Fri Aug 28 22:27:51 2020 UTC ()
Fix pasto in previous -- pass the right size to memset...


(riastradh)
diff -r1.258 -r1.259 src/sys/kern/kern_proc.c

cvs diff -r1.258 -r1.259 src/sys/kern/kern_proc.c (switch to unified diff)

--- src/sys/kern/kern_proc.c 2020/08/28 21:39:56 1.258
+++ src/sys/kern/kern_proc.c 2020/08/28 22:27:51 1.259
@@ -1,1064 +1,1064 @@ @@ -1,1064 +1,1064 @@
1/* $NetBSD: kern_proc.c,v 1.258 2020/08/28 21:39:56 riastradh Exp $ */ 1/* $NetBSD: kern_proc.c,v 1.259 2020/08/28 22:27:51 riastradh Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc. 4 * Copyright (c) 1999, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * This code is derived from software contributed to The NetBSD Foundation 7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, and by Andrew Doran. 9 * NASA Ames Research Center, and by Andrew Doran.
10 * 10 *
11 * Redistribution and use in source and binary forms, with or without 11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions 12 * modification, are permitted provided that the following conditions
13 * are met: 13 * are met:
14 * 1. Redistributions of source code must retain the above copyright 14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer. 15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright 16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the 17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution. 18 * documentation and/or other materials provided with the distribution.
19 * 19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE. 30 * POSSIBILITY OF SUCH DAMAGE.
31 */ 31 */
32 32
33/* 33/*
34 * Copyright (c) 1982, 1986, 1989, 1991, 1993 34 * Copyright (c) 1982, 1986, 1989, 1991, 1993
35 * The Regents of the University of California. All rights reserved. 35 * The Regents of the University of California. All rights reserved.
36 * 36 *
37 * Redistribution and use in source and binary forms, with or without 37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions 38 * modification, are permitted provided that the following conditions
39 * are met: 39 * are met:
40 * 1. Redistributions of source code must retain the above copyright 40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer. 41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright 42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the 43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution. 44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors 45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software 46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission. 47 * without specific prior written permission.
48 * 48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE. 59 * SUCH DAMAGE.
60 * 60 *
61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 61 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
62 */ 62 */
63 63
64#include <sys/cdefs.h> 64#include <sys/cdefs.h>
65__KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.258 2020/08/28 21:39:56 riastradh Exp $"); 65__KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.259 2020/08/28 22:27:51 riastradh Exp $");
66 66
67#ifdef _KERNEL_OPT 67#ifdef _KERNEL_OPT
68#include "opt_kstack.h" 68#include "opt_kstack.h"
69#include "opt_maxuprc.h" 69#include "opt_maxuprc.h"
70#include "opt_dtrace.h" 70#include "opt_dtrace.h"
71#include "opt_compat_netbsd32.h" 71#include "opt_compat_netbsd32.h"
72#include "opt_kaslr.h" 72#include "opt_kaslr.h"
73#endif 73#endif
74 74
75#if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \ 75#if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \
76 && !defined(_RUMPKERNEL) 76 && !defined(_RUMPKERNEL)
77#define COMPAT_NETBSD32 77#define COMPAT_NETBSD32
78#endif 78#endif
79 79
80#include <sys/param.h> 80#include <sys/param.h>
81#include <sys/systm.h> 81#include <sys/systm.h>
82#include <sys/kernel.h> 82#include <sys/kernel.h>
83#include <sys/proc.h> 83#include <sys/proc.h>
84#include <sys/resourcevar.h> 84#include <sys/resourcevar.h>
85#include <sys/buf.h> 85#include <sys/buf.h>
86#include <sys/acct.h> 86#include <sys/acct.h>
87#include <sys/wait.h> 87#include <sys/wait.h>
88#include <sys/file.h> 88#include <sys/file.h>
89#include <ufs/ufs/quota.h> 89#include <ufs/ufs/quota.h>
90#include <sys/uio.h> 90#include <sys/uio.h>
91#include <sys/pool.h> 91#include <sys/pool.h>
92#include <sys/pset.h> 92#include <sys/pset.h>
93#include <sys/ioctl.h> 93#include <sys/ioctl.h>
94#include <sys/tty.h> 94#include <sys/tty.h>
95#include <sys/signalvar.h> 95#include <sys/signalvar.h>
96#include <sys/ras.h> 96#include <sys/ras.h>
97#include <sys/filedesc.h> 97#include <sys/filedesc.h>
98#include <sys/syscall_stats.h> 98#include <sys/syscall_stats.h>
99#include <sys/kauth.h> 99#include <sys/kauth.h>
100#include <sys/sleepq.h> 100#include <sys/sleepq.h>
101#include <sys/atomic.h> 101#include <sys/atomic.h>
102#include <sys/kmem.h> 102#include <sys/kmem.h>
103#include <sys/namei.h> 103#include <sys/namei.h>
104#include <sys/dtrace_bsd.h> 104#include <sys/dtrace_bsd.h>
105#include <sys/sysctl.h> 105#include <sys/sysctl.h>
106#include <sys/exec.h> 106#include <sys/exec.h>
107#include <sys/cpu.h> 107#include <sys/cpu.h>
108#include <sys/compat_stub.h> 108#include <sys/compat_stub.h>
