Thu Mar 5 02:02:08 2020 UTC ()
copyoutstr(9): return ENAMETOOLONG correctly when source string is
not NUL-terminated.


(rin)
diff -r1.7 -r1.8 src/sys/arch/powerpc/booke/copyout.c

cvs diff -r1.7 -r1.8 src/sys/arch/powerpc/booke/copyout.c (switch to unified diff)

--- src/sys/arch/powerpc/booke/copyout.c 2020/03/05 00:33:56 1.7
+++ src/sys/arch/powerpc/booke/copyout.c 2020/03/05 02:02:08 1.8
@@ -1,564 +1,566 @@ @@ -1,564 +1,566 @@
1/* $NetBSD: copyout.c,v 1.7 2020/03/05 00:33:56 rin Exp $ */ 1/* $NetBSD: copyout.c,v 1.8 2020/03/05 02:02:08 rin Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc. 4 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * This code is derived from software contributed to The NetBSD Foundation 7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects 8 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
9 * Agency and which was developed by Matt Thomas of 3am Software Foundry. 9 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
10 * 10 *
11 * This material is based upon work supported by the Defense Advanced Research 11 * This material is based upon work supported by the Defense Advanced Research
12 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under 12 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
13 * Contract No. N66001-09-C-2073. 13 * Contract No. N66001-09-C-2073.
14 * Approved for Public Release, Distribution Unlimited 14 * Approved for Public Release, Distribution Unlimited
15 * 15 *
16 * Redistribution and use in source and binary forms, with or without 16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions 17 * modification, are permitted provided that the following conditions
18 * are met: 18 * are met:
19 * 1. Redistributions of source code must retain the above copyright 19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer. 20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright 21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the 22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution. 23 * documentation and/or other materials provided with the distribution.
24 * 24 *
25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 25 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE. 35 * POSSIBILITY OF SUCH DAMAGE.
36 */ 36 */
37 37
38#include <sys/cdefs.h> 38#include <sys/cdefs.h>
39__KERNEL_RCSID(0, "$NetBSD: copyout.c,v 1.7 2020/03/05 00:33:56 rin Exp $"); 39__KERNEL_RCSID(0, "$NetBSD: copyout.c,v 1.8 2020/03/05 02:02:08 rin Exp $");
40 40
41#define __UFETCHSTORE_PRIVATE 41#define __UFETCHSTORE_PRIVATE
42 42
43#include <sys/param.h> 43#include <sys/param.h>
44#include <sys/lwp.h> 44#include <sys/lwp.h>
45#include <sys/systm.h> 45#include <sys/systm.h>
46 46
47#include <powerpc/pcb.h> 47#include <powerpc/pcb.h>
48 48
49#include <powerpc/booke/cpuvar.h> 49#include <powerpc/booke/cpuvar.h>
50 50
51static inline void 51static inline void
52copyout_uint8(uint8_t *udaddr, uint8_t data, register_t ds_msr) 52copyout_uint8(uint8_t *udaddr, uint8_t data, register_t ds_msr)
53{ 53{
54 register_t msr; 54 register_t msr;
55 __asm volatile( 55 __asm volatile(
56 "mfmsr %[msr]" /* Save MSR */ 56 "mfmsr %[msr]" /* Save MSR */
57 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 57 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
58 "\n\t" "stb %[data],0(%[udaddr])" /* store user byte */ 58 "\n\t" "stb %[data],0(%[udaddr])" /* store user byte */
59 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 59 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
60 : [msr] "=&r" (msr) 60 : [msr] "=&r" (msr)
61 : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr)); 61 : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
62} 62}
63 63
64static inline void 64static inline void
65copyout_uint16(uint16_t *udaddr, uint8_t data, register_t ds_msr) 65copyout_uint16(uint16_t *udaddr, uint8_t data, register_t ds_msr)
66{ 66{
67 register_t msr; 67 register_t msr;
68 __asm volatile( 68 __asm volatile(
69 "mfmsr %[msr]" /* Save MSR */ 69 "mfmsr %[msr]" /* Save MSR */
70 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 70 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
71 "\n\t" "sth %[data],0(%[udaddr])" /* store user half */ 71 "\n\t" "sth %[data],0(%[udaddr])" /* store user half */
72 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 72 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
73 : [msr] "=&r" (msr) 73 : [msr] "=&r" (msr)
74 : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr)); 74 : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
75} 75}
76 76
77static inline void 77static inline void
