Fri Jul 17 19:40:47 2020 UTC ()
Simplify IPI handling and change IPLs of IPI_HALT, IPI_XCALL, and
IPI_GENERIC from IPL_SCHED to IPL_HIGH.


(jmcneill)
diff -r1.16 -r1.17 src/sys/arch/mips/cavium/octeon_intr.c

cvs diff -r1.16 -r1.17 src/sys/arch/mips/cavium/octeon_intr.c (switch to unified diff)

--- src/sys/arch/mips/cavium/octeon_intr.c 2020/07/17 17:57:16 1.16
+++ src/sys/arch/mips/cavium/octeon_intr.c 2020/07/17 19:40:47 1.17
@@ -1,654 +1,665 @@ @@ -1,654 +1,665 @@
1/* $NetBSD: octeon_intr.c,v 1.16 2020/07/17 17:57:16 jmcneill Exp $ */ 1/* $NetBSD: octeon_intr.c,v 1.17 2020/07/17 19:40:47 jmcneill Exp $ */
2/* 2/*
3 * Copyright 2001, 2002 Wasabi Systems, Inc. 3 * Copyright 2001, 2002 Wasabi Systems, Inc.
4 * All rights reserved. 4 * All rights reserved.
5 * 5 *
6 * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc. 6 * Written by Jason R. Thorpe and Simon Burge for Wasabi Systems, Inc.
7 * 7 *
8 * Redistribution and use in source and binary forms, with or without 8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions 9 * modification, are permitted provided that the following conditions
10 * are met: 10 * are met:
11 * 1. Redistributions of source code must retain the above copyright 11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer. 12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software 16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement: 17 * must display the following acknowledgement:
18 * This product includes software developed for the NetBSD Project by 18 * This product includes software developed for the NetBSD Project by
19 * Wasabi Systems, Inc. 19 * Wasabi Systems, Inc.
20 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 20 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
21 * or promote products derived from this software without specific prior 21 * or promote products derived from this software without specific prior
22 * written permission. 22 * written permission.
23 * 23 *
24 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 24 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE. 34 * POSSIBILITY OF SUCH DAMAGE.
35 */ 35 */
36 36
37/* 37/*
38 * Platform-specific interrupt support for the MIPS Malta. 38 * Platform-specific interrupt support for the MIPS Malta.
39 */ 39 */
40 40
41#include "opt_multiprocessor.h" 41#include "opt_multiprocessor.h"
42 42
43#include "cpunode.h" 43#include "cpunode.h"
44#define __INTR_PRIVATE 44#define __INTR_PRIVATE
45 45
46#include <sys/cdefs.h> 46#include <sys/cdefs.h>
47__KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.16 2020/07/17 17:57:16 jmcneill Exp $"); 47__KERNEL_RCSID(0, "$NetBSD: octeon_intr.c,v 1.17 2020/07/17 19:40:47 jmcneill Exp $");
48 48
49#include <sys/param.h> 49#include <sys/param.h>
50#include <sys/cpu.h> 50#include <sys/cpu.h>
51#include <sys/systm.h> 51#include <sys/systm.h>
52#include <sys/device.h> 52#include <sys/device.h>
53#include <sys/intr.h> 53#include <sys/intr.h>
54#include <sys/kernel.h> 54#include <sys/kernel.h>
55#include <sys/kmem.h> 55#include <sys/kmem.h>
56#include <sys/atomic.h> 56#include <sys/atomic.h>
57 57
58#include <lib/libkern/libkern.h> 58#include <lib/libkern/libkern.h>
59 59
60#include <mips/locore.h> 60#include <mips/locore.h>
61 61
62#include <mips/cavium/dev/octeon_ciureg.h> 62#include <mips/cavium/dev/octeon_ciureg.h>
63#include <mips/cavium/octeonvar.h> 63#include <mips/cavium/octeonvar.h>
64 64
65/* 65/*
66 * This is a mask of bits to clear in the SR when we go to a 66 * This is a mask of bits to clear in the SR when we go to a
67 * given hardware interrupt priority level. 67 * given hardware interrupt priority level.
68 */ 68 */
69static const struct ipl_sr_map octeon_ipl_sr_map = { 69static const struct ipl_sr_map octeon_ipl_sr_map = {
70 .sr_bits = { 70 .sr_bits = {
71 [IPL_NONE] = 0, 71 [IPL_NONE] = 0,
72 [IPL_SOFTCLOCK] = MIPS_SOFT_INT_MASK_0, 72 [IPL_SOFTCLOCK] = MIPS_SOFT_INT_MASK_0,
73 [IPL_SOFTNET] = MIPS_SOFT_INT_MASK, 73 [IPL_SOFTNET] = MIPS_SOFT_INT_MASK,
74 [IPL_VM] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0, 74 [IPL_VM] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0,
75 [IPL_SCHED] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0 75 [IPL_SCHED] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
76 | MIPS_INT_MASK_1 | MIPS_INT_MASK_5, 76 | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
