Sun Mar 8 22:12:43 2020 UTC ()
Update NFS errno mapping and add assert for correctness

Add the mapping for errno values missing in nfsrv_v2errmap[].  While
at it, add a compile-time assert to make sure that the array does not
become out-of-date again.


(mgorny)
diff -r1.237 -r1.238 src/sys/nfs/nfs_subs.c

cvs diff -r1.237 -r1.238 src/sys/nfs/nfs_subs.c (switch to unified diff)

--- src/sys/nfs/nfs_subs.c 2020/02/24 20:18:53 1.237
+++ src/sys/nfs/nfs_subs.c 2020/03/08 22:12:42 1.238
@@ -1,1227 +1,1231 @@ @@ -1,1227 +1,1231 @@
1/* $NetBSD: nfs_subs.c,v 1.237 2020/02/24 20:18:53 ad Exp $ */ 1/* $NetBSD: nfs_subs.c,v 1.238 2020/03/08 22:12:42 mgorny Exp $ */
2 2
3/* 3/*
4 * Copyright (c) 1989, 1993 4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved. 5 * The Regents of the University of California. All rights reserved.
6 * 6 *
7 * This code is derived from software contributed to Berkeley by 7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph. 8 * Rick Macklem at The University of Guelph.
9 * 9 *
10 * Redistribution and use in source and binary forms, with or without 10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions 11 * modification, are permitted provided that the following conditions
12 * are met: 12 * are met:
13 * 1. Redistributions of source code must retain the above copyright 13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer. 14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright 15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the 16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution. 17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors 18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software 19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission. 20 * without specific prior written permission.
21 * 21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE. 32 * SUCH DAMAGE.
33 * 33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95 34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */ 35 */
36 36
37/* 37/*
38 * Copyright 2000 Wasabi Systems, Inc. 38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved. 39 * All rights reserved.
40 * 40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc. 41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 * 42 *
43 * Redistribution and use in source and binary forms, with or without 43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions 44 * modification, are permitted provided that the following conditions
45 * are met: 45 * are met:
46 * 1. Redistributions of source code must retain the above copyright 46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer. 47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright 48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the 49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution. 50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software 51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement: 52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by 53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc. 54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior 56 * or promote products derived from this software without specific prior
57 * written permission. 57 * written permission.
58 * 58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE. 69 * POSSIBILITY OF SUCH DAMAGE.
70 */ 70 */
71 71
72#include <sys/cdefs.h> 72#include <sys/cdefs.h>
73__KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.237 2020/02/24 20:18:53 ad Exp $"); 73__KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.238 2020/03/08 22:12:42 mgorny Exp $");
74 74
75#ifdef _KERNEL_OPT 75#ifdef _KERNEL_OPT
76#include "opt_nfs.h" 76#include "opt_nfs.h"
77#endif 77#endif
78 78
79/* 79/*
80 * These functions support the macros and help fiddle mbuf chains for 80 * These functions support the macros and help fiddle mbuf chains for
81 * the nfs op functions. They do things like create the rpc header and 81 * the nfs op functions. They do things like create the rpc header and
82 * copy data between mbuf chains and uio lists. 82 * copy data between mbuf chains and uio lists.
83 */ 83 */
84#include <sys/param.h> 84#include <sys/param.h>
85#include <sys/proc.h> 85#include <sys/proc.h>
86#include <sys/systm.h> 86#include <sys/systm.h>
87#include <sys/kernel.h> 87#include <sys/kernel.h>
88#include <sys/kmem.h> 88#include <sys/kmem.h>
89#include <sys/mount.h> 89#include <sys/mount.h>
90#include <sys/vnode.h> 90#include <sys/vnode.h>
91#include <sys/namei.h> 91#include <sys/namei.h>
92#include <sys/mbuf.h> 92#include <sys/mbuf.h>
93#include <sys/socket.h> 93#include <sys/socket.h>
94#include <sys/stat.h> 94#include <sys/stat.h>
95#include <sys/filedesc.h> 95#include <sys/filedesc.h>
96#include <sys/time.h> 96#include <sys/time.h>
97#include <sys/dirent.h> 97#include <sys/dirent.h>
98#include <sys/once.h> 98#include <sys/once.h>
99#include <sys/kauth.h> 99#include <sys/kauth.h>
100#include <sys/atomic.h> 100#include <sys/atomic.h>
101#include <sys/cprng.h> 101#include <sys/cprng.h>
102 102
103#include <uvm/uvm.h> 103#include <uvm/uvm.h>
104#include <uvm/uvm_page_array.h> 104#include <uvm/uvm_page_array.h>
105 105
106#include <nfs/rpcv2.h> 106#include <nfs/rpcv2.h>
107#include <nfs/nfsproto.h> 107#include <nfs/nfsproto.h>
108#include <nfs/nfsnode.h> 108#include <nfs/nfsnode.h>
109#include <nfs/nfs.h> 109#include <nfs/nfs.h>
110#include <nfs/xdr_subs.h> 110#include <nfs/xdr_subs.h>
111#include <nfs/nfsm_subs.h> 111#include <nfs/nfsm_subs.h>
112#include <nfs/nfsmount.h> 112#include <nfs/nfsmount.h>
113#include <nfs/nfsrtt.h> 113#include <nfs/nfsrtt.h>
114#include <nfs/nfs_var.h> 114#include <nfs/nfs_var.h>
115 115
116#include <miscfs/specfs/specdev.h> 116#include <miscfs/specfs/specdev.h>
117 117
118#include <netinet/in.h> 118#include <netinet/in.h>
119 119
120static u_int32_t nfs_xid; 120static u_int32_t nfs_xid;
121 121
122int nuidhash_max = NFS_MAXUIDHASH; 122int nuidhash_max = NFS_MAXUIDHASH;
123/* 123/*
124 * Data items converted to xdr at startup, since they are constant 124 * Data items converted to xdr at startup, since they are constant
125 * This is kinda hokey, but may save a little time doing byte swaps 125 * This is kinda hokey, but may save a little time doing byte swaps
126 */ 126 */
127u_int32_t nfs_xdrneg1; 127u_int32_t nfs_xdrneg1;
128u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr, 128u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
129 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted, 129 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
130 rpc_auth_kerb; 130 rpc_auth_kerb;
131u_int32_t nfs_prog, nfs_true, nfs_false; 131u_int32_t nfs_prog, nfs_true, nfs_false;
132 132
133/* And other global data */ 133/* And other global data */
134const nfstype nfsv2_type[9] = 134const nfstype nfsv2_type[9] =
135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON }; 135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
136const nfstype nfsv3_type[9] = 136const nfstype nfsv3_type[9] =
137 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON }; 137 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
138const enum vtype nv2tov_type[8] = 138const enum vtype nv2tov_type[8] =
139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON }; 139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
140const enum vtype nv3tov_type[8] = 140const enum vtype nv3tov_type[8] =
141 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO }; 141 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
142int nfs_ticks; 142int nfs_ticks;
143 143
144/* NFS client/server stats. */ 144/* NFS client/server stats. */
145struct nfsstats nfsstats; 145struct nfsstats nfsstats;
146 146
147/* 147/*
148 * Mapping of old NFS Version 2 RPC numbers to generic numbers. 148 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
149 */ 149 */
150const int nfsv3_procid[NFS_NPROCS] = { 150const int nfsv3_procid[NFS_NPROCS] = {
151 NFSPROC_NULL, 151 NFSPROC_NULL,
152 NFSPROC_GETATTR, 152 NFSPROC_GETATTR,
153 NFSPROC_SETATTR, 153 NFSPROC_SETATTR,
154 NFSPROC_NOOP, 154 NFSPROC_NOOP,
155 NFSPROC_LOOKUP, 155 NFSPROC_LOOKUP,
156 NFSPROC_READLINK, 156 NFSPROC_READLINK,
157 NFSPROC_READ, 157 NFSPROC_READ,
158 NFSPROC_NOOP, 158 NFSPROC_NOOP,
159 NFSPROC_WRITE, 159 NFSPROC_WRITE,
160 NFSPROC_CREATE, 160 NFSPROC_CREATE,
161 NFSPROC_REMOVE, 161 NFSPROC_REMOVE,
162 NFSPROC_RENAME, 162 NFSPROC_RENAME,
163 NFSPROC_LINK, 163 NFSPROC_LINK,
164 NFSPROC_SYMLINK, 164 NFSPROC_SYMLINK,
165 NFSPROC_MKDIR, 165 NFSPROC_MKDIR,
166 NFSPROC_RMDIR, 166 NFSPROC_RMDIR,
167 NFSPROC_READDIR, 167 NFSPROC_READDIR,
168 NFSPROC_FSSTAT, 168 NFSPROC_FSSTAT,
169 NFSPROC_NOOP, 169 NFSPROC_NOOP,
170 NFSPROC_NOOP, 170 NFSPROC_NOOP,
171 NFSPROC_NOOP, 171 NFSPROC_NOOP,
172 NFSPROC_NOOP, 172 NFSPROC_NOOP,
173 NFSPROC_NOOP 173 NFSPROC_NOOP
174}; 174};
175 175
176/* 176/*
177 * and the reverse mapping from generic to Version 2 procedure numbers 177 * and the reverse mapping from generic to Version 2 procedure numbers
178 */ 178 */
179const int nfsv2_procid[NFS_NPROCS] = { 179const int nfsv2_procid[NFS_NPROCS] = {
180 NFSV2PROC_NULL, 180 NFSV2PROC_NULL,
181 NFSV2PROC_GETATTR, 181 NFSV2PROC_GETATTR,
182 NFSV2PROC_SETATTR, 182 NFSV2PROC_SETATTR,
183 NFSV2PROC_LOOKUP, 183 NFSV2PROC_LOOKUP,
184 NFSV2PROC_NOOP, 184 NFSV2PROC_NOOP,
185 NFSV2PROC_READLINK, 185 NFSV2PROC_READLINK,
186 NFSV2PROC_READ, 186 NFSV2PROC_READ,
187 NFSV2PROC_WRITE, 187 NFSV2PROC_WRITE,
188 NFSV2PROC_CREATE, 188 NFSV2PROC_CREATE,
189 NFSV2PROC_MKDIR, 189 NFSV2PROC_MKDIR,
190 NFSV2PROC_SYMLINK, 190 NFSV2PROC_SYMLINK,
191 NFSV2PROC_CREATE, 191 NFSV2PROC_CREATE,
192 NFSV2PROC_REMOVE, 192 NFSV2PROC_REMOVE,
193 NFSV2PROC_RMDIR, 193 NFSV2PROC_RMDIR,
194 NFSV2PROC_RENAME, 194 NFSV2PROC_RENAME,
195 NFSV2PROC_LINK, 195 NFSV2PROC_LINK,
196 NFSV2PROC_READDIR, 196 NFSV2PROC_READDIR,
197 NFSV2PROC_NOOP, 197 NFSV2PROC_NOOP,
198 NFSV2PROC_STATFS, 198 NFSV2PROC_STATFS,
199 NFSV2PROC_NOOP, 199 NFSV2PROC_NOOP,
200 NFSV2PROC_NOOP, 200 NFSV2PROC_NOOP,
201 NFSV2PROC_NOOP, 201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP, 202 NFSV2PROC_NOOP,
203}; 203};
204 204
205/* 205/*
206 * Maps errno values to nfs error numbers. 206 * Maps errno values to nfs error numbers.