78copyout_uint32(uint32_t * const udaddr, uint32_t data, register_t ds_msr) 78copyout_uint32(uint32_t * const udaddr, uint32_t data, register_t ds_msr)
79{ 79{
80 register_t msr; 80 register_t msr;
81 __asm volatile( 81 __asm volatile(
82 "mfmsr %[msr]" /* Save MSR */ 82 "mfmsr %[msr]" /* Save MSR */
83 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 83 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
84 "\n\t" "stw %[data],0(%[udaddr])" /* store user data */ 84 "\n\t" "stw %[data],0(%[udaddr])" /* store user data */
85 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 85 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
86 : [msr] "=&r" (msr) 86 : [msr] "=&r" (msr)
87 : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr)); 87 : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
88} 88}
89 89
90#if 0 90#if 0
91static inline void 91static inline void
92copyout_le32(uint32_t * const udaddr, uint32_t data, register_t ds_msr) 92copyout_le32(uint32_t * const udaddr, uint32_t data, register_t ds_msr)
93{ 93{
94 register_t msr; 94 register_t msr;
95 __asm volatile( 95 __asm volatile(
96 "mfmsr %[msr]" /* Save MSR */ 96 "mfmsr %[msr]" /* Save MSR */
97 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 97 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
98 "\n\t" "stwbrx %[data],0,%[udaddr]" /* store user data */ 98 "\n\t" "stwbrx %[data],0,%[udaddr]" /* store user data */
99 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 99 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
100 : [msr] "=&r" (msr) 100 : [msr] "=&r" (msr)
101 : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr)); 101 : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
102} 102}
103 103
104static inline void 104static inline void
105copyout_le32_with_mask(uint32_t * const udaddr, uint32_t data, 105copyout_le32_with_mask(uint32_t * const udaddr, uint32_t data,
106 uint32_t mask, register_t ds_msr) 106 uint32_t mask, register_t ds_msr)
107{ 107{
108 register_t msr; 108 register_t msr;
109 uint32_t tmp; 109 uint32_t tmp;
110 KASSERT((data & ~mask) == 0); 110 KASSERT((data & ~mask) == 0);
111 __asm volatile( 111 __asm volatile(
112 "mfmsr %[msr]" /* Save MSR */ 112 "mfmsr %[msr]" /* Save MSR */
113 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 113 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
114 "\n\t" "lwbrx %[tmp],0,%[udaddr]" /* fetch user data */ 114 "\n\t" "lwbrx %[tmp],0,%[udaddr]" /* fetch user data */
115 "\n\t" "andc %[tmp],%[tmp],%[mask]" /* mask out new data */ 115 "\n\t" "andc %[tmp],%[tmp],%[mask]" /* mask out new data */
116 "\n\t" "or %[tmp],%[tmp],%[data]" /* merge new data */ 116 "\n\t" "or %[tmp],%[tmp],%[data]" /* merge new data */
117 "\n\t" "stwbrx %[tmp],0,%[udaddr]" /* store user data */ 117 "\n\t" "stwbrx %[tmp],0,%[udaddr]" /* store user data */
118 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 118 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
119 : [msr] "=&r" (msr), [tmp] "=&r" (tmp) 119 : [msr] "=&r" (msr), [tmp] "=&r" (tmp)
120 : [ds_msr] "r" (ds_msr), [data] "r" (data), 120 : [ds_msr] "r" (ds_msr), [data] "r" (data),
121 [mask] "r" (mask), [udaddr] "b" (udaddr)); 121 [mask] "r" (mask), [udaddr] "b" (udaddr));
122} 122}
123#endif 123#endif
124 124
125static inline void 125static inline void
126copyout_16uint8s(const uint8_t *ksaddr8, uint8_t *udaddr8, register_t ds_msr) 126copyout_16uint8s(const uint8_t *ksaddr8, uint8_t *udaddr8, register_t ds_msr)
127{ 127{
128 register_t msr; 128 register_t msr;
129 __asm volatile( 129 __asm volatile(
130 "mfmsr %[msr]" /* Save MSR */ 130 "mfmsr %[msr]" /* Save MSR */
131 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 131 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
132 "\n\t" "stb %[data0],0(%[udaddr8])" /* store user data */ 132 "\n\t" "stb %[data0],0(%[udaddr8])" /* store user data */
133 "\n\t" "stb %[data1],1(%[udaddr8])" /* store user data */ 133 "\n\t" "stb %[data1],1(%[udaddr8])" /* store user data */
134 "\n\t" "stb %[data2],2(%[udaddr8])" /* store user data */ 134 "\n\t" "stb %[data2],2(%[udaddr8])" /* store user data */
135 "\n\t" "stb %[data3],3(%[udaddr8])" /* store user data */ 135 "\n\t" "stb %[data3],3(%[udaddr8])" /* store user data */
136 "\n\t" "stb %[data4],4(%[udaddr8])" /* store user data */ 136 "\n\t" "stb %[data4],4(%[udaddr8])" /* store user data */
137 "\n\t" "stb %[data5],5(%[udaddr8])" /* store user data */ 137 "\n\t" "stb %[data5],5(%[udaddr8])" /* store user data */
138 "\n\t" "stb %[data6],6(%[udaddr8])" /* store user data */ 138 "\n\t" "stb %[data6],6(%[udaddr8])" /* store user data */
139 "\n\t" "stb %[data7],7(%[udaddr8])" /* store user data */ 139 "\n\t" "stb %[data7],7(%[udaddr8])" /* store user data */
