE(HSH, hashes[0]);
1076 CEMAC_GEM_WRITE(HSL, hashes[1]); 1081 CEMAC_GEM_WRITE(HSL, hashes[1]);
1077 CEMAC_WRITE(ETH_CFG, cfg); 1082 CEMAC_WRITE(ETH_CFG, cfg);
1078 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); 1083 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
1079} 1084}