77 [IPL_DDB] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0 77 [IPL_DDB] = MIPS_SOFT_INT_MASK | MIPS_INT_MASK_0
78 | MIPS_INT_MASK_1 | MIPS_INT_MASK_5, 78 | MIPS_INT_MASK_1 | MIPS_INT_MASK_5,
79 [IPL_HIGH] = MIPS_INT_MASK, 79 [IPL_HIGH] = MIPS_INT_MASK,
80 }, 80 },
81}; 81};
82 82
83const char * octeon_intrnames[NIRQS] = { 83const char * octeon_intrnames[NIRQS] = {
84 "workq 0", 84 "workq 0",
85 "workq 1", 85 "workq 1",
86 "workq 2", 86 "workq 2",
87 "workq 3", 87 "workq 3",
88 "workq 4", 88 "workq 4",
89 "workq 5", 89 "workq 5",
90 "workq 6", 90 "workq 6",
91 "workq 7", 91 "workq 7",
92 "workq 8", 92 "workq 8",
93 "workq 9", 93 "workq 9",
94 "workq 10", 94 "workq 10",
95 "workq 11", 95 "workq 11",
96 "workq 12", 96 "workq 12",
97 "workq 13", 97 "workq 13",
98 "workq 14", 98 "workq 14",
99 "workq 15", 99 "workq 15",
100 "gpio 0", 100 "gpio 0",
101 "gpio 1", 101 "gpio 1",
102 "gpio 2", 102 "gpio 2",
103 "gpio 3", 103 "gpio 3",
104 "gpio 4", 104 "gpio 4",
105 "gpio 5", 105 "gpio 5",
106 "gpio 6", 106 "gpio 6",
107 "gpio 7", 107 "gpio 7",
108 "gpio 8", 108 "gpio 8",
109 "gpio 9", 109 "gpio 9",
110 "gpio 10", 110 "gpio 10",
111 "gpio 11", 111 "gpio 11",
112 "gpio 12", 112 "gpio 12",
113 "gpio 13", 113 "gpio 13",
114 "gpio 14", 114 "gpio 14",
115 "gpio 15", 115 "gpio 15",
116 "mbox 0-15", 116 "mbox 0-15",
117 "mbox 16-31", 117 "mbox 16-31",
118 "uart 0", 118 "uart 0",
119 "uart 1", 119 "uart 1",
120 "pci inta", 120 "pci inta",
121 "pci intb", 121 "pci intb",
122 "pci intc", 122 "pci intc",
123 "pci intd", 123 "pci intd",
124 "pci msi 0-15", 124 "pci msi 0-15",
125 "pci msi 16-31", 125 "pci msi 16-31",
126 "pci msi 32-47", 126 "pci msi 32-47",
127 "pci msi 48-63", 127 "pci msi 48-63",
128 "wdog summary", 128 "wdog summary",
129 "twsi", 129 "twsi",
130 "rml", 130 "rml",
131 "trace", 131 "trace",
132 "gmx drop", 132 "gmx drop",
133 "reserved", 133 "reserved",
134 "ipd drop", 134 "ipd drop",
135 "reserved", 135 "reserved",
136 "timer 0", 136 "timer 0",
137 "timer 1", 137 "timer 1",
138 "timer 2", 138 "timer 2",
139 "timer 3", 139 "timer 3",
140 "usb", 140 "usb",
141 "pcm/tdm", 141 "pcm/tdm",
142 "mpi/spi", 142 "mpi/spi",
143 "reserved", 143 "reserved",
144 "reserved", 144 "reserved",
145 "reserved", 145 "reserved",
146 "reserved", 146 "reserved",
147 "reserved", 147 "reserved",
148}; 148};
149 149
150struct octeon_intrhand { 150struct octeon_intrhand {
151 int (*ih_func)(void *); 151 int (*ih_func)(void *);
152 void *ih_arg; 152 void *ih_arg;
153 int ih_irq; 153 int ih_irq;
154 int ih_ipl; 154 int ih_ipl;
155}; 155};
156 156
157#ifdef MULTIPROCESSOR 157#ifdef MULTIPROCESSOR
158static int octeon_send_ipi(struct cpu_info *, int); 158static int octeon_send_ipi(struct cpu_info *, int);
159static int octeon_ipi_intr(void *); 159static int octeon_ipi_intr(void *);
160 160
161struct octeon_intrhand ipi_intrhands[2] = { 161struct octeon_intrhand ipi_intrhands[2] = {
162 [0] = { 162 [0] = {
163 .ih_func = octeon_ipi_intr, 163 .ih_func = octeon_ipi_intr,
164 .ih_arg = (void *)(uintptr_t)__BITS(15,0), 164 .ih_arg = (void *)(uintptr_t)__BITS(15,0),
165 .ih_irq = CIU_INT_MBOX_15_0, 165 .ih_irq = CIU_INT_MBOX_15_0,
166 .ih_ipl = IPL_SCHED, 166 .ih_ipl = IPL_SCHED,
167 }, 167 },
168 [1] = { 168 [1] = {
169 .ih_func = octeon_ipi_intr, 169 .ih_func = octeon_ipi_intr,
170 .ih_arg = (void *)(uintptr_t)__BITS(31,16), 170 .ih_arg = (void *)(uintptr_t)__BITS(31,16),
171 .ih_irq = CIU_INT_MBOX_31_16, 171 .ih_irq = CIU_INT_MBOX_31_16,
172 .ih_ipl = IPL_HIGH, 172 .ih_ipl = IPL_HIGH,
173 }, 173 },
174}; 174};
 175
 176#define OCTEON_IPI_SCHED(n) __BIT((n) + 0)
 177#define OCTEON_IPI_HIGH(n) __BIT((n) + 16)
 178
 179static uint64_t octeon_ipi_mask[NIPIS] = {
 180 [IPI_NOP] = OCTEON_IPI_SCHED(IPI_NOP),
 181 [IPI_AST] = OCTEON_IPI_SCHED(IPI_AST),
 182 [IPI_SHOOTDOWN] = OCTEON_IPI_SCHED(IPI_SHOOTDOWN),
 183 [IPI_SYNCICACHE] = OCTEON_IPI_SCHED(IPI_SYNCICACHE),
 184 [IPI_KPREEMPT] = OCTEON_IPI_SCHED(IPI_KPREEMPT),
 185 [IPI_SUSPEND] = OCTEON_IPI_HIGH(IPI_SUSPEND),
 186 [IPI_HALT] = OCTEON_IPI_HIGH(IPI_HALT),
 187 [IPI_XCALL] = OCTEON_IPI_HIGH(IPI_XCALL),
 188 [IPI_GENERIC] = OCTEON_IPI_HIGH(IPI_GENERIC),
 189 [IPI_WDOG] = OCTEON_IPI_HIGH(IPI_WDOG),
 190};
175#endif 191#endif
176 192
177struct octeon_intrhand *octciu_intrs[NIRQS] = { 193struct octeon_intrhand *octciu_intrs[NIRQS] = {
178#ifdef MULTIPROCESSOR 194#ifdef MULTIPROCESSOR