140 "\n\t" "stb %[data8],8(%[udaddr8])" /* store user data */ 140 "\n\t" "stb %[data8],8(%[udaddr8])" /* store user data */
141 "\n\t" "stb %[data9],9(%[udaddr8])" /* store user data */ 141 "\n\t" "stb %[data9],9(%[udaddr8])" /* store user data */
142 "\n\t" "stb %[data10],10(%[udaddr8])" /* store user data */ 142 "\n\t" "stb %[data10],10(%[udaddr8])" /* store user data */
143 "\n\t" "stb %[data11],11(%[udaddr8])" /* store user data */ 143 "\n\t" "stb %[data11],11(%[udaddr8])" /* store user data */
144 "\n\t" "stb %[data12],12(%[udaddr8])" /* store user data */ 144 "\n\t" "stb %[data12],12(%[udaddr8])" /* store user data */
145 "\n\t" "stb %[data13],13(%[udaddr8])" /* store user data */ 145 "\n\t" "stb %[data13],13(%[udaddr8])" /* store user data */
146 "\n\t" "stb %[data14],14(%[udaddr8])" /* store user data */ 146 "\n\t" "stb %[data14],14(%[udaddr8])" /* store user data */
147 "\n\t" "stb %[data15],15(%[udaddr8])" /* store user data */ 147 "\n\t" "stb %[data15],15(%[udaddr8])" /* store user data */
148 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 148 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
149 : [msr] "=&r" (msr) 149 : [msr] "=&r" (msr)
150 : [ds_msr] "r" (ds_msr), [udaddr8] "b" (udaddr8), 150 : [ds_msr] "r" (ds_msr), [udaddr8] "b" (udaddr8),
151 [data0] "r" (ksaddr8[0]), [data1] "r" (ksaddr8[1]), 151 [data0] "r" (ksaddr8[0]), [data1] "r" (ksaddr8[1]),
152 [data2] "r" (ksaddr8[2]), [data3] "r" (ksaddr8[3]), 152 [data2] "r" (ksaddr8[2]), [data3] "r" (ksaddr8[3]),
153 [data4] "r" (ksaddr8[4]), [data5] "r" (ksaddr8[5]), 153 [data4] "r" (ksaddr8[4]), [data5] "r" (ksaddr8[5]),
154 [data6] "r" (ksaddr8[6]), [data7] "r" (ksaddr8[7]), 154 [data6] "r" (ksaddr8[6]), [data7] "r" (ksaddr8[7]),
155 [data8] "r" (ksaddr8[8]), [data9] "r" (ksaddr8[9]), 155 [data8] "r" (ksaddr8[8]), [data9] "r" (ksaddr8[9]),
156 [data10] "r" (ksaddr8[10]), [data11] "r" (ksaddr8[11]), 156 [data10] "r" (ksaddr8[10]), [data11] "r" (ksaddr8[11]),
157 [data12] "r" (ksaddr8[12]), [data13] "r" (ksaddr8[13]), 157 [data12] "r" (ksaddr8[12]), [data13] "r" (ksaddr8[13]),
158 [data14] "r" (ksaddr8[14]), [data15] "r" (ksaddr8[15])); 158 [data14] "r" (ksaddr8[14]), [data15] "r" (ksaddr8[15]));
159} 159}
160 160
161static inline void 161static inline void
162copyout_8uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32, 162copyout_8uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32,
163 const register_t ds_msr, const size_t line_mask) 163 const register_t ds_msr, const size_t line_mask)
164{ 164{
165 register_t msr; 165 register_t msr;
166 register_t tmp; 166 register_t tmp;
167 __asm volatile( 167 __asm volatile(
168 "and. %[tmp],%[line_mask],%[udaddr32]" 168 "and. %[tmp],%[line_mask],%[udaddr32]"
169 "\n\t" "mfmsr %[msr]" /* Save MSR */ 169 "\n\t" "mfmsr %[msr]" /* Save MSR */
170 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 170 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
171 "\n\t" "bne 0,1f" 171 "\n\t" "bne 0,1f"
172 "\n\t" "dcba 0,%[udaddr32]" 172 "\n\t" "dcba 0,%[udaddr32]"
173 "\n" "1:" 173 "\n" "1:"
174 "\n\t" "stw %[data0],0(%[udaddr32])" /* store user data */ 174 "\n\t" "stw %[data0],0(%[udaddr32])" /* store user data */
175 "\n\t" "stw %[data1],4(%[udaddr32])" /* store user data */ 175 "\n\t" "stw %[data1],4(%[udaddr32])" /* store user data */
176 "\n\t" "stw %[data2],8(%[udaddr32])" /* store user data */ 176 "\n\t" "stw %[data2],8(%[udaddr32])" /* store user data */
177 "\n\t" "stw %[data3],12(%[udaddr32])" /* store user data */ 177 "\n\t" "stw %[data3],12(%[udaddr32])" /* store user data */
178 "\n\t" "stw %[data4],16(%[udaddr32])" /* store user data */ 178 "\n\t" "stw %[data4],16(%[udaddr32])" /* store user data */
179 "\n\t" "stw %[data5],20(%[udaddr32])" /* store user data */ 179 "\n\t" "stw %[data5],20(%[udaddr32])" /* store user data */
180 "\n\t" "stw %[data6],24(%[udaddr32])" /* store user data */ 180 "\n\t" "stw %[data6],24(%[udaddr32])" /* store user data */
181 "\n\t" "stw %[data7],28(%[udaddr32])" /* store user data */ 181 "\n\t" "stw %[data7],28(%[udaddr32])" /* store user data */
182 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 182 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
183 : [msr] "=&r" (msr), [tmp] "=&r" (tmp) 183 : [msr] "=&r" (msr), [tmp] "=&r" (tmp)
184 : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32), 184 : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32),
185 [line_mask] "r" (line_mask), 185 [line_mask] "r" (line_mask),
186 [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]), 186 [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]),