207 * Use NFSERR_IO as the catch all for ones not specifically defined in 207 * Use NFSERR_IO as the catch all for ones not specifically defined in
208 * RFC 1094. 208 * RFC 1094.
209 */ 209 */
210static const u_char nfsrv_v2errmap[ELAST] = { 210static const u_char nfsrv_v2errmap[] = {
211 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO, 211 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
212 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 212 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
213 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO, 213 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
214 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR, 214 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
215 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 215 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS, 216 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
217 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 217 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 218 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO, 223 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
224 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE, 224 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, 226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, 227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
 228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
 229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
 230 NFSERR_IO, NFSERR_IO, NFSERR_IO
228}; 231};
 232__CTASSERT(__arraycount(nfsrv_v2errmap) == ELAST);
229 233
230/* 234/*
231 * Maps errno values to nfs error numbers. 235 * Maps errno values to nfs error numbers.
232 * Although it is not obvious whether or not NFS clients really care if 236 * Although it is not obvious whether or not NFS clients really care if
233 * a returned error value is in the specified list for the procedure, the 237 * a returned error value is in the specified list for the procedure, the
234 * safest thing to do is filter them appropriately. For Version 2, the 238 * safest thing to do is filter them appropriately. For Version 2, the
235 * X/Open XNFS document is the only specification that defines error values 239 * X/Open XNFS document is the only specification that defines error values
236 * for each RPC (The RFC simply lists all possible error values for all RPCs), 240 * for each RPC (The RFC simply lists all possible error values for all RPCs),
237 * so I have decided to not do this for Version 2. 241 * so I have decided to not do this for Version 2.
238 * The first entry is the default error return and the rest are the valid 242 * The first entry is the default error return and the rest are the valid
239 * errors for that RPC in increasing numeric order. 243 * errors for that RPC in increasing numeric order.
240 */ 244 */
241static const short nfsv3err_null[] = { 245static const short nfsv3err_null[] = {
242 0, 246 0,
243 0, 247 0,
244}; 248};
245 249
246static const short nfsv3err_getattr[] = { 250static const short nfsv3err_getattr[] = {
247 NFSERR_IO, 251 NFSERR_IO,
248 NFSERR_IO, 252 NFSERR_IO,
249 NFSERR_STALE, 253 NFSERR_STALE,
250 NFSERR_BADHANDLE, 254 NFSERR_BADHANDLE,
251 NFSERR_SERVERFAULT, 255 NFSERR_SERVERFAULT,
252 0, 256 0,
253}; 257};
254 258
255static const short nfsv3err_setattr[] = { 259static const short nfsv3err_setattr[] = {
256 NFSERR_IO, 260 NFSERR_IO,
257 NFSERR_PERM, 261 NFSERR_PERM,
258 NFSERR_IO, 262 NFSERR_IO,
259 NFSERR_ACCES, 263 NFSERR_ACCES,
260 NFSERR_INVAL, 264 NFSERR_INVAL,
261 NFSERR_NOSPC, 265 NFSERR_NOSPC,
262 NFSERR_ROFS, 266 NFSERR_ROFS,
263 NFSERR_DQUOT, 267 NFSERR_DQUOT,
264 NFSERR_STALE, 268 NFSERR_STALE,
265 NFSERR_BADHANDLE, 269 NFSERR_BADHANDLE,
266 NFSERR_NOT_SYNC, 270 NFSERR_NOT_SYNC,
267 NFSERR_SERVERFAULT, 271 NFSERR_SERVERFAULT,
268 0, 272 0,
269}; 273};
270 274
271static const short nfsv3err_lookup[] = { 275static const short nfsv3err_lookup[] = {
272 NFSERR_IO, 276 NFSERR_IO,
273 NFSERR_NOENT, 277 NFSERR_NOENT,
274 NFSERR_IO, 278 NFSERR_IO,
275 NFSERR_ACCES, 279 NFSERR_ACCES,
276 NFSERR_NOTDIR, 280 NFSERR_NOTDIR,
277 NFSERR_NAMETOL, 281 NFSERR_NAMETOL,
278 NFSERR_STALE, 282 NFSERR_STALE,
279 NFSERR_BADHANDLE, 283 NFSERR_BADHANDLE,
280 NFSERR_SERVERFAULT, 284 NFSERR_SERVERFAULT,
281 0, 285 0,
282}; 286};
283 287
284static const short nfsv3err_access[] = { 288static const short nfsv3err_access[] = {
285 NFSERR_IO, 289 NFSERR_IO,
286 NFSERR_IO, 290 NFSERR_IO,
287 NFSERR_STALE, 291 NFSERR_STALE,
288 NFSERR_BADHANDLE, 292 NFSERR_BADHANDLE,
289 NFSERR_SERVERFAULT, 293 NFSERR_SERVERFAULT,
290 0, 294 0,
291}; 295};
292 296
293static const short nfsv3err_readlink[] = { 297static const short nfsv3err_readlink[] = {
294 NFSERR_IO, 298 NFSERR_IO,
295 NFSERR_IO, 299 NFSERR_IO,
296 NFSERR_ACCES, 300 NFSERR_ACCES,
297 NFSERR_INVAL, 301 NFSERR_INVAL,
298 NFSERR_STALE, 302 NFSERR_STALE,
299 NFSERR_BADHANDLE, 303 NFSERR_BADHANDLE,
300 NFSERR_NOTSUPP, 304 NFSERR_NOTSUPP,
301 NFSERR_SERVERFAULT, 305 NFSERR_SERVERFAULT,
302 0, 306 0,
303}; 307};
304 308
305static const short nfsv3err_read[] = { 309static const short nfsv3err_read[] = {
306 NFSERR_IO, 310 NFSERR_IO,
307 NFSERR_IO, 311 NFSERR_IO,
308 NFSERR_NXIO, 312 NFSERR_NXIO,
309 NFSERR_ACCES, 313 NFSERR_ACCES,
310 NFSERR_INVAL, 314 NFSERR_INVAL,
311 NFSERR_STALE, 315 NFSERR_STALE,
312 NFSERR_BADHANDLE, 316 NFSERR_BADHANDLE,
313 NFSERR_SERVERFAULT, 317 NFSERR_SERVERFAULT,
314 NFSERR_JUKEBOX, 318 NFSERR_JUKEBOX,
315 0, 319 0,
316}; 320};
317 321
318static const short nfsv3err_write[] = { 322static const short nfsv3err_write[] = {
319 NFSERR_IO, 323 NFSERR_IO,
320 NFSERR_IO, 324 NFSERR_IO,
321 NFSERR_ACCES, 325 NFSERR_ACCES,
322 NFSERR_INVAL, 326 NFSERR_INVAL,
323 NFSERR_FBIG, 327 NFSERR_FBIG,
324 NFSERR_NOSPC, 328 NFSERR_NOSPC,
325 NFSERR_ROFS, 329 NFSERR_ROFS,
326 NFSERR_DQUOT, 330 NFSERR_DQUOT,
327 NFSERR_STALE, 331 NFSERR_STALE,
328 NFSERR_BADHANDLE, 332 NFSERR_BADHANDLE,