179 [CIU_INT_MBOX_15_0] = &ipi_intrhands[0], 195 [CIU_INT_MBOX_15_0] = &ipi_intrhands[0],
180 [CIU_INT_MBOX_31_16] = &ipi_intrhands[1], 196 [CIU_INT_MBOX_31_16] = &ipi_intrhands[1],
181#endif 197#endif
182}; 198};
183 199
184kmutex_t octeon_intr_lock; 200kmutex_t octeon_intr_lock;
185 201
186#define X(a) MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a)) 202#define X(a) MIPS_PHYS_TO_XKPHYS(OCTEON_CCA_NONE, (a))
187 203
188struct cpu_softc octeon_cpu0_softc = { 204struct cpu_softc octeon_cpu0_softc = {
189 .cpu_ci = &cpu_info_store, 205 .cpu_ci = &cpu_info_store,
190 .cpu_int0_sum0 = X(CIU_INT0_SUM0), 206 .cpu_int0_sum0 = X(CIU_INT0_SUM0),
191 .cpu_int1_sum0 = X(CIU_INT1_SUM0), 207 .cpu_int1_sum0 = X(CIU_INT1_SUM0),
192 .cpu_int2_sum0 = X(CIU_INT4_SUM0), 208 .cpu_int2_sum0 = X(CIU_INT4_SUM0),
193 209
194 .cpu_int_sum1 = X(CIU_INT_SUM1), 210 .cpu_int_sum1 = X(CIU_INT_SUM1),
195 211
196 .cpu_int0_en[0] = X(CIU_INT0_EN0), 212 .cpu_int0_en[0] = X(CIU_INT0_EN0),
197 .cpu_int1_en[0] = X(CIU_INT1_EN0), 213 .cpu_int1_en[0] = X(CIU_INT1_EN0),
198 .cpu_int2_en[0] = X(CIU_INT4_EN00), 214 .cpu_int2_en[0] = X(CIU_INT4_EN00),
199 215
200 .cpu_int0_en[1] = X(CIU_INT0_EN1), 216 .cpu_int0_en[1] = X(CIU_INT0_EN1),
201 .cpu_int1_en[1] = X(CIU_INT1_EN1), 217 .cpu_int1_en[1] = X(CIU_INT1_EN1),
202 .cpu_int2_en[1] = X(CIU_INT4_EN01), 218 .cpu_int2_en[1] = X(CIU_INT4_EN01),
203 219
204 .cpu_int32_en = X(CIU_INT32_EN0), 220 .cpu_int32_en = X(CIU_INT32_EN0),
205 221
206 .cpu_wdog = X(CIU_WDOG0), 222 .cpu_wdog = X(CIU_WDOG0),
207 .cpu_pp_poke = X(CIU_PP_POKE0), 223 .cpu_pp_poke = X(CIU_PP_POKE0),
208 224
209#ifdef MULTIPROCESSOR 225#ifdef MULTIPROCESSOR
210 .cpu_mbox_set = X(CIU_MBOX_SET0), 226 .cpu_mbox_set = X(CIU_MBOX_SET0),
211 .cpu_mbox_clr = X(CIU_MBOX_CLR0), 227 .cpu_mbox_clr = X(CIU_MBOX_CLR0),
212#endif 228#endif
213}; 229};
214 230
215#ifdef MULTIPROCESSOR 231#ifdef MULTIPROCESSOR
216/* XXX limit of two CPUs ... */ 232/* XXX limit of two CPUs ... */
217struct cpu_softc octeon_cpu1_softc = { 233struct cpu_softc octeon_cpu1_softc = {
218 .cpu_int0_sum0 = X(CIU_INT2_SUM0), 234 .cpu_int0_sum0 = X(CIU_INT2_SUM0),
219 .cpu_int1_sum0 = X(CIU_INT3_SUM0), 235 .cpu_int1_sum0 = X(CIU_INT3_SUM0),
220 .cpu_int2_sum0 = X(CIU_INT4_SUM1), 236 .cpu_int2_sum0 = X(CIU_INT4_SUM1),
221 237
222 .cpu_int_sum1 = X(CIU_INT_SUM1), 238 .cpu_int_sum1 = X(CIU_INT_SUM1),
223 239
224 .cpu_int0_en[0] = X(CIU_INT2_EN0), 240 .cpu_int0_en[0] = X(CIU_INT2_EN0),
225 .cpu_int1_en[0] = X(CIU_INT3_EN0), 241 .cpu_int1_en[0] = X(CIU_INT3_EN0),
226 .cpu_int2_en[0] = X(CIU_INT4_EN10), 242 .cpu_int2_en[0] = X(CIU_INT4_EN10),
227 243
228 .cpu_int0_en[1] = X(CIU_INT2_EN1), 244 .cpu_int0_en[1] = X(CIU_INT2_EN1),
229 .cpu_int1_en[1] = X(CIU_INT3_EN1), 245 .cpu_int1_en[1] = X(CIU_INT3_EN1),
230 .cpu_int2_en[1] = X(CIU_INT4_EN11), 246 .cpu_int2_en[1] = X(CIU_INT4_EN11),
231 247
232 .cpu_int32_en = X(CIU_INT32_EN1), 248 .cpu_int32_en = X(CIU_INT32_EN1),
233 249
234 .cpu_wdog = X(CIU_WDOG(1)), 250 .cpu_wdog = X(CIU_WDOG(1)),
235 .cpu_pp_poke = X(CIU_PP_POKE1), 251 .cpu_pp_poke = X(CIU_PP_POKE1),
236 252
237 .cpu_mbox_set = X(CIU_MBOX_SET1), 253 .cpu_mbox_set = X(CIU_MBOX_SET1),
238 .cpu_mbox_clr = X(CIU_MBOX_CLR1), 254 .cpu_mbox_clr = X(CIU_MBOX_CLR1),
239}; 255};
240#endif 256#endif
241 257
242#ifdef DEBUG 258#ifdef DEBUG
243static void 259static void
244octeon_mbox_test(void) 260octeon_mbox_test(void)
245{ 261{
246 const uint64_t mbox_clr0 = X(CIU_MBOX_CLR0); 262 const uint64_t mbox_clr0 = X(CIU_MBOX_CLR0);
247 const uint64_t mbox_clr1 = X(CIU_MBOX_CLR1); 263 const uint64_t mbox_clr1 = X(CIU_MBOX_CLR1);
248 const uint64_t mbox_set0 = X(CIU_MBOX_SET0); 264 const uint64_t mbox_set0 = X(CIU_MBOX_SET0);
249 const uint64_t mbox_set1 = X(CIU_MBOX_SET1); 265 const uint64_t mbox_set1 = X(CIU_MBOX_SET1);
250 const uint64_t int_sum0 = X(CIU_INT0_SUM0); 266 const uint64_t int_sum0 = X(CIU_INT0_SUM0);
251 const uint64_t int_sum1 = X(CIU_INT2_SUM0); 267 const uint64_t int_sum1 = X(CIU_INT2_SUM0);
252 const uint64_t sum_mbox_lo = __BIT(CIU_INT_MBOX_15_0); 268 const uint64_t sum_mbox_lo = __BIT(CIU_INT_MBOX_15_0);
253 const uint64_t sum_mbox_hi = __BIT(CIU_INT_MBOX_31_16); 269 const uint64_t sum_mbox_hi = __BIT(CIU_INT_MBOX_31_16);
254 270
255 mips3_sd(mbox_clr0, ~0ULL); 271 mips3_sd(mbox_clr0, ~0ULL);
256 mips3_sd(mbox_clr1, ~0ULL); 272 mips3_sd(mbox_clr1, ~0ULL);
257 273