187 [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]), 187 [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]),
188 [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]), 188 [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]),
189 [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7]) 189 [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7])
190 : "cr0"); 190 : "cr0");
191} 191}
192 192
193static inline void 193static inline void
194copyout_16uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32, 194copyout_16uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32,
195 const register_t ds_msr, const size_t line_mask) 195 const register_t ds_msr, const size_t line_mask)
196{ 196{
197 KASSERT(((uintptr_t)udaddr32 & line_mask) == 0); 197 KASSERT(((uintptr_t)udaddr32 & line_mask) == 0);
198 register_t msr; 198 register_t msr;
199 register_t tmp; 199 register_t tmp;
200 __asm volatile( 200 __asm volatile(
201 "and. %[tmp],%[line_mask],%[udaddr32]" 201 "and. %[tmp],%[line_mask],%[udaddr32]"
202 "\n\t" "cmplwi 2,%[line_size],32" 202 "\n\t" "cmplwi 2,%[line_size],32"
203 "\n\t" "mfmsr %[msr]" /* Save MSR */ 203 "\n\t" "mfmsr %[msr]" /* Save MSR */
204 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 204 "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
205 "\n\t" "bne 0,1f" 205 "\n\t" "bne 0,1f"
206 "\n\t" "dcba 0,%[udaddr32]" 206 "\n\t" "dcba 0,%[udaddr32]"
207 "\n\t" "bne 2,1f" 207 "\n\t" "bne 2,1f"
208 "\n\t" "dcba %[line_size],%[udaddr32]" 208 "\n\t" "dcba %[line_size],%[udaddr32]"
209 "\n" "1:" 209 "\n" "1:"
210 "\n\t" "stw %[data0],0(%[udaddr32])" /* store user data */ 210 "\n\t" "stw %[data0],0(%[udaddr32])" /* store user data */
211 "\n\t" "stw %[data1],4(%[udaddr32])" /* store user data */ 211 "\n\t" "stw %[data1],4(%[udaddr32])" /* store user data */
212 "\n\t" "stw %[data2],8(%[udaddr32])" /* store user data */ 212 "\n\t" "stw %[data2],8(%[udaddr32])" /* store user data */
213 "\n\t" "stw %[data3],12(%[udaddr32])" /* store user data */ 213 "\n\t" "stw %[data3],12(%[udaddr32])" /* store user data */
214 "\n\t" "stw %[data4],16(%[udaddr32])" /* store user data */ 214 "\n\t" "stw %[data4],16(%[udaddr32])" /* store user data */
215 "\n\t" "stw %[data5],20(%[udaddr32])" /* store user data */ 215 "\n\t" "stw %[data5],20(%[udaddr32])" /* store user data */
216 "\n\t" "stw %[data6],24(%[udaddr32])" /* store user data */ 216 "\n\t" "stw %[data6],24(%[udaddr32])" /* store user data */
217 "\n\t" "stw %[data7],28(%[udaddr32])" /* store user data */ 217 "\n\t" "stw %[data7],28(%[udaddr32])" /* store user data */
218 "\n\t" "stw %[data8],32(%[udaddr32])" /* store user data */ 218 "\n\t" "stw %[data8],32(%[udaddr32])" /* store user data */
219 "\n\t" "stw %[data9],36(%[udaddr32])" /* store user data */ 219 "\n\t" "stw %[data9],36(%[udaddr32])" /* store user data */
220 "\n\t" "stw %[data10],40(%[udaddr32])" /* store user data */ 220 "\n\t" "stw %[data10],40(%[udaddr32])" /* store user data */
221 "\n\t" "stw %[data11],44(%[udaddr32])" /* store user data */ 221 "\n\t" "stw %[data11],44(%[udaddr32])" /* store user data */
222 "\n\t" "stw %[data12],48(%[udaddr32])" /* store user data */ 222 "\n\t" "stw %[data12],48(%[udaddr32])" /* store user data */
223 "\n\t" "stw %[data13],52(%[udaddr32])" /* store user data */ 223 "\n\t" "stw %[data13],52(%[udaddr32])" /* store user data */
224 "\n\t" "stw %[data14],56(%[udaddr32])" /* store user data */ 224 "\n\t" "stw %[data14],56(%[udaddr32])" /* store user data */
225 "\n\t" "stw %[data15],60(%[udaddr32])" /* store user data */ 225 "\n\t" "stw %[data15],60(%[udaddr32])" /* store user data */
226 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 226 "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
227 : [msr] "=&r" (msr), [tmp] "=&r" (tmp) 227 : [msr] "=&r" (msr), [tmp] "=&r" (tmp)
228 : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32), 228 : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32),
229 [line_size] "r" (line_mask + 1), [line_mask] "r" (line_mask), 229 [line_size] "r" (line_mask + 1), [line_mask] "r" (line_mask),
230 [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]), 230 [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]),
231 [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]), 231 [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]),
232 [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]), 232 [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]),
233 [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7]), 233 [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7]),