329 NFSERR_SERVERFAULT, 333 NFSERR_SERVERFAULT,
330 NFSERR_JUKEBOX, 334 NFSERR_JUKEBOX,
331 0, 335 0,
332}; 336};
333 337
334static const short nfsv3err_create[] = { 338static const short nfsv3err_create[] = {
335 NFSERR_IO, 339 NFSERR_IO,
336 NFSERR_IO, 340 NFSERR_IO,
337 NFSERR_ACCES, 341 NFSERR_ACCES,
338 NFSERR_EXIST, 342 NFSERR_EXIST,
339 NFSERR_NOTDIR, 343 NFSERR_NOTDIR,
340 NFSERR_NOSPC, 344 NFSERR_NOSPC,
341 NFSERR_ROFS, 345 NFSERR_ROFS,
342 NFSERR_NAMETOL, 346 NFSERR_NAMETOL,
343 NFSERR_DQUOT, 347 NFSERR_DQUOT,
344 NFSERR_STALE, 348 NFSERR_STALE,
345 NFSERR_BADHANDLE, 349 NFSERR_BADHANDLE,
346 NFSERR_NOTSUPP, 350 NFSERR_NOTSUPP,
347 NFSERR_SERVERFAULT, 351 NFSERR_SERVERFAULT,
348 0, 352 0,
349}; 353};
350 354
351static const short nfsv3err_mkdir[] = { 355static const short nfsv3err_mkdir[] = {
352 NFSERR_IO, 356 NFSERR_IO,
353 NFSERR_IO, 357 NFSERR_IO,
354 NFSERR_ACCES, 358 NFSERR_ACCES,
355 NFSERR_EXIST, 359 NFSERR_EXIST,
356 NFSERR_NOTDIR, 360 NFSERR_NOTDIR,
357 NFSERR_NOSPC, 361 NFSERR_NOSPC,
358 NFSERR_ROFS, 362 NFSERR_ROFS,
359 NFSERR_NAMETOL, 363 NFSERR_NAMETOL,
360 NFSERR_DQUOT, 364 NFSERR_DQUOT,
361 NFSERR_STALE, 365 NFSERR_STALE,
362 NFSERR_BADHANDLE, 366 NFSERR_BADHANDLE,
363 NFSERR_NOTSUPP, 367 NFSERR_NOTSUPP,
364 NFSERR_SERVERFAULT, 368 NFSERR_SERVERFAULT,
365 0, 369 0,
366}; 370};
367 371
368static const short nfsv3err_symlink[] = { 372static const short nfsv3err_symlink[] = {
369 NFSERR_IO, 373 NFSERR_IO,
370 NFSERR_IO, 374 NFSERR_IO,
371 NFSERR_ACCES, 375 NFSERR_ACCES,
372 NFSERR_EXIST, 376 NFSERR_EXIST,
373 NFSERR_NOTDIR, 377 NFSERR_NOTDIR,
374 NFSERR_NOSPC, 378 NFSERR_NOSPC,
375 NFSERR_ROFS, 379 NFSERR_ROFS,
376 NFSERR_NAMETOL, 380 NFSERR_NAMETOL,
377 NFSERR_DQUOT, 381 NFSERR_DQUOT,
378 NFSERR_STALE, 382 NFSERR_STALE,
379 NFSERR_BADHANDLE, 383 NFSERR_BADHANDLE,
380 NFSERR_NOTSUPP, 384 NFSERR_NOTSUPP,
381 NFSERR_SERVERFAULT, 385 NFSERR_SERVERFAULT,
382 0, 386 0,
383}; 387};
384 388
385static const short nfsv3err_mknod[] = { 389static const short nfsv3err_mknod[] = {
386 NFSERR_IO, 390 NFSERR_IO,
387 NFSERR_IO, 391 NFSERR_IO,
388 NFSERR_ACCES, 392 NFSERR_ACCES,
389 NFSERR_EXIST, 393 NFSERR_EXIST,
390 NFSERR_NOTDIR, 394 NFSERR_NOTDIR,
391 NFSERR_NOSPC, 395 NFSERR_NOSPC,
392 NFSERR_ROFS, 396 NFSERR_ROFS,
393 NFSERR_NAMETOL, 397 NFSERR_NAMETOL,
394 NFSERR_DQUOT, 398 NFSERR_DQUOT,
395 NFSERR_STALE, 399 NFSERR_STALE,
396 NFSERR_BADHANDLE, 400 NFSERR_BADHANDLE,
397 NFSERR_NOTSUPP, 401 NFSERR_NOTSUPP,
398 NFSERR_SERVERFAULT, 402 NFSERR_SERVERFAULT,
399 NFSERR_BADTYPE, 403 NFSERR_BADTYPE,
400 0, 404 0,
401}; 405};
402 406
403static const short nfsv3err_remove[] = { 407static const short nfsv3err_remove[] = {
404 NFSERR_IO, 408 NFSERR_IO,
405 NFSERR_NOENT, 409 NFSERR_NOENT,
406 NFSERR_IO, 410 NFSERR_IO,
407 NFSERR_ACCES, 411 NFSERR_ACCES,
408 NFSERR_NOTDIR, 412 NFSERR_NOTDIR,
409 NFSERR_ROFS, 413 NFSERR_ROFS,
410 NFSERR_NAMETOL, 414 NFSERR_NAMETOL,
411 NFSERR_STALE, 415 NFSERR_STALE,
412 NFSERR_BADHANDLE, 416 NFSERR_BADHANDLE,
413 NFSERR_SERVERFAULT, 417 NFSERR_SERVERFAULT,
414 0, 418 0,
415}; 419};
416 420
417static const short nfsv3err_rmdir[] = { 421static const short nfsv3err_rmdir[] = {
418 NFSERR_IO, 422 NFSERR_IO,
419 NFSERR_NOENT, 423 NFSERR_NOENT,
420 NFSERR_IO, 424 NFSERR_IO,
421 NFSERR_ACCES, 425 NFSERR_ACCES,
422 NFSERR_EXIST, 426 NFSERR_EXIST,
423 NFSERR_NOTDIR, 427 NFSERR_NOTDIR,
424 NFSERR_INVAL, 428 NFSERR_INVAL,
425 NFSERR_ROFS, 429 NFSERR_ROFS,
426 NFSERR_NAMETOL, 430 NFSERR_NAMETOL,
427 NFSERR_NOTEMPTY, 431 NFSERR_NOTEMPTY,
428 NFSERR_STALE, 432 NFSERR_STALE,
429 NFSERR_BADHANDLE, 433 NFSERR_BADHANDLE,
430 NFSERR_NOTSUPP, 434 NFSERR_NOTSUPP,
431 NFSERR_SERVERFAULT, 435 NFSERR_SERVERFAULT,
432 0, 436 0,
433}; 437};
434 438
435static const short nfsv3err_rename[] = { 439static const short nfsv3err_rename[] = {
436 NFSERR_IO, 440 NFSERR_IO,
437 NFSERR_NOENT, 441 NFSERR_NOENT,
438 NFSERR_IO, 442 NFSERR_IO,
439 NFSERR_ACCES, 443 NFSERR_ACCES,
440 NFSERR_EXIST, 444 NFSERR_EXIST,
441 NFSERR_XDEV, 445 NFSERR_XDEV,
442 NFSERR_NOTDIR, 446 NFSERR_NOTDIR,
443 NFSERR_ISDIR, 447 NFSERR_ISDIR,
444 NFSERR_INVAL, 448 NFSERR_INVAL,
445 NFSERR_NOSPC, 449 NFSERR_NOSPC,
446 NFSERR_ROFS, 450 NFSERR_ROFS,
447 NFSERR_MLINK, 451 NFSERR_MLINK,
448 NFSERR_NAMETOL, 452 NFSERR_NAMETOL,
449 NFSERR_NOTEMPTY, 453 NFSERR_NOTEMPTY,
450 NFSERR_DQUOT, 454 NFSERR_DQUOT,
451 NFSERR_STALE, 455 NFSERR_STALE,
452 NFSERR_BADHANDLE, 456 NFSERR_BADHANDLE,
453 NFSERR_NOTSUPP, 457 NFSERR_NOTSUPP,
454 NFSERR_SERVERFAULT, 458 NFSERR_SERVERFAULT,
455 0, 459 0,
456}; 460};
457 461
458static const short nfsv3err_link[] = { 462static const short nfsv3err_link[] = {
459 NFSERR_IO, 463 NFSERR_IO,
460 NFSERR_IO, 464 NFSERR_IO,
461 NFSERR_ACCES, 465 NFSERR_ACCES,
462 NFSERR_EXIST, 466 NFSERR_EXIST,
463 NFSERR_XDEV, 467 NFSERR_XDEV,
464 NFSERR_NOTDIR, 468 NFSERR_NOTDIR,
465 NFSERR_INVAL, 469 NFSERR_INVAL,
466 NFSERR_NOSPC, 470 NFSERR_NOSPC,
467 NFSERR_ROFS, 471 NFSERR_ROFS,
468 NFSERR_MLINK, 472 NFSERR_MLINK,
469 NFSERR_NAMETOL, 473 NFSERR_NAMETOL,
470 NFSERR_DQUOT, 474 NFSERR_DQUOT,
471 NFSERR_STALE, 475 NFSERR_STALE,
472 NFSERR_BADHANDLE, 476 NFSERR_BADHANDLE,
473 NFSERR_NOTSUPP, 477 NFSERR_NOTSUPP,
474 NFSERR_SERVERFAULT, 478 NFSERR_SERVERFAULT,
475 0, 479 0,
476}; 480};
477 481
478static const short nfsv3err_readdir[] = { 482static const short nfsv3err_readdir[] = {
479 NFSERR_IO, 483 NFSERR_IO,
480 NFSERR_IO, 484 NFSERR_IO,
481 NFSERR_ACCES, 485 NFSERR_ACCES,
482 NFSERR_NOTDIR, 486 NFSERR_NOTDIR,
483 NFSERR_STALE, 487 NFSERR_STALE,
484 NFSERR_BADHANDLE, 488 NFSERR_BADHANDLE,
485 NFSERR_BAD_COOKIE, 489 NFSERR_BAD_COOKIE,
486 NFSERR_TOOSMALL, 490 NFSERR_TOOSMALL,
487 NFSERR_SERVERFAULT, 491 NFSERR_SERVERFAULT,
488 0, 492 0,
489}; 493};
490 494
491static const short nfsv3err_readdirplus[] = { 495static const short nfsv3err_readdirplus[] = {
492 NFSERR_IO, 496 NFSERR_IO,
493 NFSERR_IO, 497 NFSERR_IO,
494 NFSERR_ACCES, 498 NFSERR_ACCES,
495 NFSERR_NOTDIR, 499 NFSERR_NOTDIR,