258 uint32_t mbox0 = mips3_ld(mbox_set0); 274 uint32_t mbox0 = mips3_ld(mbox_set0);
259 uint32_t mbox1 = mips3_ld(mbox_set1); 275 uint32_t mbox1 = mips3_ld(mbox_set1);
260 276
261 KDASSERTMSG(mbox0 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1); 277 KDASSERTMSG(mbox0 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
262 KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1); 278 KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
263 279
264 mips3_sd(mbox_set0, __BIT(0)); 280 mips3_sd(mbox_set0, __BIT(0));
265 281
266 mbox0 = mips3_ld(mbox_set0); 282 mbox0 = mips3_ld(mbox_set0);
267 mbox1 = mips3_ld(mbox_set1); 283 mbox1 = mips3_ld(mbox_set1);
268 284
269 KDASSERTMSG(mbox0 == 1, "mbox0 %#x mbox1 %#x", mbox0, mbox1); 285 KDASSERTMSG(mbox0 == 1, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
270 KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1); 286 KDASSERTMSG(mbox1 == 0, "mbox0 %#x mbox1 %#x", mbox0, mbox1);
271 287
272 uint64_t sum0 = mips3_ld(int_sum0); 288 uint64_t sum0 = mips3_ld(int_sum0);
273 uint64_t sum1 = mips3_ld(int_sum1); 289 uint64_t sum1 = mips3_ld(int_sum1);
274 290
275 KDASSERTMSG((sum0 & sum_mbox_lo) != 0, "sum0 %#"PRIx64, sum0); 291 KDASSERTMSG((sum0 & sum_mbox_lo) != 0, "sum0 %#"PRIx64, sum0);
276 KDASSERTMSG((sum0 & sum_mbox_hi) == 0, "sum0 %#"PRIx64, sum0); 292 KDASSERTMSG((sum0 & sum_mbox_hi) == 0, "sum0 %#"PRIx64, sum0);
277 293
278 KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1); 294 KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
279 KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1); 295 KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
280 296
281 mips3_sd(mbox_clr0, mbox0); 297 mips3_sd(mbox_clr0, mbox0);
282 mbox0 = mips3_ld(mbox_set0); 298 mbox0 = mips3_ld(mbox_set0);
283 KDASSERTMSG(mbox0 == 0, "mbox0 %#x", mbox0); 299 KDASSERTMSG(mbox0 == 0, "mbox0 %#x", mbox0);
284 300
285 mips3_sd(mbox_set0, __BIT(16)); 301 mips3_sd(mbox_set0, __BIT(16));
286 302
287 mbox0 = mips3_ld(mbox_set0); 303 mbox0 = mips3_ld(mbox_set0);
288 mbox1 = mips3_ld(mbox_set1); 304 mbox1 = mips3_ld(mbox_set1);
289 305
290 KDASSERTMSG(mbox0 == __BIT(16), "mbox0 %#x", mbox0); 306 KDASSERTMSG(mbox0 == __BIT(16), "mbox0 %#x", mbox0);
291 KDASSERTMSG(mbox1 == 0, "mbox1 %#x", mbox1); 307 KDASSERTMSG(mbox1 == 0, "mbox1 %#x", mbox1);
292 308
293 sum0 = mips3_ld(int_sum0); 309 sum0 = mips3_ld(int_sum0);
294 sum1 = mips3_ld(int_sum1); 310 sum1 = mips3_ld(int_sum1);
295 311
296 KDASSERTMSG((sum0 & sum_mbox_lo) == 0, "sum0 %#"PRIx64, sum0); 312 KDASSERTMSG((sum0 & sum_mbox_lo) == 0, "sum0 %#"PRIx64, sum0);
297 KDASSERTMSG((sum0 & sum_mbox_hi) != 0, "sum0 %#"PRIx64, sum0); 313 KDASSERTMSG((sum0 & sum_mbox_hi) != 0, "sum0 %#"PRIx64, sum0);
298 314
299 KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1); 315 KDASSERTMSG((sum1 & sum_mbox_lo) == 0, "sum1 %#"PRIx64, sum1);
300 KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1); 316 KDASSERTMSG((sum1 & sum_mbox_hi) == 0, "sum1 %#"PRIx64, sum1);
301} 317}
302#endif 318#endif
303 319
304#undef X 320#undef X
305 321
306void 322void
307octeon_intr_init(struct cpu_info *ci) 323octeon_intr_init(struct cpu_info *ci)
308{ 324{
309#ifdef DIAGNOSTIC 325#ifdef DIAGNOSTIC
310 const int cpunum = cpu_index(ci); 326 const int cpunum = cpu_index(ci);
311#endif 327#endif
312 const char * const xname = cpu_name(ci); 328 const char * const xname = cpu_name(ci);
313 struct cpu_softc *cpu = ci->ci_softc; 329 struct cpu_softc *cpu = ci->ci_softc;
314 int bank; 330 int bank;
315 331
316 332
317 if (ci->ci_cpuid == 0) { 333 if (ci->ci_cpuid == 0) {
318 KASSERT(ci->ci_softc == &octeon_cpu0_softc); 334 KASSERT(ci->ci_softc == &octeon_cpu0_softc);
319 ipl_sr_map = octeon_ipl_sr_map; 335 ipl_sr_map = octeon_ipl_sr_map;
320 mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH); 336 mutex_init(&octeon_intr_lock, MUTEX_DEFAULT, IPL_HIGH);
321#ifdef MULTIPROCESSOR 337#ifdef MULTIPROCESSOR
322 mips_locoresw.lsw_send_ipi = octeon_send_ipi; 338 mips_locoresw.lsw_send_ipi = octeon_send_ipi;
323#endif 339#endif
324#ifdef DEBUG 340#ifdef DEBUG
325 octeon_mbox_test(); 341 octeon_mbox_test();
326#endif 342#endif
327 } else { 343 } else {
328 KASSERT(cpunum == 1); 344 KASSERT(cpunum == 1);
329#ifdef MULTIPROCESSOR 345#ifdef MULTIPROCESSOR
330 KASSERT(ci->ci_softc == &octeon_cpu1_softc); 346 KASSERT(ci->ci_softc == &octeon_cpu1_softc);
331#endif 347#endif