234 [data8] "r" (ksaddr32[8]), [data9] "r" (ksaddr32[9]), 234 [data8] "r" (ksaddr32[8]), [data9] "r" (ksaddr32[9]),
235 [data10] "r" (ksaddr32[10]), [data11] "r" (ksaddr32[11]), 235 [data10] "r" (ksaddr32[10]), [data11] "r" (ksaddr32[11]),
236 [data12] "r" (ksaddr32[12]), [data13] "r" (ksaddr32[13]), 236 [data12] "r" (ksaddr32[12]), [data13] "r" (ksaddr32[13]),
237 [data14] "r" (ksaddr32[14]), [data15] "r" (ksaddr32[15]) 237 [data14] "r" (ksaddr32[14]), [data15] "r" (ksaddr32[15])
238 : "cr0", "cr2"); 238 : "cr0", "cr2");
239} 239}
240 240
241static inline void 241static inline void
242copyout_uint8s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr) 242copyout_uint8s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr)
243{ 243{
244 const uint8_t *ksaddr8 = (void *)ksaddr; 244 const uint8_t *ksaddr8 = (void *)ksaddr;
245 uint8_t *udaddr8 = (void *)udaddr; 245 uint8_t *udaddr8 = (void *)udaddr;
246 246
247 __builtin_prefetch(ksaddr8, 0, 1); 247 __builtin_prefetch(ksaddr8, 0, 1);
248 248
249 for (; len >= 16; len -= 16, ksaddr8 += 16, udaddr8 += 16) { 249 for (; len >= 16; len -= 16, ksaddr8 += 16, udaddr8 += 16) {
250 __builtin_prefetch(ksaddr8 + 16, 0, 1); 250 __builtin_prefetch(ksaddr8 + 16, 0, 1);
251 copyout_16uint8s(ksaddr8, udaddr8, ds_msr); 251 copyout_16uint8s(ksaddr8, udaddr8, ds_msr);
252 } 252 }
253 253
254 while (len-- > 0) { 254 while (len-- > 0) {
255 copyout_uint8(udaddr8++, *ksaddr8++, ds_msr); 255 copyout_uint8(udaddr8++, *ksaddr8++, ds_msr);
256 } 256 }
257} 257}
258 258
259static inline void 259static inline void
260copyout_uint32s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr) 260copyout_uint32s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr)
261{ 261{
262 const size_t line_size = curcpu()->ci_ci.dcache_line_size; 262 const size_t line_size = curcpu()->ci_ci.dcache_line_size;
263 const size_t line_mask = line_size - 1; 263 const size_t line_mask = line_size - 1;
264 const size_t udalignment = udaddr & line_mask; 264 const size_t udalignment = udaddr & line_mask;
265 KASSERT((ksaddr & 3) == 0); 265 KASSERT((ksaddr & 3) == 0);
266 KASSERT((udaddr & 3) == 0); 266 KASSERT((udaddr & 3) == 0);
267 const uint32_t *ksaddr32 = (void *)ksaddr; 267 const uint32_t *ksaddr32 = (void *)ksaddr;
268 uint32_t *udaddr32 = (void *)udaddr; 268 uint32_t *udaddr32 = (void *)udaddr;
269 len >>= 2; 269 len >>= 2;
270 __builtin_prefetch(ksaddr32, 0, 1); 270 __builtin_prefetch(ksaddr32, 0, 1);
271 if (udalignment != 0 && udalignment + 4*len > line_size) { 271 if (udalignment != 0 && udalignment + 4*len > line_size) {
272 size_t slen = (line_size - udalignment) >> 2; 272 size_t slen = (line_size - udalignment) >> 2;
273 len -= slen; 273 len -= slen;
274 for (; slen >= 8; ksaddr32 += 8, udaddr32 += 8, slen -= 8) { 274 for (; slen >= 8; ksaddr32 += 8, udaddr32 += 8, slen -= 8) {
275 copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask); 275 copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask);
276 } 276 }
277 while (slen-- > 0) { 277 while (slen-- > 0) {
278 copyout_uint32(udaddr32++, *ksaddr32++, ds_msr); 278 copyout_uint32(udaddr32++, *ksaddr32++, ds_msr);
279 } 279 }
280 if (len == 0) 280 if (len == 0)
281 return; 281 return;
282 } 282 }
283 __builtin_prefetch(ksaddr32, 0, 1); 283 __builtin_prefetch(ksaddr32, 0, 1);
284 while (len >= 16) { 284 while (len >= 16) {
285 __builtin_prefetch(ksaddr32 + 8, 0, 1); 285 __builtin_prefetch(ksaddr32 + 8, 0, 1);
286 __builtin_prefetch(ksaddr32 + 16, 0, 1); 286 __builtin_prefetch(ksaddr32 + 16, 0, 1);
287 copyout_16uint32s(ksaddr32, udaddr32, ds_msr, line_mask); 287 copyout_16uint32s(ksaddr32, udaddr32, ds_msr, line_mask);
288 ksaddr32 += 16, udaddr32 += 16, len -= 16; 288 ksaddr32 += 16, udaddr32 += 16, len -= 16;
289 } 289 }
290 KASSERT(len <= 16); 290 KASSERT(len <= 16);
291 if (len >= 8) { 291 if (len >= 8) {
292 __builtin_prefetch(ksaddr32 + 8, 0, 1); 292 __builtin_prefetch(ksaddr32 + 8, 0, 1);
293 copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask); 293 copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask);
294 ksaddr32 += 8, udaddr32 += 8, len -= 8; 294 ksaddr32 += 8, udaddr32 += 8, len -= 8;
295 } 295 }
296 while (len-- > 0) { 296 while (len-- > 0) {
297 copyout_uint32(udaddr32++, *ksaddr32++, ds_msr); 297 copyout_uint32(udaddr32++, *ksaddr32++, ds_msr);
298 } 298 }
299} 299}
300 300
301int 301int
302_ustore_8(uint8_t *vusaddr, uint8_t val) 302_ustore_8(uint8_t *vusaddr, uint8_t val)
303{ 303{
304 struct pcb * const pcb = lwp_getpcb(curlwp); 304 struct pcb * const pcb = lwp_getpcb(curlwp);
305 struct faultbuf env; 305 struct faultbuf env;
306 306