496 NFSERR_STALE, 500 NFSERR_STALE,
497 NFSERR_BADHANDLE, 501 NFSERR_BADHANDLE,
498 NFSERR_BAD_COOKIE, 502 NFSERR_BAD_COOKIE,
499 NFSERR_NOTSUPP, 503 NFSERR_NOTSUPP,
500 NFSERR_TOOSMALL, 504 NFSERR_TOOSMALL,
501 NFSERR_SERVERFAULT, 505 NFSERR_SERVERFAULT,
502 0, 506 0,
503}; 507};
504 508
505static const short nfsv3err_fsstat[] = { 509static const short nfsv3err_fsstat[] = {
506 NFSERR_IO, 510 NFSERR_IO,
507 NFSERR_IO, 511 NFSERR_IO,
508 NFSERR_STALE, 512 NFSERR_STALE,
509 NFSERR_BADHANDLE, 513 NFSERR_BADHANDLE,
510 NFSERR_SERVERFAULT, 514 NFSERR_SERVERFAULT,
511 0, 515 0,
512}; 516};
513 517
514static const short nfsv3err_fsinfo[] = { 518static const short nfsv3err_fsinfo[] = {
515 NFSERR_STALE, 519 NFSERR_STALE,
516 NFSERR_STALE, 520 NFSERR_STALE,
517 NFSERR_BADHANDLE, 521 NFSERR_BADHANDLE,
518 NFSERR_SERVERFAULT, 522 NFSERR_SERVERFAULT,
519 0, 523 0,
520}; 524};
521 525
522static const short nfsv3err_pathconf[] = { 526static const short nfsv3err_pathconf[] = {
523 NFSERR_STALE, 527 NFSERR_STALE,
524 NFSERR_STALE, 528 NFSERR_STALE,
525 NFSERR_BADHANDLE, 529 NFSERR_BADHANDLE,
526 NFSERR_SERVERFAULT, 530 NFSERR_SERVERFAULT,
527 0, 531 0,
528}; 532};
529 533
530static const short nfsv3err_commit[] = { 534static const short nfsv3err_commit[] = {
531 NFSERR_IO, 535 NFSERR_IO,
532 NFSERR_IO, 536 NFSERR_IO,
533 NFSERR_STALE, 537 NFSERR_STALE,
534 NFSERR_BADHANDLE, 538 NFSERR_BADHANDLE,
535 NFSERR_SERVERFAULT, 539 NFSERR_SERVERFAULT,
536 0, 540 0,
537}; 541};
538 542
539static const short * const nfsrv_v3errmap[] = { 543static const short * const nfsrv_v3errmap[] = {
540 nfsv3err_null, 544 nfsv3err_null,
541 nfsv3err_getattr, 545 nfsv3err_getattr,
542 nfsv3err_setattr, 546 nfsv3err_setattr,
543 nfsv3err_lookup, 547 nfsv3err_lookup,
544 nfsv3err_access, 548 nfsv3err_access,
545 nfsv3err_readlink, 549 nfsv3err_readlink,
546 nfsv3err_read, 550 nfsv3err_read,
547 nfsv3err_write, 551 nfsv3err_write,
548 nfsv3err_create, 552 nfsv3err_create,
549 nfsv3err_mkdir, 553 nfsv3err_mkdir,
550 nfsv3err_symlink, 554 nfsv3err_symlink,
551 nfsv3err_mknod, 555 nfsv3err_mknod,
552 nfsv3err_remove, 556 nfsv3err_remove,
553 nfsv3err_rmdir, 557 nfsv3err_rmdir,
554 nfsv3err_rename, 558 nfsv3err_rename,
555 nfsv3err_link, 559 nfsv3err_link,
556 nfsv3err_readdir, 560 nfsv3err_readdir,
557 nfsv3err_readdirplus, 561 nfsv3err_readdirplus,
558 nfsv3err_fsstat, 562 nfsv3err_fsstat,
559 nfsv3err_fsinfo, 563 nfsv3err_fsinfo,
560 nfsv3err_pathconf, 564 nfsv3err_pathconf,
561 nfsv3err_commit, 565 nfsv3err_commit,
562}; 566};
563 567
564extern struct nfsrtt nfsrtt; 568extern struct nfsrtt nfsrtt;
565 569
566u_long nfsdirhashmask; 570u_long nfsdirhashmask;
567 571
568int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *); 572int nfs_webnamei(struct nameidata *, struct vnode *, struct proc *);
569 573
570/* 574/*
571 * Create the header for an rpc request packet 575 * Create the header for an rpc request packet
572 * The hsiz is the size of the rest of the nfs request header. 576 * The hsiz is the size of the rest of the nfs request header.
573 * (just used to decide if a cluster is a good idea) 577 * (just used to decide if a cluster is a good idea)
574 */ 578 */
575struct mbuf * 579struct mbuf *
576nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp) 580nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
577{ 581{
578 struct mbuf *mb; 582 struct mbuf *mb;
579 char *bpos; 583 char *bpos;
580 584
581 mb = m_get(M_WAIT, MT_DATA); 585 mb = m_get(M_WAIT, MT_DATA);
582 MCLAIM(mb, &nfs_mowner); 586 MCLAIM(mb, &nfs_mowner);
583 if (hsiz >= MINCLSIZE) 587 if (hsiz >= MINCLSIZE)
584 m_clget(mb, M_WAIT); 588 m_clget(mb, M_WAIT);
585 mb->m_len = 0; 589 mb->m_len = 0;
586 bpos = mtod(mb, void *); 590 bpos = mtod(mb, void *);
587 591
588 /* Finally, return values */ 592 /* Finally, return values */
589 *bposp = bpos; 593 *bposp = bpos;
590 return (mb); 594 return (mb);
591} 595}
592 596
593/* 597/*
594 * Build the RPC header and fill in the authorization info. 598 * Build the RPC header and fill in the authorization info.
595 * The authorization string argument is only used when the credentials 599 * The authorization string argument is only used when the credentials
596 * come from outside of the kernel. 600 * come from outside of the kernel.
597 * Returns the head of the mbuf list. 601 * Returns the head of the mbuf list.
598 */ 602 */
599struct mbuf * 603struct mbuf *
600nfsm_rpchead(kauth_cred_t cr, int nmflag, int procid, 604nfsm_rpchead(kauth_cred_t cr, int nmflag, int procid,
601 int auth_type, int auth_len, char *auth_str, int verf_len, 605 int auth_type, int auth_len, char *auth_str, int verf_len,
602 char *verf_str, struct mbuf *mrest, int mrest_len, 606 char *verf_str, struct mbuf *mrest, int mrest_len,
603 struct mbuf **mbp, uint32_t *xidp) 607 struct mbuf **mbp, uint32_t *xidp)
604{ 608{
605 struct mbuf *mb; 609 struct mbuf *mb;
606 u_int32_t *tl; 610 u_int32_t *tl;
607 char *bpos; 611 char *bpos;
608 int i; 612 int i;
609 struct mbuf *mreq; 613 struct mbuf *mreq;
610 int siz, grpsiz, authsiz; 614 int siz, grpsiz, authsiz;
611 615
612 authsiz = nfsm_rndup(auth_len); 616 authsiz = nfsm_rndup(auth_len);
613 mb = m_gethdr(M_WAIT, MT_DATA); 617 mb = m_gethdr(M_WAIT, MT_DATA);
614 MCLAIM(mb, &nfs_mowner); 618 MCLAIM(mb, &nfs_mowner);
615 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) { 619 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
616 m_clget(mb, M_WAIT); 620 m_clget(mb, M_WAIT);
617 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) { 621 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
618 m_align(mb, authsiz + 10 * NFSX_UNSIGNED); 622 m_align(mb, authsiz + 10 * NFSX_UNSIGNED);
619 } else { 623 } else {
620 m_align(mb, 8 * NFSX_UNSIGNED); 624 m_align(mb, 8 * NFSX_UNSIGNED);
621 } 625 }
622 mb->m_len = 0; 626 mb->m_len = 0;
623 mreq = mb; 627 mreq = mb;
624 bpos = mtod(mb, void *); 628 bpos = mtod(mb, void *);
625 629
626 /* 630 /*
627 * First the RPC header. 631 * First the RPC header.