332 } 348 }
333 349
334#ifdef MULTIPROCESSOR 350#ifdef MULTIPROCESSOR
335 // Enable the IPIs 351 // Enable the IPIs
336 cpu->cpu_int1_enable[0] |= __BIT(CIU_INT_MBOX_15_0); 352 cpu->cpu_int1_enable[0] |= __BIT(CIU_INT_MBOX_15_0);
337 cpu->cpu_int2_enable[0] |= __BIT(CIU_INT_MBOX_31_16); 353 cpu->cpu_int2_enable[0] |= __BIT(CIU_INT_MBOX_31_16);
338#endif 354#endif
339 355
340 if (ci->ci_dev) { 356 if (ci->ci_dev) {
341 for (bank = 0; bank < NBANKS; bank++) { 357 for (bank = 0; bank < NBANKS; bank++) {
342 aprint_verbose_dev(ci->ci_dev, 358 aprint_verbose_dev(ci->ci_dev,
343 "enabling intr masks %u " 359 "enabling intr masks %u "
344 " %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n", 360 " %#"PRIx64"/%#"PRIx64"/%#"PRIx64"\n",
345 bank, 361 bank,
346 cpu->cpu_int0_enable[0], 362 cpu->cpu_int0_enable[0],
347 cpu->cpu_int1_enable[0], 363 cpu->cpu_int1_enable[0],
348 cpu->cpu_int2_enable[0]); 364 cpu->cpu_int2_enable[0]);
349 } 365 }
350 } 366 }
351 367
352 for (bank = 0; bank < NBANKS; bank++) { 368 for (bank = 0; bank < NBANKS; bank++) {
353 mips3_sd(cpu->cpu_int0_en[bank], cpu->cpu_int0_enable[bank]); 369 mips3_sd(cpu->cpu_int0_en[bank], cpu->cpu_int0_enable[bank]);
354 mips3_sd(cpu->cpu_int1_en[bank], cpu->cpu_int1_enable[bank]); 370 mips3_sd(cpu->cpu_int1_en[bank], cpu->cpu_int1_enable[bank]);
355 mips3_sd(cpu->cpu_int2_en[bank], cpu->cpu_int2_enable[bank]); 371 mips3_sd(cpu->cpu_int2_en[bank], cpu->cpu_int2_enable[bank]);
356 } 372 }
357 373
358 mips3_sd(cpu->cpu_int32_en, 0); 374 mips3_sd(cpu->cpu_int32_en, 0);
359 375
360#ifdef MULTIPROCESSOR 376#ifdef MULTIPROCESSOR
361 mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0)); 377 mips3_sd(cpu->cpu_mbox_clr, __BITS(31,0));
362#endif 378#endif
363 379
364 for (int i = 0; i < NIRQS; i++) { 380 for (int i = 0; i < NIRQS; i++) {
365 if (octeon_intrnames[i] == NULL) 381 if (octeon_intrnames[i] == NULL)
366 octeon_intrnames[i] = kmem_asprintf("irq %d", i); 382 octeon_intrnames[i] = kmem_asprintf("irq %d", i);
367 evcnt_attach_dynamic(&cpu->cpu_intr_evs[i], 383 evcnt_attach_dynamic(&cpu->cpu_intr_evs[i],
368 EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]); 384 EVCNT_TYPE_INTR, NULL, xname, octeon_intrnames[i]);
369 } 385 }
370} 386}
371 387
372void 388void
373octeon_cal_timer(int corefreq) 389octeon_cal_timer(int corefreq)
374{ 390{
375 /* Compute the number of cycles per second. */ 391 /* Compute the number of cycles per second. */
376 curcpu()->ci_cpu_freq = corefreq; 392 curcpu()->ci_cpu_freq = corefreq;
377 393
378 /* Compute the number of ticks for hz. */ 394 /* Compute the number of ticks for hz. */
379 curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz; 395 curcpu()->ci_cycles_per_hz = (curcpu()->ci_cpu_freq + hz / 2) / hz;
380 396
381 /* Compute the delay divisor and reciprical. */ 397 /* Compute the delay divisor and reciprical. */
382 curcpu()->ci_divisor_delay = 398 curcpu()->ci_divisor_delay =
383 ((curcpu()->ci_cpu_freq + 500000) / 1000000); 399 ((curcpu()->ci_cpu_freq + 500000) / 1000000);
384#if 0 400#if 0
385 MIPS_SET_CI_RECIPRICAL(curcpu()); 401 MIPS_SET_CI_RECIPRICAL(curcpu());
386#endif 402#endif
387 403
388 mips3_cp0_count_write(0); 404 mips3_cp0_count_write(0);
389 mips3_cp0_compare_write(0); 405 mips3_cp0_compare_write(0);
390} 406}
391 407
392void * 408void *
393octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg) 409octeon_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
394{ 410{
395 struct octeon_intrhand *ih; 411 struct octeon_intrhand *ih;
396 412
397 if (irq >= NIRQS) 413 if (irq >= NIRQS)
398 panic("octeon_intr_establish: bogus IRQ %d", irq); 414 panic("octeon_intr_establish: bogus IRQ %d", irq);
399 if (ipl < IPL_VM) 415 if (ipl < IPL_VM)
400 panic("octeon_intr_establish: bogus IPL %d", ipl); 416 panic("octeon_intr_establish: bogus IPL %d", ipl);
401 417
402 ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP); 418 ih = kmem_zalloc(sizeof(*ih), KM_NOSLEEP);
403 if (ih == NULL) 419 if (ih == NULL)
404 return (NULL); 420 return (NULL);
405 421
406 ih->ih_func = func; 422 ih->ih_func = func;
407 ih->ih_arg = arg; 423 ih->ih_arg = arg;
408 ih->ih_irq = irq; 424 ih->ih_irq = irq;
409 ih->ih_ipl = ipl; 425 ih->ih_ipl = ipl;
410 426
411 mutex_enter(&octeon_intr_lock); 427 mutex_enter(&octeon_intr_lock);
412 428
413 /* 429 /*
414 * First, make it known. 430 * First, make it known.