307 if (setfault(&env) != 0) { 307 if (setfault(&env) != 0) {
308 pcb->pcb_onfault = NULL; 308 pcb->pcb_onfault = NULL;
309 return EFAULT; 309 return EFAULT;
310 } 310 }
311 311
312 copyout_uint8(vusaddr, val, mfmsr() | PSL_DS); 312 copyout_uint8(vusaddr, val, mfmsr() | PSL_DS);
313 313
314 pcb->pcb_onfault = NULL; 314 pcb->pcb_onfault = NULL;
315 315
316 return 0; 316 return 0;
317} 317}
318 318
319int 319int
320_ustore_16(uint16_t *vusaddr, uint16_t val) 320_ustore_16(uint16_t *vusaddr, uint16_t val)
321{ 321{
322 struct pcb * const pcb = lwp_getpcb(curlwp); 322 struct pcb * const pcb = lwp_getpcb(curlwp);
323 struct faultbuf env; 323 struct faultbuf env;
324 324
325 if (setfault(&env) != 0) { 325 if (setfault(&env) != 0) {
326 pcb->pcb_onfault = NULL; 326 pcb->pcb_onfault = NULL;
327 return EFAULT; 327 return EFAULT;
328 } 328 }
329 329
330 copyout_uint16(vusaddr, val, mfmsr() | PSL_DS); 330 copyout_uint16(vusaddr, val, mfmsr() | PSL_DS);
331 331
332 pcb->pcb_onfault = NULL; 332 pcb->pcb_onfault = NULL;
333 333
334 return 0; 334 return 0;
335} 335}
336 336
337int 337int
338_ustore_32(uint32_t *vusaddr, uint32_t val) 338_ustore_32(uint32_t *vusaddr, uint32_t val)
339{ 339{
340 struct pcb * const pcb = lwp_getpcb(curlwp); 340 struct pcb * const pcb = lwp_getpcb(curlwp);
341 struct faultbuf env; 341 struct faultbuf env;
342 342
343 if (setfault(&env) != 0) { 343 if (setfault(&env) != 0) {
344 pcb->pcb_onfault = NULL; 344 pcb->pcb_onfault = NULL;
345 return EFAULT; 345 return EFAULT;
346 } 346 }
347 347
348 copyout_uint32(vusaddr, val, mfmsr() | PSL_DS); 348 copyout_uint32(vusaddr, val, mfmsr() | PSL_DS);
349 349
350 pcb->pcb_onfault = NULL; 350 pcb->pcb_onfault = NULL;
351 351
352 return 0; 352 return 0;
353} 353}
354 354
355int 355int
356copyout(const void *vksaddr, void *vudaddr, size_t len) 356copyout(const void *vksaddr, void *vudaddr, size_t len)
357{ 357{
358 struct pcb * const pcb = lwp_getpcb(curlwp); 358 struct pcb * const pcb = lwp_getpcb(curlwp);
359 struct faultbuf env; 359 struct faultbuf env;
360 vaddr_t udaddr = (vaddr_t) vudaddr; 360 vaddr_t udaddr = (vaddr_t) vudaddr;
361 vaddr_t ksaddr = (vaddr_t) vksaddr; 361 vaddr_t ksaddr = (vaddr_t) vksaddr;
362 362
363 if (__predict_false(len == 0)) { 363 if (__predict_false(len == 0)) {
364 return 0; 364 return 0;
365 } 365 }
366 366
367 const register_t ds_msr = mfmsr() | PSL_DS; 367 const register_t ds_msr = mfmsr() | PSL_DS;
368 368
369 int rv = setfault(&env); 369 int rv = setfault(&env);
370 if (rv != 0) { 370 if (rv != 0) {
371 pcb->pcb_onfault = NULL; 371 pcb->pcb_onfault = NULL;
372 return rv; 372 return rv;
373 } 373 }
374 374
375 if (__predict_false(len < 4)) { 375 if (__predict_false(len < 4)) {
376 copyout_uint8s(ksaddr, udaddr, len, ds_msr); 376 copyout_uint8s(ksaddr, udaddr, len, ds_msr);
377 pcb->pcb_onfault = NULL; 377 pcb->pcb_onfault = NULL;
378 return 0; 378 return 0;
379 } 379 }
380 380
381 const size_t alignment = (udaddr ^ ksaddr) & 3; 381 const size_t alignment = (udaddr ^ ksaddr) & 3;
382 if (__predict_true(alignment == 0)) { 382 if (__predict_true(alignment == 0)) {
383 size_t slen; 383 size_t slen;
384 if (__predict_false(ksaddr & 3)) { 384 if (__predict_false(ksaddr & 3)) {
385 slen = 4 - (ksaddr & 3); 385 slen = 4 - (ksaddr & 3);
386 copyout_uint8s(ksaddr, udaddr, slen, ds_msr); 386 copyout_uint8s(ksaddr, udaddr, slen, ds_msr);
387 udaddr += slen, ksaddr += slen, len -= slen; 387 udaddr += slen, ksaddr += slen, len -= slen;
388 } 388 }
389 slen = len & ~3; 389 slen = len & ~3;
390 if (__predict_true(slen >= 4)) { 390 if (__predict_true(slen >= 4)) {
391 copyout_uint32s(ksaddr, udaddr, slen, ds_msr); 391 copyout_uint32s(ksaddr, udaddr, slen, ds_msr);
392 udaddr += slen, ksaddr += slen, len -= slen; 392 udaddr += slen, ksaddr += slen, len -= slen;
393 } 393 }
394 } 394 }
395 395
396 if (len > 0) { 396 if (len > 0) {
397 copyout_uint8s(ksaddr, udaddr, len, ds_msr); 397 copyout_uint8s(ksaddr, udaddr, len, ds_msr);
398 } 398 }
399 pcb->pcb_onfault = NULL; 399 pcb->pcb_onfault = NULL;
400 return 0; 400 return 0;
401} 401}
402 402
403#if 1 403#if 1
404int 404int
405copyoutstr(const void *ksaddr, void *udaddr, size_t len, size_t *done) 405copyoutstr(const void *ksaddr, void *udaddr, size_t len, size_t *done)
406{ 406{
407 struct pcb * const pcb = lwp_getpcb(curlwp); 407 struct pcb * const pcb = lwp_getpcb(curlwp);
408 struct faultbuf env; 408 struct faultbuf env;
409 int rv; 409 int rv;
410 410
411 if (__predict_false(len == 0)) { 411 if (__predict_false(len == 0)) {
412 if (done) 412 if (done)
413 *done = 0; 413 *done = 0;
414 return 0; 414 return 0;
415 } 415 }
416 416