628 */ 632 */
629 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 633 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
630 634
631 *tl++ = *xidp = nfs_getxid(); 635 *tl++ = *xidp = nfs_getxid();
632 *tl++ = rpc_call; 636 *tl++ = rpc_call;
633 *tl++ = rpc_vers; 637 *tl++ = rpc_vers;
634 *tl++ = txdr_unsigned(NFS_PROG); 638 *tl++ = txdr_unsigned(NFS_PROG);
635 if (nmflag & NFSMNT_NFSV3) 639 if (nmflag & NFSMNT_NFSV3)
636 *tl++ = txdr_unsigned(NFS_VER3); 640 *tl++ = txdr_unsigned(NFS_VER3);
637 else 641 else
638 *tl++ = txdr_unsigned(NFS_VER2); 642 *tl++ = txdr_unsigned(NFS_VER2);
639 if (nmflag & NFSMNT_NFSV3) 643 if (nmflag & NFSMNT_NFSV3)
640 *tl++ = txdr_unsigned(procid); 644 *tl++ = txdr_unsigned(procid);
641 else 645 else
642 *tl++ = txdr_unsigned(nfsv2_procid[procid]); 646 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
643 647
644 /* 648 /*
645 * And then the authorization cred. 649 * And then the authorization cred.
646 */ 650 */
647 *tl++ = txdr_unsigned(auth_type); 651 *tl++ = txdr_unsigned(auth_type);
648 *tl = txdr_unsigned(authsiz); 652 *tl = txdr_unsigned(authsiz);
649 switch (auth_type) { 653 switch (auth_type) {
650 case RPCAUTH_UNIX: 654 case RPCAUTH_UNIX:
651 nfsm_build(tl, u_int32_t *, auth_len); 655 nfsm_build(tl, u_int32_t *, auth_len);
652 *tl++ = 0; /* stamp ?? */ 656 *tl++ = 0; /* stamp ?? */
653 *tl++ = 0; /* NULL hostname */ 657 *tl++ = 0; /* NULL hostname */
654 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr)); 658 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
655 *tl++ = txdr_unsigned(kauth_cred_getegid(cr)); 659 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
656 grpsiz = (auth_len >> 2) - 5; 660 grpsiz = (auth_len >> 2) - 5;
657 *tl++ = txdr_unsigned(grpsiz); 661 *tl++ = txdr_unsigned(grpsiz);
658 for (i = 0; i < grpsiz; i++) 662 for (i = 0; i < grpsiz; i++)
659 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */ 663 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
660 break; 664 break;
661 case RPCAUTH_KERB4: 665 case RPCAUTH_KERB4:
662 siz = auth_len; 666 siz = auth_len;
663 while (siz > 0) { 667 while (siz > 0) {
664 if (M_TRAILINGSPACE(mb) == 0) { 668 if (M_TRAILINGSPACE(mb) == 0) {
665 struct mbuf *mb2; 669 struct mbuf *mb2;
666 mb2 = m_get(M_WAIT, MT_DATA); 670 mb2 = m_get(M_WAIT, MT_DATA);
667 MCLAIM(mb2, &nfs_mowner); 671 MCLAIM(mb2, &nfs_mowner);
668 if (siz >= MINCLSIZE) 672 if (siz >= MINCLSIZE)
669 m_clget(mb2, M_WAIT); 673 m_clget(mb2, M_WAIT);
670 mb->m_next = mb2; 674 mb->m_next = mb2;
671 mb = mb2; 675 mb = mb2;
672 mb->m_len = 0; 676 mb->m_len = 0;
673 bpos = mtod(mb, void *); 677 bpos = mtod(mb, void *);
674 } 678 }
675 i = uimin(siz, M_TRAILINGSPACE(mb)); 679 i = uimin(siz, M_TRAILINGSPACE(mb));
676 memcpy(bpos, auth_str, i); 680 memcpy(bpos, auth_str, i);
677 mb->m_len += i; 681 mb->m_len += i;
678 auth_str += i; 682 auth_str += i;
679 bpos += i; 683 bpos += i;
680 siz -= i; 684 siz -= i;
681 } 685 }
682 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) { 686 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
683 for (i = 0; i < siz; i++) 687 for (i = 0; i < siz; i++)
684 *bpos++ = '\0'; 688 *bpos++ = '\0';
685 mb->m_len += siz; 689 mb->m_len += siz;
686 } 690 }
687 break; 691 break;
688 }; 692 };
689 693
690 /* 694 /*
691 * And the verifier... 695 * And the verifier...
692 */ 696 */
693 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 697 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
694 if (verf_str) { 698 if (verf_str) {
695 *tl++ = txdr_unsigned(RPCAUTH_KERB4); 699 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
696 *tl = txdr_unsigned(verf_len); 700 *tl = txdr_unsigned(verf_len);
697 siz = verf_len; 701 siz = verf_len;
698 while (siz > 0) { 702 while (siz > 0) {
699 if (M_TRAILINGSPACE(mb) == 0) { 703 if (M_TRAILINGSPACE(mb) == 0) {
700 struct mbuf *mb2; 704 struct mbuf *mb2;
701 mb2 = m_get(M_WAIT, MT_DATA); 705 mb2 = m_get(M_WAIT, MT_DATA);
702 MCLAIM(mb2, &nfs_mowner); 706 MCLAIM(mb2, &nfs_mowner);
703 if (siz >= MINCLSIZE) 707 if (siz >= MINCLSIZE)
704 m_clget(mb2, M_WAIT); 708 m_clget(mb2, M_WAIT);
705 mb->m_next = mb2; 709 mb->m_next = mb2;
706 mb = mb2; 710 mb = mb2;
707 mb->m_len = 0; 711 mb->m_len = 0;
708 bpos = mtod(mb, void *); 712 bpos = mtod(mb, void *);
709 } 713 }
710 i = uimin(siz, M_TRAILINGSPACE(mb)); 714 i = uimin(siz, M_TRAILINGSPACE(mb));
711 memcpy(bpos, verf_str, i); 715 memcpy(bpos, verf_str, i);
712 mb->m_len += i; 716 mb->m_len += i;
713 verf_str += i; 717 verf_str += i;
714 bpos += i; 718 bpos += i;
715 siz -= i; 719 siz -= i;
716 } 720 }
717 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) { 721 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
718 for (i = 0; i < siz; i++) 722 for (i = 0; i < siz; i++)
719 *bpos++ = '\0'; 723 *bpos++ = '\0';
720 mb->m_len += siz; 724 mb->m_len += siz;
721 } 725 }
722 } else { 726 } else {
723 *tl++ = txdr_unsigned(RPCAUTH_NULL); 727 *tl++ = txdr_unsigned(RPCAUTH_NULL);
724 *tl = 0; 728 *tl = 0;
725 } 729 }
726 mb->m_next = mrest; 730 mb->m_next = mrest;
727 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len; 731 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
728 m_reset_rcvif(mreq); 732 m_reset_rcvif(mreq);
729 *mbp = mb; 733 *mbp = mb;
730 return (mreq); 734 return (mreq);
731} 735}
732 736
733/* 737/*
734 * copies mbuf chain to the uio scatter/gather list 738 * copies mbuf chain to the uio scatter/gather list
735 */ 739 */
736int 740int
737nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos) 741nfsm_mbuftouio(struct mbuf **mrep, struct uio *uiop, int siz, char **dpos)
738{ 742{
739 char *mbufcp, *uiocp; 743 char *mbufcp, *uiocp;
740 int xfer, left, len; 744 int xfer, left, len;
741 struct mbuf *mp; 745 struct mbuf *mp;
742 long uiosiz, rem; 746 long uiosiz, rem;
743 int error = 0; 747 int error = 0;
744 748
745 mp = *mrep; 749 mp = *mrep;
746 mbufcp = *dpos; 750 mbufcp = *dpos;
747 len = mtod(mp, char *) + mp->m_len - mbufcp; 751 len = mtod(mp, char *) + mp->m_len - mbufcp;
748 rem = nfsm_rndup(siz)-siz; 752 rem = nfsm_rndup(siz)-siz;
749 while (siz > 0) { 753 while (siz > 0) {
750 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL) 754 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
751 return (EFBIG); 755 return (EFBIG);
752 left = uiop->uio_iov->iov_len; 756 left = uiop->uio_iov->iov_len;
753 uiocp = uiop->uio_iov->iov_base; 757 uiocp = uiop->uio_iov->iov_base;
754 if (left > siz) 758 if (left > siz)
755 left = siz; 759 left = siz;
756 uiosiz = left; 760 uiosiz = left;
757 while (left > 0) { 761 while (left > 0) {
758 while (len == 0) { 762 while (len == 0) {
759 mp = mp->m_next; 763 mp = mp->m_next;
760 if (mp == NULL) 764 if (mp == NULL)
761 return (EBADRPC); 765 return (EBADRPC);
762 mbufcp = mtod(mp, void *); 766 mbufcp = mtod(mp, void *);
763 len = mp->m_len; 767 len = mp->m_len;
764 } 768 }
765 xfer = (left > len) ? len : left; 769 xfer = (left > len) ? len : left;
766 error = copyout_vmspace(uiop->uio_vmspace, mbufcp, 770 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
767 uiocp, xfer); 771 uiocp, xfer);
768 if (error) { 772 if (error) {
769 return error; 773 return error;
770 } 774 }
771 left -= xfer; 775 left -= xfer;
772 len -= xfer; 776 len -= xfer;
773 mbufcp += xfer; 777 mbufcp += xfer;
774 uiocp += xfer; 778 uiocp += xfer;
775 uiop->uio_offset += xfer; 779 uiop->uio_offset += xfer;
776 uiop->uio_resid -= xfer; 780 uiop->uio_resid -= xfer;
777 } 781 }
778 if (uiop->uio_iov->iov_len <= siz) { 782 if (uiop->uio_iov->iov_len <= siz) {
779 uiop->uio_iovcnt--; 783 uiop->uio_iovcnt--;
780 uiop->uio_iov++; 784 uiop->uio_iov++;
781 } else { 785 } else {
782 uiop->uio_iov->iov_base = 786 uiop->uio_iov->iov_base =
783 (char *)uiop->uio_iov->iov_base + uiosiz; 787 (char *)uiop->uio_iov->iov_base + uiosiz;
784 uiop->uio_iov->iov_len -= uiosiz; 788 uiop->uio_iov->iov_len -= uiosiz;
785 } 789 }
786 siz -= uiosiz; 790 siz -= uiosiz;
787 } 791 }
788 *dpos = mbufcp; 792 *dpos = mbufcp;
789 *mrep = mp; 793 *mrep = mp;
790 if (rem > 0) { 794 if (rem > 0) {
791 if (len < rem) 795 if (len < rem)
792 error = nfs_adv(mrep, dpos, rem, len); 796 error = nfs_adv(mrep, dpos, rem, len);
793 else 797 else
794 *dpos += rem; 798 *dpos += rem;
795 } 799 }
796 return (error); 800 return (error);
797} 801}
798 802
799/* 803/*
800 * copies a uio scatter/gather list to an mbuf chain. 804 * copies a uio scatter/gather list to an mbuf chain.