415 */ 431 */
416 KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)", 432 KASSERTMSG(octciu_intrs[irq] == NULL, "irq %d in use! (%p)",
417 irq, octciu_intrs[irq]); 433 irq, octciu_intrs[irq]);
418 434
419 octciu_intrs[irq] = ih; 435 octciu_intrs[irq] = ih;
420 membar_producer(); 436 membar_producer();
421 437
422 /* 438 /*
423 * Now enable it. 439 * Now enable it.
424 */ 440 */
425 const int bank = irq / 64; 441 const int bank = irq / 64;
426 const uint64_t irq_mask = __BIT(irq % 64); 442 const uint64_t irq_mask = __BIT(irq % 64);
427 struct cpu_softc * const cpu0 = &octeon_cpu0_softc; 443 struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
428#if MULTIPROCESSOR 444#if MULTIPROCESSOR
429 struct cpu_softc * const cpu1 = &octeon_cpu1_softc; 445 struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
430#endif 446#endif
431 447
432 switch (ipl) { 448 switch (ipl) {
433 case IPL_VM: 449 case IPL_VM:
434 cpu0->cpu_int0_enable[bank] |= irq_mask; 450 cpu0->cpu_int0_enable[bank] |= irq_mask;
435 mips3_sd(cpu0->cpu_int0_en[bank], cpu0->cpu_int0_enable[bank]); 451 mips3_sd(cpu0->cpu_int0_en[bank], cpu0->cpu_int0_enable[bank]);
436 break; 452 break;
437 453
438 case IPL_SCHED: 454 case IPL_SCHED:
439 cpu0->cpu_int1_enable[bank] |= irq_mask; 455 cpu0->cpu_int1_enable[bank] |= irq_mask;
440 mips3_sd(cpu0->cpu_int1_en[bank], cpu0->cpu_int1_enable[bank]); 456 mips3_sd(cpu0->cpu_int1_en[bank], cpu0->cpu_int1_enable[bank]);
441#ifdef MULTIPROCESSOR 457#ifdef MULTIPROCESSOR
442 cpu1->cpu_int1_enable[bank] = cpu0->cpu_int1_enable[bank]; 458 cpu1->cpu_int1_enable[bank] = cpu0->cpu_int1_enable[bank];
443 mips3_sd(cpu1->cpu_int1_en[bank], cpu1->cpu_int1_enable[bank]); 459 mips3_sd(cpu1->cpu_int1_en[bank], cpu1->cpu_int1_enable[bank]);
444#endif 460#endif
445 461
446 break; 462 break;
447 463
448 case IPL_DDB: 464 case IPL_DDB:
449 case IPL_HIGH: 465 case IPL_HIGH:
450 cpu0->cpu_int2_enable[bank] |= irq_mask; 466 cpu0->cpu_int2_enable[bank] |= irq_mask;
451 mips3_sd(cpu0->cpu_int2_en[bank], cpu0->cpu_int2_enable[bank]); 467 mips3_sd(cpu0->cpu_int2_en[bank], cpu0->cpu_int2_enable[bank]);
452#ifdef MULTIPROCESSOR 468#ifdef MULTIPROCESSOR
453 cpu1->cpu_int2_enable[bank] = cpu0->cpu_int2_enable[bank]; 469 cpu1->cpu_int2_enable[bank] = cpu0->cpu_int2_enable[bank];
454 mips3_sd(cpu1->cpu_int2_en[bank], cpu1->cpu_int2_enable[bank]); 470 mips3_sd(cpu1->cpu_int2_en[bank], cpu1->cpu_int2_enable[bank]);
455#endif 471#endif
456 472
457 break; 473 break;
458 } 474 }
459 475
460 mutex_exit(&octeon_intr_lock); 476 mutex_exit(&octeon_intr_lock);
461 477
462 return ih; 478 return ih;
463} 479}
464 480
465void 481void
466octeon_intr_disestablish(void *cookie) 482octeon_intr_disestablish(void *cookie)
467{ 483{
468 struct octeon_intrhand * const ih = cookie; 484 struct octeon_intrhand * const ih = cookie;
469 const int irq = ih->ih_irq & (NIRQS-1); 485 const int irq = ih->ih_irq & (NIRQS-1);
470 const int ipl = ih->ih_ipl; 486 const int ipl = ih->ih_ipl;
471 487
472 mutex_enter(&octeon_intr_lock); 488 mutex_enter(&octeon_intr_lock);
473 489
474 /* 490 /*
475 * First disable it. 491 * First disable it.