417 rv = setfault(&env); 417 rv = setfault(&env);
418 if (rv != 0) { 418 if (rv != 0) {
419 pcb->pcb_onfault = NULL; 419 pcb->pcb_onfault = NULL;
420 if (done) 420 if (done)
421 *done = 0; 421 *done = 0;
422 return rv; 422 return rv;
423 } 423 }
424 424
425 const register_t ds_msr = mfmsr() | PSL_DS; 425 const register_t ds_msr = mfmsr() | PSL_DS;
426 const uint8_t *ksaddr8 = ksaddr; 426 const uint8_t *ksaddr8 = ksaddr;
427 size_t copylen = 0; 427 size_t copylen = 0;
428 428
429 uint8_t *udaddr8 = (void *)udaddr; 429 uint8_t *udaddr8 = (void *)udaddr;
430 430
431 while (copylen++ < len) { 431 while (copylen++ < len) {
432 const uint8_t data = *ksaddr8++; 432 const uint8_t data = *ksaddr8++;
433 copyout_uint8(udaddr8++, data, ds_msr); 433 copyout_uint8(udaddr8++, data, ds_msr);
434 if (data == 0) 434 if (data == 0)
435 break; 435 goto out;
436 } 436 }
 437 rv = ENAMETOOLONG;
437 438
 439out:
438 pcb->pcb_onfault = NULL; 440 pcb->pcb_onfault = NULL;
439 if (done) 441 if (done)
440 *done = copylen; 442 *done = copylen;
441 return 0; 443 return rv;
442} 444}
443#else 445#else
444/* XXX This version of copyoutstr(9) has never beeen enabled so far. */ 446/* XXX This version of copyoutstr(9) has never beeen enabled so far. */
445int 447int
446copyoutstr(const void *ksaddr, void *udaddr, size_t len, size_t *lenp) 448copyoutstr(const void *ksaddr, void *udaddr, size_t len, size_t *lenp)
447{ 449{
448 struct pcb * const pcb = lwp_getpcb(curlwp); 450 struct pcb * const pcb = lwp_getpcb(curlwp);
449 struct faultbuf env; 451 struct faultbuf env;
450 452
451 if (__predict_false(len == 0)) { 453 if (__predict_false(len == 0)) {
452 if (lenp) 454 if (lenp)
453 *lenp = 0; 455 *lenp = 0;
454 return 0; 456 return 0;
455 } 457 }
456 458
457 if (setfault(&env)) { 459 if (setfault(&env)) {
458 pcb->pcb_onfault = NULL; 460 pcb->pcb_onfault = NULL;
459 if (lenp) 461 if (lenp)
460 *lenp = 0; 462 *lenp = 0;
461 return EFAULT; 463 return EFAULT;
462 } 464 }
463 465
464 const register_t ds_msr = mfmsr() | PSL_DS; 466 const register_t ds_msr = mfmsr() | PSL_DS;
465 const uint8_t *ksaddr8 = ksaddr; 467 const uint8_t *ksaddr8 = ksaddr;
466 size_t copylen = 0; 468 size_t copylen = 0;
467 469
468 uint32_t *udaddr32 = (void *)((uintptr_t)udaddr & ~3); 470 uint32_t *udaddr32 = (void *)((uintptr_t)udaddr & ~3);
469 471
470 size_t boff = (uintptr_t)udaddr & 3; 472 size_t boff = (uintptr_t)udaddr & 3;
471 bool done = false; 473 bool done = false;
472 size_t wlen = 0; 474 size_t wlen = 0;
473 size_t data = 0; 475 size_t data = 0;
474 476
475 /* 477 /*
476 * If the destination buffer doesn't start on a 32-bit boundary 478 * If the destination buffer doesn't start on a 32-bit boundary
477 * try to partially fill in the first word. If we succeed we can 479 * try to partially fill in the first word. If we succeed we can
478 * finish writing it while preserving the bytes on front. 480 * finish writing it while preserving the bytes on front.
479 */ 481 */
480 if (boff > 0) { 482 if (boff > 0) {
481 KASSERT(len > 0); 483 KASSERT(len > 0);
482 do { 484 do {
483 data = (data << 8) | *ksaddr8++; 485 data = (data << 8) | *ksaddr8++;
484 wlen++; 486 wlen++;
485 done = ((uint8_t)data == 0 || len == wlen); 487 done = ((uint8_t)data == 0 || len == wlen);
486 } while (!done && boff + wlen < 4); 488 } while (!done && boff + wlen < 4);
487 KASSERT(wlen > 0); 489 KASSERT(wlen > 0);
488 data <<= 8 * boff; 490 data <<= 8 * boff;
489 if (!done || boff + wlen == 4) { 491 if (!done || boff + wlen == 4) {
490 uint32_t mask = 0xffffffff << (8 * boff); 492 uint32_t mask = 0xffffffff << (8 * boff);
491 copyout_le32_with_mask(udaddr32++, data, mask, ds_msr); 493 copyout_le32_with_mask(udaddr32++, data, mask, ds_msr);
492 boff = 0; 494 boff = 0;
493 copylen = wlen; 495 copylen = wlen;
494 wlen = 0; 496 wlen = 0;
495 data = 0; 497 data = 0;
496 } 498 }
497 } 499 }
498 500
499 /* 501 /*
500 * Now we get to the heart of the routine. Build up complete words 502 * Now we get to the heart of the routine. Build up complete words
501 * if possible. When we have one, write it to the user's address 503 * if possible. When we have one, write it to the user's address
502 * space and go for the next. If we ran out of space or we found the 504 * space and go for the next. If we ran out of space or we found the
503 * end of the string, stop building. If we managed to build a complete 505 * end of the string, stop building. If we managed to build a complete
504 * word, just write it and be happy. Otherwise we have to deal with 506 * word, just write it and be happy. Otherwise we have to deal with
505 * the trailing bytes. 507 * the trailing bytes.