801 * NOTE: can ony handle iovcnt == 1 805 * NOTE: can ony handle iovcnt == 1
802 */ 806 */
803int 807int
804nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos) 808nfsm_uiotombuf(struct uio *uiop, struct mbuf **mq, int siz, char **bpos)
805{ 809{
806 char *uiocp; 810 char *uiocp;
807 struct mbuf *mp, *mp2; 811 struct mbuf *mp, *mp2;
808 int xfer, left, mlen; 812 int xfer, left, mlen;
809 int uiosiz, clflg, rem; 813 int uiosiz, clflg, rem;
810 char *cp; 814 char *cp;
811 int error; 815 int error;
812 816
813#ifdef DIAGNOSTIC 817#ifdef DIAGNOSTIC
814 if (uiop->uio_iovcnt != 1) 818 if (uiop->uio_iovcnt != 1)
815 panic("nfsm_uiotombuf: iovcnt != 1"); 819 panic("nfsm_uiotombuf: iovcnt != 1");
816#endif 820#endif
817 821
818 if (siz > MLEN) /* or should it >= MCLBYTES ?? */ 822 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
819 clflg = 1; 823 clflg = 1;
820 else 824 else
821 clflg = 0; 825 clflg = 0;
822 rem = nfsm_rndup(siz)-siz; 826 rem = nfsm_rndup(siz)-siz;
823 mp = mp2 = *mq; 827 mp = mp2 = *mq;
824 while (siz > 0) { 828 while (siz > 0) {
825 left = uiop->uio_iov->iov_len; 829 left = uiop->uio_iov->iov_len;
826 uiocp = uiop->uio_iov->iov_base; 830 uiocp = uiop->uio_iov->iov_base;
827 if (left > siz) 831 if (left > siz)
828 left = siz; 832 left = siz;
829 uiosiz = left; 833 uiosiz = left;
830 while (left > 0) { 834 while (left > 0) {
831 mlen = M_TRAILINGSPACE(mp); 835 mlen = M_TRAILINGSPACE(mp);
832 if (mlen == 0) { 836 if (mlen == 0) {
833 mp = m_get(M_WAIT, MT_DATA); 837 mp = m_get(M_WAIT, MT_DATA);
834 MCLAIM(mp, &nfs_mowner); 838 MCLAIM(mp, &nfs_mowner);
835 if (clflg) 839 if (clflg)
836 m_clget(mp, M_WAIT); 840 m_clget(mp, M_WAIT);
837 mp->m_len = 0; 841 mp->m_len = 0;
838 mp2->m_next = mp; 842 mp2->m_next = mp;
839 mp2 = mp; 843 mp2 = mp;
840 mlen = M_TRAILINGSPACE(mp); 844 mlen = M_TRAILINGSPACE(mp);
841 } 845 }
842 xfer = (left > mlen) ? mlen : left; 846 xfer = (left > mlen) ? mlen : left;
843 cp = mtod(mp, char *) + mp->m_len; 847 cp = mtod(mp, char *) + mp->m_len;
844 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp, 848 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
845 xfer); 849 xfer);
846 if (error) { 850 if (error) {
847 /* XXX */ 851 /* XXX */
848 } 852 }
849 mp->m_len += xfer; 853 mp->m_len += xfer;
850 left -= xfer; 854 left -= xfer;
851 uiocp += xfer; 855 uiocp += xfer;
852 uiop->uio_offset += xfer; 856 uiop->uio_offset += xfer;
853 uiop->uio_resid -= xfer; 857 uiop->uio_resid -= xfer;
854 } 858 }
855 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + 859 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
856 uiosiz; 860 uiosiz;
857 uiop->uio_iov->iov_len -= uiosiz; 861 uiop->uio_iov->iov_len -= uiosiz;
858 siz -= uiosiz; 862 siz -= uiosiz;
859 } 863 }
860 if (rem > 0) { 864 if (rem > 0) {
861 if (rem > M_TRAILINGSPACE(mp)) { 865 if (rem > M_TRAILINGSPACE(mp)) {
862 mp = m_get(M_WAIT, MT_DATA); 866 mp = m_get(M_WAIT, MT_DATA);
863 MCLAIM(mp, &nfs_mowner); 867 MCLAIM(mp, &nfs_mowner);
864 mp->m_len = 0; 868 mp->m_len = 0;
865 mp2->m_next = mp; 869 mp2->m_next = mp;
866 } 870 }
867 cp = mtod(mp, char *) + mp->m_len; 871 cp = mtod(mp, char *) + mp->m_len;
868 for (left = 0; left < rem; left++) 872 for (left = 0; left < rem; left++)
869 *cp++ = '\0'; 873 *cp++ = '\0';
870 mp->m_len += rem; 874 mp->m_len += rem;
871 *bpos = cp; 875 *bpos = cp;
872 } else 876 } else
873 *bpos = mtod(mp, char *) + mp->m_len; 877 *bpos = mtod(mp, char *) + mp->m_len;
874 *mq = mp; 878 *mq = mp;
875 return (0); 879 return (0);
876} 880}
877 881
878/* 882/*
879 * Get at least "siz" bytes of correctly aligned data. 883 * Get at least "siz" bytes of correctly aligned data.
880 * When called the mbuf pointers are not necessarily correct, 884 * When called the mbuf pointers are not necessarily correct,
881 * dsosp points to what ought to be in m_data and left contains 885 * dsosp points to what ought to be in m_data and left contains
882 * what ought to be in m_len. 886 * what ought to be in m_len.
883 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough 887 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
884 * cases. (The macros use the vars. dpos and dpos2) 888 * cases. (The macros use the vars. dpos and dpos2)
885 */ 889 */
886int 890int
887nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2) 891nfsm_disct(struct mbuf **mdp, char **dposp, int siz, int left, char **cp2)
888{ 892{
889 struct mbuf *m1, *m2; 893 struct mbuf *m1, *m2;
890 struct mbuf *havebuf = NULL; 894 struct mbuf *havebuf = NULL;
891 char *src = *dposp; 895 char *src = *dposp;
892 char *dst; 896 char *dst;
893 int len; 897 int len;
894 898
895#ifdef DEBUG 899#ifdef DEBUG
896 if (left < 0) 900 if (left < 0)
897 panic("nfsm_disct: left < 0"); 901 panic("nfsm_disct: left < 0");
898#endif 902#endif
899 m1 = *mdp; 903 m1 = *mdp;
900 /* 904 /*
901 * Skip through the mbuf chain looking for an mbuf with 905 * Skip through the mbuf chain looking for an mbuf with
902 * some data. If the first mbuf found has enough data 906 * some data. If the first mbuf found has enough data
903 * and it is correctly aligned return it. 907 * and it is correctly aligned return it.
904 */ 908 */
905 while (left == 0) { 909 while (left == 0) {
906 havebuf = m1; 910 havebuf = m1;
907 *mdp = m1 = m1->m_next; 911 *mdp = m1 = m1->m_next;
908 if (m1 == NULL) 912 if (m1 == NULL)
909 return (EBADRPC); 913 return (EBADRPC);
910 src = mtod(m1, void *); 914 src = mtod(m1, void *);
911 left = m1->m_len; 915 left = m1->m_len;
912 /* 916 /*
913 * If we start a new mbuf and it is big enough 917 * If we start a new mbuf and it is big enough
914 * and correctly aligned just return it, don't 918 * and correctly aligned just return it, don't
915 * do any pull up. 919 * do any pull up.
916 */ 920 */
917 if (left >= siz && nfsm_aligned(src)) { 921 if (left >= siz && nfsm_aligned(src)) {
918 *cp2 = src; 922 *cp2 = src;
919 *dposp = src + siz; 923 *dposp = src + siz;
920 return (0); 924 return (0);
921 } 925 }
922 } 926 }
923 if ((m1->m_flags & M_EXT) != 0) { 927 if ((m1->m_flags & M_EXT) != 0) {
924 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz && 928 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
925 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) { 929 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
926 /* 930 /*
927 * If the first mbuf with data has external data 931 * If the first mbuf with data has external data
928 * and there is a previous mbuf with some trailing 932 * and there is a previous mbuf with some trailing
929 * space, use it to move the data into. 933 * space, use it to move the data into.