476 */ 492 */
477 const int bank = irq / 64; 493 const int bank = irq / 64;
478 const uint64_t irq_mask = ~__BIT(irq % 64); 494 const uint64_t irq_mask = ~__BIT(irq % 64);
479 struct cpu_softc * const cpu0 = &octeon_cpu0_softc; 495 struct cpu_softc * const cpu0 = &octeon_cpu0_softc;
480#if MULTIPROCESSOR 496#if MULTIPROCESSOR
481 struct cpu_softc * const cpu1 = &octeon_cpu1_softc; 497 struct cpu_softc * const cpu1 = &octeon_cpu1_softc;
482#endif 498#endif
483 499
484 switch (ipl) { 500 switch (ipl) {
485 case IPL_VM: 501 case IPL_VM:
486 cpu0->cpu_int0_enable[bank] &= ~irq_mask; 502 cpu0->cpu_int0_enable[bank] &= ~irq_mask;
487 mips3_sd(cpu0->cpu_int0_en[bank], cpu0->cpu_int0_enable[bank]); 503 mips3_sd(cpu0->cpu_int0_en[bank], cpu0->cpu_int0_enable[bank]);
488 break; 504 break;
489 505
490 case IPL_SCHED: 506 case IPL_SCHED:
491 cpu0->cpu_int1_enable[bank] &= ~irq_mask; 507 cpu0->cpu_int1_enable[bank] &= ~irq_mask;
492 mips3_sd(cpu0->cpu_int1_en[bank], cpu0->cpu_int1_enable[bank]); 508 mips3_sd(cpu0->cpu_int1_en[bank], cpu0->cpu_int1_enable[bank]);
493#ifdef MULTIPROCESSOR 509#ifdef MULTIPROCESSOR
494 cpu1->cpu_int1_enable[bank] = cpu0->cpu_int1_enable[bank]; 510 cpu1->cpu_int1_enable[bank] = cpu0->cpu_int1_enable[bank];
495 mips3_sd(cpu1->cpu_int1_en[bank], cpu1->cpu_int1_enable[bank]); 511 mips3_sd(cpu1->cpu_int1_en[bank], cpu1->cpu_int1_enable[bank]);
496#endif 512#endif
497 break; 513 break;
498 514
499 case IPL_DDB: 515 case IPL_DDB:
500 case IPL_HIGH: 516 case IPL_HIGH:
501 cpu0->cpu_int2_enable[bank] &= ~irq_mask; 517 cpu0->cpu_int2_enable[bank] &= ~irq_mask;
502 mips3_sd(cpu0->cpu_int2_en[bank], cpu0->cpu_int2_enable[bank]); 518 mips3_sd(cpu0->cpu_int2_en[bank], cpu0->cpu_int2_enable[bank]);
503#ifdef MULTIPROCESSOR 519#ifdef MULTIPROCESSOR
504 cpu1->cpu_int2_enable[bank] = cpu0->cpu_int2_enable[bank]; 520 cpu1->cpu_int2_enable[bank] = cpu0->cpu_int2_enable[bank];
505 mips3_sd(cpu1->cpu_int2_en[bank], cpu1->cpu_int2_enable[bank]); 521 mips3_sd(cpu1->cpu_int2_en[bank], cpu1->cpu_int2_enable[bank]);
506#endif 522#endif
507 break; 523 break;
508 } 524 }
509 525
510 /* 526 /*
511 * Now remove it since we shouldn't get interrupts for it. 527 * Now remove it since we shouldn't get interrupts for it.
512 */ 528 */
513 octciu_intrs[irq] = NULL; 529 octciu_intrs[irq] = NULL;
514 530
515 mutex_exit(&octeon_intr_lock); 531 mutex_exit(&octeon_intr_lock);
516 532
517 kmem_free(ih, sizeof(*ih)); 533 kmem_free(ih, sizeof(*ih));
518} 534}
519 535
520void 536void
521octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending) 537octeon_iointr(int ipl, vaddr_t pc, uint32_t ipending)
522{ 538{
523 struct cpu_info * const ci = curcpu(); 539 struct cpu_info * const ci = curcpu();
524 struct cpu_softc * const cpu = ci->ci_softc; 540 struct cpu_softc * const cpu = ci->ci_softc;
525 int bank; 541 int bank;
526 542
527 KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE); 543 KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
528 KASSERT((ipending & ~MIPS_INT_MASK) == 0); 544 KASSERT((ipending & ~MIPS_INT_MASK) == 0);
529 KASSERT(ipending & MIPS_HARD_INT_MASK); 545 KASSERT(ipending & MIPS_HARD_INT_MASK);
530 uint64_t hwpend[2] = { 0, 0 }; 546 uint64_t hwpend[2] = { 0, 0 };
531 547
532 const uint64_t sum1 = mips3_ld(cpu->cpu_int_sum1); 548 const uint64_t sum1 = mips3_ld(cpu->cpu_int_sum1);
533 549
534 if (ipending & MIPS_INT_MASK_2) { 550 if (ipending & MIPS_INT_MASK_2) {
535 hwpend[0] = mips3_ld(cpu->cpu_int2_sum0) 551 hwpend[0] = mips3_ld(cpu->cpu_int2_sum0)
536 & cpu->cpu_int2_enable[0]; 552 & cpu->cpu_int2_enable[0];
537 hwpend[1] = sum1 & cpu->cpu_int2_enable[1]; 553 hwpend[1] = sum1 & cpu->cpu_int2_enable[1];
538 } else if (ipending & MIPS_INT_MASK_1) { 554 } else if (ipending & MIPS_INT_MASK_1) {
539 hwpend[0] = mips3_ld(cpu->cpu_int1_sum0) 555 hwpend[0] = mips3_ld(cpu->cpu_int1_sum0)
540 & cpu->cpu_int1_enable[0]; 556 & cpu->cpu_int1_enable[0];
541 hwpend[1] = sum1 & cpu->cpu_int1_enable[1]; 557 hwpend[1] = sum1 & cpu->cpu_int1_enable[1];
542 } else if (ipending & MIPS_INT_MASK_0) { 558 } else if (ipending & MIPS_INT_MASK_0) {
543 hwpend[0] = mips3_ld(cpu->cpu_int0_sum0) 559 hwpend[0] = mips3_ld(cpu->cpu_int0_sum0)
544 & cpu->cpu_int0_enable[0]; 560 & cpu->cpu_int0_enable[0];
545 hwpend[1] = sum1 & cpu->cpu_int0_enable[1]; 561 hwpend[1] = sum1 & cpu->cpu_int0_enable[1];
546 } else { 562 } else {
547 panic("octeon_iointr: unexpected ipending %#x", ipending); 563 panic("octeon_iointr: unexpected ipending %#x", ipending);
548 } 564 }
549 for (bank = 0; bank <= 1; bank++) { 565 for (bank = 0; bank <= 1; bank++) {
550 while (hwpend[bank] != 0) { 566 while (hwpend[bank] != 0) {
551 const int bit = ffs64(hwpend[bank]) - 1; 567 const int bit = ffs64(hwpend[bank]) - 1;
552 const int irq = (bank * 64) + bit; 568 const int irq = (bank * 64) + bit;
553 hwpend[bank] &= ~__BIT(bit); 569 hwpend[bank] &= ~__BIT(bit);
554 570