506 */ 508 */
507 KASSERT(done || boff == 0); 509 KASSERT(done || boff == 0);
508 KASSERT(done || copylen < len); 510 KASSERT(done || copylen < len);
509 while (!done) { 511 while (!done) {
510 KASSERT(wlen == 0); 512 KASSERT(wlen == 0);
511 KASSERT(copylen < len); 513 KASSERT(copylen < len);
512 do { 514 do {
513 data = (data << 8) | *ksaddr8++; 515 data = (data << 8) | *ksaddr8++;
514 wlen++; 516 wlen++;
515 done = ((uint8_t)data == 0 || copylen + wlen == len); 517 done = ((uint8_t)data == 0 || copylen + wlen == len);
516 } while (!done && wlen < 4); 518 } while (!done && wlen < 4);
517 KASSERT(done || wlen == 4); 519 KASSERT(done || wlen == 4);
518 if (__predict_true(wlen == 4)) { 520 if (__predict_true(wlen == 4)) {
519 copyout_le32(udaddr32++, data, ds_msr); 521 copyout_le32(udaddr32++, data, ds_msr);
520 data = 0; 522 data = 0;
521 copylen += wlen; 523 copylen += wlen;
522 wlen = 0; 524 wlen = 0;
523 KASSERT(copylen < len || done); 525 KASSERT(copylen < len || done);
524 } 526 }
525 } 527 }
526 KASSERT(wlen < 3); 528 KASSERT(wlen < 3);
527 if (wlen) { 529 if (wlen) {
528 /* 530 /*
529 * Remember even though we are running big-endian we are using 531 * Remember even though we are running big-endian we are using
530 * byte reversed load/stores so we need to deal with things as 532 * byte reversed load/stores so we need to deal with things as
531 * little endian. 533 * little endian.
532 * 534 *
533 * wlen=1 boff=0: 535 * wlen=1 boff=0:
534 * (~(~0 << 8) << 0) -> (~(0xffffff00) << 0) -> 0x000000ff 536 * (~(~0 << 8) << 0) -> (~(0xffffff00) << 0) -> 0x000000ff
535 * wlen=1 boff=1: 537 * wlen=1 boff=1:
536 * (~(~0 << 8) << 8) -> (~(0xffffff00) << 8) -> 0x0000ff00 538 * (~(~0 << 8) << 8) -> (~(0xffffff00) << 8) -> 0x0000ff00
537 * wlen=1 boff=2: 539 * wlen=1 boff=2:
538 * (~(~0 << 8) << 16) -> (~(0xffffff00) << 16) -> 0x00ff0000 540 * (~(~0 << 8) << 16) -> (~(0xffffff00) << 16) -> 0x00ff0000
539 * wlen=1 boff=3: 541 * wlen=1 boff=3:
540 * (~(~0 << 8) << 24) -> (~(0xffffff00) << 24) -> 0xff000000 542 * (~(~0 << 8) << 24) -> (~(0xffffff00) << 24) -> 0xff000000
541 * wlen=2 boff=0: 543 * wlen=2 boff=0:
542 * (~(~0 << 16) << 0) -> (~(0xffff0000) << 0) -> 0x0000ffff 544 * (~(~0 << 16) << 0) -> (~(0xffff0000) << 0) -> 0x0000ffff
543 * wlen=2 boff=1: 545 * wlen=2 boff=1:
544 * (~(~0 << 16) << 8) -> (~(0xffff0000) << 8) -> 0x00ffff00 546 * (~(~0 << 16) << 8) -> (~(0xffff0000) << 8) -> 0x00ffff00
545 * wlen=2 boff=2: 547 * wlen=2 boff=2:
546 * (~(~0 << 16) << 16) -> (~(0xffff0000) << 16) -> 0xffff0000 548 * (~(~0 << 16) << 16) -> (~(0xffff0000) << 16) -> 0xffff0000
547 * wlen=3 boff=0: 549 * wlen=3 boff=0:
548 * (~(~0 << 24) << 0) -> (~(0xff000000) << 0) -> 0x00ffffff 550 * (~(~0 << 24) << 0) -> (~(0xff000000) << 0) -> 0x00ffffff
549 * wlen=3 boff=1: 551 * wlen=3 boff=1:
550 * (~(~0 << 24) << 8) -> (~(0xff000000) << 8) -> 0xffffff00 552 * (~(~0 << 24) << 8) -> (~(0xff000000) << 8) -> 0xffffff00
551 */ 553 */
552 KASSERT(boff + wlen <= 4); 554 KASSERT(boff + wlen <= 4);
553 uint32_t mask = (~(~0 << (8 * wlen))) << (8 * boff); 555 uint32_t mask = (~(~0 << (8 * wlen))) << (8 * boff);
554 KASSERT(mask != 0xffffffff); 556 KASSERT(mask != 0xffffffff);
555 copyout_le32_with_mask(udaddr32, data, mask, ds_msr); 557 copyout_le32_with_mask(udaddr32, data, mask, ds_msr);
556 copylen += wlen; 558 copylen += wlen;
557 } 559 }
558 560
559 pcb->pcb_onfault = NULL; 561 pcb->pcb_onfault = NULL;
560 if (lenp) 562 if (lenp)
561 *lenp = copylen; 563 *lenp = copylen;
562 return 0; 564 return 0;
563} 565}
564#endif 566#endif