930 */ 934 */
931 m2 = m1; 935 m2 = m1;
932 *mdp = m1 = havebuf; 936 *mdp = m1 = havebuf;
933 *cp2 = mtod(m1, char *) + m1->m_len; 937 *cp2 = mtod(m1, char *) + m1->m_len;
934 } else if (havebuf) { 938 } else if (havebuf) {
935 /* 939 /*
936 * If the first mbuf has a external data 940 * If the first mbuf has a external data
937 * and there is no previous empty mbuf 941 * and there is no previous empty mbuf
938 * allocate a new mbuf and move the external 942 * allocate a new mbuf and move the external
939 * data to the new mbuf. Also make the first 943 * data to the new mbuf. Also make the first
940 * mbuf look empty. 944 * mbuf look empty.
941 */ 945 */
942 m2 = m1; 946 m2 = m1;
943 *mdp = m1 = m_get(M_WAIT, MT_DATA); 947 *mdp = m1 = m_get(M_WAIT, MT_DATA);
944 MCLAIM(m1, m2->m_owner); 948 MCLAIM(m1, m2->m_owner);
945 if ((m2->m_flags & M_PKTHDR) != 0) { 949 if ((m2->m_flags & M_PKTHDR) != 0) {
946 m_move_pkthdr(m1, m2); 950 m_move_pkthdr(m1, m2);
947 } 951 }
948 if (havebuf) { 952 if (havebuf) {
949 havebuf->m_next = m1; 953 havebuf->m_next = m1;
950 } 954 }
951 m1->m_next = m2; 955 m1->m_next = m2;
952 MRESETDATA(m1); 956 MRESETDATA(m1);
953 m1->m_len = 0; 957 m1->m_len = 0;
954 m2->m_data = src; 958 m2->m_data = src;
955 m2->m_len = left; 959 m2->m_len = left;
956 *cp2 = mtod(m1, char *); 960 *cp2 = mtod(m1, char *);
957 } else { 961 } else {
958 struct mbuf **nextp = &m1->m_next; 962 struct mbuf **nextp = &m1->m_next;
959 963
960 m1->m_len -= left; 964 m1->m_len -= left;
961 do { 965 do {
962 m2 = m_get(M_WAIT, MT_DATA); 966 m2 = m_get(M_WAIT, MT_DATA);
963 MCLAIM(m2, m1->m_owner); 967 MCLAIM(m2, m1->m_owner);
964 if (left >= MINCLSIZE) { 968 if (left >= MINCLSIZE) {
965 MCLGET(m2, M_WAIT); 969 MCLGET(m2, M_WAIT);
966 } 970 }
967 m2->m_next = *nextp; 971 m2->m_next = *nextp;
968 *nextp = m2; 972 *nextp = m2;
969 nextp = &m2->m_next; 973 nextp = &m2->m_next;
970 len = (m2->m_flags & M_EXT) != 0 ? 974 len = (m2->m_flags & M_EXT) != 0 ?
971 MCLBYTES : MLEN; 975 MCLBYTES : MLEN;
972 if (len > left) { 976 if (len > left) {
973 len = left; 977 len = left;
974 } 978 }
975 memcpy(mtod(m2, char *), src, len); 979 memcpy(mtod(m2, char *), src, len);
976 m2->m_len = len; 980 m2->m_len = len;
977 src += len; 981 src += len;
978 left -= len; 982 left -= len;
979 } while (left > 0); 983 } while (left > 0);
980 *mdp = m1 = m1->m_next; 984 *mdp = m1 = m1->m_next;
981 m2 = m1->m_next; 985 m2 = m1->m_next;
982 *cp2 = mtod(m1, char *); 986 *cp2 = mtod(m1, char *);
983 } 987 }
984 } else { 988 } else {
985 /* 989 /*
986 * If the first mbuf has no external data 990 * If the first mbuf has no external data
987 * move the data to the front of the mbuf. 991 * move the data to the front of the mbuf.
988 */ 992 */
989 MRESETDATA(m1); 993 MRESETDATA(m1);
990 dst = mtod(m1, char *); 994 dst = mtod(m1, char *);
991 if (dst != src) { 995 if (dst != src) {
992 memmove(dst, src, left); 996 memmove(dst, src, left);
993 } 997 }
994 m1->m_len = left; 998 m1->m_len = left;
995 m2 = m1->m_next; 999 m2 = m1->m_next;
996 *cp2 = m1->m_data; 1000 *cp2 = m1->m_data;
997 } 1001 }
998 *dposp = *cp2 + siz; 1002 *dposp = *cp2 + siz;
999 /* 1003 /*
1000 * Loop through mbufs pulling data up into first mbuf until 1004 * Loop through mbufs pulling data up into first mbuf until
1001 * the first mbuf is full or there is no more data to 1005 * the first mbuf is full or there is no more data to
1002 * pullup. 1006 * pullup.
1003 */ 1007 */
1004 dst = mtod(m1, char *) + m1->m_len; 1008 dst = mtod(m1, char *) + m1->m_len;
1005 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) { 1009 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1006 if ((len = uimin(len, m2->m_len)) != 0) { 1010 if ((len = uimin(len, m2->m_len)) != 0) {
1007 memcpy(dst, mtod(m2, char *), len); 1011 memcpy(dst, mtod(m2, char *), len);
1008 } 1012 }
1009 m1->m_len += len; 1013 m1->m_len += len;
1010 dst += len; 1014 dst += len;
1011 m2->m_data += len; 1015 m2->m_data += len;
1012 m2->m_len -= len; 1016 m2->m_len -= len;
1013 m2 = m2->m_next; 1017 m2 = m2->m_next;
1014 } 1018 }
1015 if (m1->m_len < siz) 1019 if (m1->m_len < siz)
1016 return (EBADRPC); 1020 return (EBADRPC);
1017 return (0); 1021 return (0);
1018} 1022}
1019 1023
1020/* 1024/*
1021 * Advance the position in the mbuf chain. 1025 * Advance the position in the mbuf chain.
1022 */ 1026 */
1023int 1027int
1024nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left) 1028nfs_adv(struct mbuf **mdp, char **dposp, int offs, int left)
1025{ 1029{
1026 struct mbuf *m; 1030 struct mbuf *m;
1027 int s; 1031 int s;
1028 1032
1029 m = *mdp; 1033 m = *mdp;
1030 s = left; 1034 s = left;
1031 while (s < offs) { 1035 while (s < offs) {
1032 offs -= s; 1036 offs -= s;
1033 m = m->m_next; 1037 m = m->m_next;
1034 if (m == NULL) 1038 if (m == NULL)
1035 return (EBADRPC); 1039 return (EBADRPC);
1036 s = m->m_len; 1040 s = m->m_len;
1037 } 1041 }
1038 *mdp = m; 1042 *mdp = m;
1039 *dposp = mtod(m, char *) + offs; 1043 *dposp = mtod(m, char *) + offs;
1040 return (0); 1044 return (0);
1041} 1045}
1042 1046
1043/* 1047/*
1044 * Copy a string into mbufs for the hard cases... 1048 * Copy a string into mbufs for the hard cases...
1045 */ 1049 */
1046int 1050int
1047nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz) 1051nfsm_strtmbuf(struct mbuf **mb, char **bpos, const char *cp, long siz)
1048{ 1052{
1049 struct mbuf *m1 = NULL, *m2; 1053 struct mbuf *m1 = NULL, *m2;
1050 long left, xfer, len, tlen; 1054 long left, xfer, len, tlen;
1051 u_int32_t *tl; 1055 u_int32_t *tl;
1052 int putsize; 1056 int putsize;
1053 1057
1054 putsize = 1; 1058 putsize = 1;
1055 m2 = *mb; 1059 m2 = *mb;
1056 left = M_TRAILINGSPACE(m2); 1060 left = M_TRAILINGSPACE(m2);
1057 if (left > 0) { 1061 if (left > 0) {
1058 tl = ((u_int32_t *)(*bpos)); 1062 tl = ((u_int32_t *)(*bpos));
1059 *tl++ = txdr_unsigned(siz); 1063 *tl++ = txdr_unsigned(siz);
1060 putsize = 0; 1064 putsize = 0;
1061 left -= NFSX_UNSIGNED; 1065 left -= NFSX_UNSIGNED;
1062 m2->m_len += NFSX_UNSIGNED; 1066 m2->m_len += NFSX_UNSIGNED;
1063 if (left > 0) { 1067 if (left > 0) {
1064 memcpy((void *) tl, cp, left); 1068 memcpy((void *) tl, cp, left);
1065 siz -= left; 1069 siz -= left;
1066 cp += left; 1070 cp += left;
1067 m2->m_len += left; 1071 m2->m_len += left;
1068 left = 0; 1072 left = 0;
1069 } 1073 }
1070 } 1074 }
1071 /* Loop around adding mbufs */ 1075 /* Loop around adding mbufs */
1072 while (siz > 0) { 1076 while (siz > 0) {
1073 m1 = m_get(M_WAIT, MT_DATA); 1077 m1 = m_get(M_WAIT, MT_DATA);
1074 MCLAIM(m1, &nfs_mowner); 1078 MCLAIM(m1, &nfs_mowner);
1075 if (siz > MLEN) 1079 if (siz > MLEN)
1076 m_clget(m1, M_WAIT); 1080 m_clget(m1, M_WAIT);
1077 m1->m_len = NFSMSIZ(m1); 1081 m1->m_len = NFSMSIZ(m1);
1078 m2->m_next = m1; 1082 m2->m_next = m1;
1079 m2 = m1; 1083 m2 = m1;
1080 tl = mtod(m1, u_int32_t *); 1084 tl = mtod(m1, u_int32_t *);
1081 tlen = 0; 1085 tlen = 0;
1082 if (putsize) { 1086 if (putsize) {
1083 *tl++ = txdr_unsigned(siz); 1087 *tl++ = txdr_unsigned(siz);
1084 m1->m_len -= NFSX_UNSIGNED; 1088 m1->m_len -= NFSX_UNSIGNED;
1085 tlen = NFSX_UNSIGNED; 1089 tlen = NFSX_UNSIGNED;
1086 putsize = 0; 1090 putsize = 0;
1087 } 1091 }
1088 if (siz < m1->m_len) { 1092 if (siz < m1->m_len) {
1089 len = nfsm_rndup(siz); 1093 len = nfsm_rndup(siz);
1090 xfer = siz; 1094 xfer = siz;
1091 if (xfer < len) 1095 if (xfer < len)
1092 *(tl+(xfer>>2)) = 0; 1096 *(tl+(xfer>>2)) = 0;
1093 } else { 1097 } else {
1094 xfer = len = m1->m_len; 1098 xfer = len = m1->m_len;
1095 } 1099 }
1096 memcpy((void *) tl, cp, xfer); 1100 memcpy((void *) tl, cp, xfer);
1097 m1->m_len = len+tlen; 1101 m1->m_len = len+tlen;
1098 siz -= xfer; 1102 siz -= xfer;
1099 cp += xfer; 1103 cp += xfer;
1100 } 1104 }
1101 *mb = m1; 1105 *mb = m1;
1102 *bpos = mtod(m1, char *) + m1->m_len; 1106 *bpos = mtod(m1, char *) + m1->m_len;
1103 return (0); 1107 return (0);
1104} 1108}
1105 1109
1106/* 1110/*
1107 * Directory caching routines. They work as follows: 1111 * Directory caching routines. They work as follows:
1108 * - a cache is maintained per VDIR nfsnode. 1112 * - a cache is maintained per VDIR nfsnode.