555 struct octeon_intrhand * const ih = octciu_intrs[irq]; 571 struct octeon_intrhand * const ih = octciu_intrs[irq];
556 cpu->cpu_intr_evs[irq].ev_count++; 572 cpu->cpu_intr_evs[irq].ev_count++;
557 if (__predict_true(ih != NULL)) { 573 if (__predict_true(ih != NULL)) {
558#ifdef MULTIPROCESSOR 574#ifdef MULTIPROCESSOR
559 if (ipl == IPL_VM) { 575 if (ipl == IPL_VM) {
560 KERNEL_LOCK(1, NULL); 576 KERNEL_LOCK(1, NULL);
561#endif 577#endif
562 (*ih->ih_func)(ih->ih_arg); 578 (*ih->ih_func)(ih->ih_arg);
563#ifdef MULTIPROCESSOR 579#ifdef MULTIPROCESSOR
564 KERNEL_UNLOCK_ONE(NULL); 580 KERNEL_UNLOCK_ONE(NULL);
565 } else { 581 } else {
566 (*ih->ih_func)(ih->ih_arg); 582 (*ih->ih_func)(ih->ih_arg);
567 } 583 }
568#endif 584#endif
569 KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE); 585 KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
570 } 586 }
571 } 587 }
572 } 588 }
573 KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE); 589 KDASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE);
574} 590}
575 591
576#ifdef MULTIPROCESSOR 592#ifdef MULTIPROCESSOR
577__CTASSERT(NIPIS < 16); 593__CTASSERT(NIPIS < 16);
578 594
579int 595int
580octeon_ipi_intr(void *arg) 596octeon_ipi_intr(void *arg)
581{ 597{
582 struct cpu_info * const ci = curcpu(); 598 struct cpu_info * const ci = curcpu();
583 struct cpu_softc * const cpu = ci->ci_softc; 599 struct cpu_softc * const cpu = ci->ci_softc;
584 uint32_t ipi_mask = (uintptr_t) arg; 600 uint32_t ipi_mask = (uintptr_t) arg;
585 601
586 KASSERTMSG((ipi_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED, 602 KASSERTMSG((ipi_mask & __BITS(31,16)) == 0 || ci->ci_cpl >= IPL_SCHED,
587 "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl); 603 "ipi_mask %#"PRIx32" cpl %d", ipi_mask, ci->ci_cpl);
588 604
589 ipi_mask &= mips3_ld(cpu->cpu_mbox_set); 605 ipi_mask &= mips3_ld(cpu->cpu_mbox_set);
590 if (ipi_mask == 0) 606 if (ipi_mask == 0)
591 return 0; 607 return 0;
592 608
593 mips3_sd(cpu->cpu_mbox_clr, ipi_mask); 609 mips3_sd(cpu->cpu_mbox_clr, ipi_mask);
594 610
595 ipi_mask |= (ipi_mask >> 16); 
596 ipi_mask &= __BITS(15,0); 
597 
598 KASSERT(ipi_mask < __BIT(NIPIS)); 611 KASSERT(ipi_mask < __BIT(NIPIS));
599 612
600#if NWDOG > 0 613#if NWDOG > 0
601 // Handle WDOG requests ourselves. 614 // Handle WDOG requests ourselves.
602 if (ipi_mask & __BIT(IPI_WDOG)) { 615 if (ipi_mask & __BIT(IPI_WDOG)) {
603 softint_schedule(cpu->cpu_wdog_sih); 616 softint_schedule(cpu->cpu_wdog_sih);
604 atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG)); 617 atomic_and_64(&ci->ci_request_ipis, ~__BIT(IPI_WDOG));
605 ipi_mask &= ~__BIT(IPI_WDOG); 618 ipi_mask &= ~__BIT(IPI_WDOG);
606 ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++; 619 ci->ci_evcnt_per_ipi[IPI_WDOG].ev_count++;
607 if (__predict_true(ipi_mask == 0)) 620 if (__predict_true(ipi_mask == 0))
608 return 1; 621 return 1;
609 } 622 }
610#endif 623#endif
611 624
612 /* if the request is clear, it was previously processed */ 625 /* if the request is clear, it was previously processed */
613 if ((ci->ci_request_ipis & ipi_mask) == 0) 626 if ((ci->ci_request_ipis & ipi_mask) == 0)
614 return 0; 627 return 0;
615 628
616 atomic_or_64(&ci->ci_active_ipis, ipi_mask); 629 atomic_or_64(&ci->ci_active_ipis, ipi_mask);
617 atomic_and_64(&ci->ci_request_ipis, ~ipi_mask); 630 atomic_and_64(&ci->ci_request_ipis, ~ipi_mask);
618 631
619 ipi_process(ci, ipi_mask); 632 ipi_process(ci, ipi_mask);
620 633
621 atomic_and_64(&ci->ci_active_ipis, ~ipi_mask); 634 atomic_and_64(&ci->ci_active_ipis, ~ipi_mask);
622 635
623 return 1; 636 return 1;
624} 637}
625 638
626int 639int
627octeon_send_ipi(struct cpu_info *ci, int req) 640octeon_send_ipi(struct cpu_info *ci, int req)
628{ 641{
629 KASSERT(req < NIPIS); 642 KASSERT(req < NIPIS);
630 if (ci == NULL) { 643 if (ci == NULL) {
631 CPU_INFO_ITERATOR cii; 644 CPU_INFO_ITERATOR cii;
632 for (CPU_INFO_FOREACH(cii, ci)) { 645 for (CPU_INFO_FOREACH(cii, ci)) {
633 if (ci != curcpu()) { 646 if (ci != curcpu()) {
634 octeon_send_ipi(ci, req); 647 octeon_send_ipi(ci, req);
635 } 648 }
636 } 649 }
637 return 0; 650 return 0;
638 } 651 }
639 KASSERT(cold || ci->ci_softc != NULL); 652 KASSERT(cold || ci->ci_softc != NULL);
640 if (ci->ci_softc == NULL) 653 if (ci->ci_softc == NULL)
641 return -1; 654 return -1;
642 655
643 struct cpu_softc * const cpu = ci->ci_softc; 656 struct cpu_softc * const cpu = ci->ci_softc;
644 uint64_t ipi_mask = __BIT(req); 657 const uint64_t ipi_mask = octeon_ipi_mask[req];
645 658
646 atomic_or_64(&ci->ci_request_ipis, ipi_mask); 659 atomic_or_64(&ci->ci_request_ipis, ipi_mask);
647 if (req == IPI_SUSPEND || req == IPI_WDOG) { 
648 ipi_mask <<= 16; 
649 } 
650 660
651 mips3_sd(cpu->cpu_mbox_set, ipi_mask); 661 mips3_sd(cpu->cpu_mbox_set, ipi_mask);
 662
652 return 0; 663 return 0;
653} 664}
654#endif /* MULTIPROCESSOR */ 665#endif /* MULTIPROCESSOR */