1109 * - for each offset cookie that is exported to userspace, and can 1113 * - for each offset cookie that is exported to userspace, and can
1110 * thus be thrown back at us as an offset to VOP_READDIR, store 1114 * thus be thrown back at us as an offset to VOP_READDIR, store
1111 * information in the cache. 1115 * information in the cache.
1112 * - cached are: 1116 * - cached are:
1113 * - cookie itself 1117 * - cookie itself
1114 * - blocknumber (essentially just a search key in the buffer cache) 1118 * - blocknumber (essentially just a search key in the buffer cache)
1115 * - entry number in block. 1119 * - entry number in block.
1116 * - offset cookie of block in which this entry is stored 1120 * - offset cookie of block in which this entry is stored
1117 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used. 1121 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1118 * - entries are looked up in a hash table 1122 * - entries are looked up in a hash table
1119 * - also maintained is an LRU list of entries, used to determine 1123 * - also maintained is an LRU list of entries, used to determine
1120 * which ones to delete if the cache grows too large. 1124 * which ones to delete if the cache grows too large.
1121 * - if 32 <-> 64 translation mode is requested for a filesystem, 1125 * - if 32 <-> 64 translation mode is requested for a filesystem,
1122 * the cache also functions as a translation table 1126 * the cache also functions as a translation table
1123 * - in the translation case, invalidating the cache does not mean 1127 * - in the translation case, invalidating the cache does not mean
1124 * flushing it, but just marking entries as invalid, except for 1128 * flushing it, but just marking entries as invalid, except for
1125 * the <64bit cookie, 32bitcookie> pair which is still valid, to 1129 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1126 * still be able to use the cache as a translation table. 1130 * still be able to use the cache as a translation table.
1127 * - 32 bit cookies are uniquely created by combining the hash table 1131 * - 32 bit cookies are uniquely created by combining the hash table
1128 * entry value, and one generation count per hash table entry, 1132 * entry value, and one generation count per hash table entry,
1129 * incremented each time an entry is appended to the chain. 1133 * incremented each time an entry is appended to the chain.
1130 * - the cache is invalidated each time a direcory is modified 1134 * - the cache is invalidated each time a direcory is modified
1131 * - sanity checks are also done; if an entry in a block turns 1135 * - sanity checks are also done; if an entry in a block turns
1132 * out not to have a matching cookie, the cache is invalidated 1136 * out not to have a matching cookie, the cache is invalidated
1133 * and a new block starting from the wanted offset is fetched from 1137 * and a new block starting from the wanted offset is fetched from
1134 * the server. 1138 * the server.
1135 * - directory entries as read from the server are extended to contain 1139 * - directory entries as read from the server are extended to contain
1136 * the 64bit and, optionally, the 32bit cookies, for sanity checking 1140 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1137 * the cache and exporting them to userspace through the cookie 1141 * the cache and exporting them to userspace through the cookie
1138 * argument to VOP_READDIR. 1142 * argument to VOP_READDIR.
1139 */ 1143 */
1140 1144
1141u_long 1145u_long
1142nfs_dirhash(off_t off) 1146nfs_dirhash(off_t off)
1143{ 1147{
1144 int i; 1148 int i;
1145 char *cp = (char *)&off; 1149 char *cp = (char *)&off;
1146 u_long sum = 0L; 1150 u_long sum = 0L;
1147 1151
1148 for (i = 0 ; i < sizeof (off); i++) 1152 for (i = 0 ; i < sizeof (off); i++)
1149 sum += *cp++; 1153 sum += *cp++;
1150 1154
1151 return sum; 1155 return sum;
1152} 1156}
1153 1157
1154#define _NFSDC_MTX(np) (NFSTOV(np)->v_interlock) 1158#define _NFSDC_MTX(np) (NFSTOV(np)->v_interlock)
1155#define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np)) 1159#define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1156#define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np)) 1160#define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1157#define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np))) 1161#define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1158 1162
1159void 1163void
1160nfs_initdircache(struct vnode *vp) 1164nfs_initdircache(struct vnode *vp)
1161{ 1165{
1162 struct nfsnode *np = VTONFS(vp); 1166 struct nfsnode *np = VTONFS(vp);
1163 struct nfsdirhashhead *dircache; 1167 struct nfsdirhashhead *dircache;
1164 1168
1165 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true, 1169 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
1166 &nfsdirhashmask); 1170 &nfsdirhashmask);
1167 1171
1168 NFSDC_LOCK(np); 1172 NFSDC_LOCK(np);
1169 if (np->n_dircache == NULL) { 1173 if (np->n_dircache == NULL) {
1170 np->n_dircachesize = 0; 1174 np->n_dircachesize = 0;
1171 np->n_dircache = dircache; 1175 np->n_dircache = dircache;
1172 dircache = NULL; 1176 dircache = NULL;
1173 TAILQ_INIT(&np->n_dirchain); 1177 TAILQ_INIT(&np->n_dirchain);
1174 } 1178 }
1175 NFSDC_UNLOCK(np); 1179 NFSDC_UNLOCK(np);
1176 if (dircache) 1180 if (dircache)
1177 hashdone(dircache, HASH_LIST, nfsdirhashmask); 1181 hashdone(dircache, HASH_LIST, nfsdirhashmask);
1178} 1182}
1179 1183
1180void 1184void
1181nfs_initdirxlatecookie(struct vnode *vp) 1185nfs_initdirxlatecookie(struct vnode *vp)
1182{ 1186{
1183 struct nfsnode *np = VTONFS(vp); 1187 struct nfsnode *np = VTONFS(vp);
1184 unsigned *dirgens; 1188 unsigned *dirgens;
1185 1189
1186 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE); 1190 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1187 1191
1188 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP); 1192 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1189 NFSDC_LOCK(np); 1193 NFSDC_LOCK(np);
1190 if (np->n_dirgens == NULL) { 1194 if (np->n_dirgens == NULL) {
1191 np->n_dirgens = dirgens; 1195 np->n_dirgens = dirgens;
1192 dirgens = NULL; 1196 dirgens = NULL;
1193 } 1197 }
1194 NFSDC_UNLOCK(np); 1198 NFSDC_UNLOCK(np);
1195 if (dirgens) 1199 if (dirgens)
1196 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned)); 1200 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1197} 1201}
1198 1202
1199static const struct nfsdircache dzero; 1203static const struct nfsdircache dzero;
1200 1204
1201static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *); 1205static void nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *);
1202static void nfs_putdircache_unlocked(struct nfsnode *, 1206static void nfs_putdircache_unlocked(struct nfsnode *,
1203 struct nfsdircache *); 1207 struct nfsdircache *);
1204 1208
1205static void 1209static void
1206nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp) 1210nfs_unlinkdircache(struct nfsnode *np, struct nfsdircache *ndp)
1207{ 1211{
1208 1212
1209 NFSDC_ASSERT_LOCKED(np); 1213 NFSDC_ASSERT_LOCKED(np);
1210 KASSERT(ndp != &dzero); 1214 KASSERT(ndp != &dzero);
1211 1215
1212 if (LIST_NEXT(ndp, dc_hash) == (void *)-1) 1216 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1213 return; 1217 return;
1214 1218
1215 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain); 1219 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1216 LIST_REMOVE(ndp, dc_hash); 1220 LIST_REMOVE(ndp, dc_hash);
1217 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */ 1221 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1218 1222
1219 nfs_putdircache_unlocked(np, ndp); 1223 nfs_putdircache_unlocked(np, ndp);
1220} 1224}
1221 1225
1222void 1226void
1223nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp) 1227nfs_putdircache(struct nfsnode *np, struct nfsdircache *ndp)
1224{ 1228{
1225 int ref; 1229 int ref;
1226 1230
1227 if (ndp == &dzero) 1231 if (ndp == &dzero)