109#include <sys/futex.h> 109#include <sys/futex.h>
110#include <sys/pserialize.h> 110#include <sys/pserialize.h>
111 111
112#include <uvm/uvm_extern.h> 112#include <uvm/uvm_extern.h>
113#include <uvm/uvm.h> 113#include <uvm/uvm.h>
114 114
115/* 115/*
116 * Process lists. 116 * Process lists.
117 */ 117 */
118 118
119struct proclist allproc __cacheline_aligned; 119struct proclist allproc __cacheline_aligned;
120struct proclist zombproc __cacheline_aligned; 120struct proclist zombproc __cacheline_aligned;
121 121
122 kmutex_t proc_lock __cacheline_aligned; 122 kmutex_t proc_lock __cacheline_aligned;
123static pserialize_t proc_psz; 123static pserialize_t proc_psz;
124 124
125/* 125/*
126 * pid to lwp/proc lookup is done by indexing the pid_table array. 126 * pid to lwp/proc lookup is done by indexing the pid_table array.
127 * Since pid numbers are only allocated when an empty slot 127 * Since pid numbers are only allocated when an empty slot
128 * has been found, there is no need to search any lists ever. 128 * has been found, there is no need to search any lists ever.
129 * (an orphaned pgrp will lock the slot, a session will lock 129 * (an orphaned pgrp will lock the slot, a session will lock
130 * the pgrp with the same number.) 130 * the pgrp with the same number.)
131 * If the table is too small it is reallocated with twice the 131 * If the table is too small it is reallocated with twice the
132 * previous size and the entries 'unzipped' into the two halves. 132 * previous size and the entries 'unzipped' into the two halves.
133 * A linked list of free entries is passed through the pt_lwp 133 * A linked list of free entries is passed through the pt_lwp
134 * field of 'free' items - set odd to be an invalid ptr. Two 134 * field of 'free' items - set odd to be an invalid ptr. Two
135 * additional bits are also used to indicate if the slot is 135 * additional bits are also used to indicate if the slot is
136 * currently occupied by a proc or lwp, and if the PID is 136 * currently occupied by a proc or lwp, and if the PID is
137 * hidden from certain kinds of lookups. We thus require a 137 * hidden from certain kinds of lookups. We thus require a
138 * minimum alignment for proc and lwp structures (LWPs are 138 * minimum alignment for proc and lwp structures (LWPs are
139 * at least 32-byte aligned). 139 * at least 32-byte aligned).
140 */ 140 */
141 141
142struct pid_table { 142struct pid_table {
143 uintptr_t pt_slot; 143 uintptr_t pt_slot;
144 struct pgrp *pt_pgrp; 144 struct pgrp *pt_pgrp;
145 pid_t pt_pid; 145 pid_t pt_pid;
146}; 146};
147 147
148#define PT_F_FREE ((uintptr_t)__BIT(0)) 148#define PT_F_FREE ((uintptr_t)__BIT(0))
149#define PT_F_LWP 0 /* pseudo-flag */ 149#define PT_F_LWP 0 /* pseudo-flag */
150#define PT_F_PROC ((uintptr_t)__BIT(1)) 150#define PT_F_PROC ((uintptr_t)__BIT(1))
151 151
152#define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC) 152#define PT_F_TYPEBITS (PT_F_FREE|PT_F_PROC)
153#define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC) 153#define PT_F_ALLBITS (PT_F_FREE|PT_F_PROC)
154 154
155#define PT_VALID(s) (((s) & PT_F_FREE) == 0) 155#define PT_VALID(s) (((s) & PT_F_FREE) == 0)
156#define PT_RESERVED(s) ((s) == 0) 156#define PT_RESERVED(s) ((s) == 0)
157#define PT_NEXT(s) ((u_int)(s) >> 1) 157#define PT_NEXT(s) ((u_int)(s) >> 1)
158#define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE) 158#define PT_SET_FREE(pid) (((pid) << 1) | PT_F_FREE)
159#define PT_SET_LWP(l) ((uintptr_t)(l)) 159#define PT_SET_LWP(l) ((uintptr_t)(l))
160#define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC) 160#define PT_SET_PROC(p) (((uintptr_t)(p)) | PT_F_PROC)
161#define PT_SET_RESERVED 0 161#define PT_SET_RESERVED 0
162#define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS)) 162#define PT_GET_LWP(s) ((struct lwp *)((s) & ~PT_F_ALLBITS))
163#define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS)) 163#define PT_GET_PROC(s) ((struct proc *)((s) & ~PT_F_ALLBITS))
164#define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS) 164#define PT_GET_TYPE(s) ((s) & PT_F_TYPEBITS)
165#define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0) 165#define PT_IS_LWP(s) (PT_GET_TYPE(s) == PT_F_LWP && (s) != 0)
166#define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC) 166#define PT_IS_PROC(s) (PT_GET_TYPE(s) == PT_F_PROC)
167 167
168#define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1) 168#define MIN_PROC_ALIGNMENT (PT_F_ALLBITS + 1)
169 169
170/* 170/*
171 * Table of process IDs (PIDs). 171 * Table of process IDs (PIDs).
172 */ 172 */
173static struct pid_table *pid_table __read_mostly; 173static struct pid_table *pid_table __read_mostly;
174 174
175#define INITIAL_PID_TABLE_SIZE (1 << 5) 175#define INITIAL_PID_TABLE_SIZE (1 << 5)
176 176
177/* Table mask, threshold for growing and number of allocated PIDs. */ 177/* Table mask, threshold for growing and number of allocated PIDs. */
178static u_int pid_tbl_mask __read_mostly; 178static u_int pid_tbl_mask __read_mostly;
179static u_int pid_alloc_lim __read_mostly; 179static u_int pid_alloc_lim __read_mostly;
180static u_int pid_alloc_cnt __cacheline_aligned; 180static u_int pid_alloc_cnt __cacheline_aligned;
181 181
182/* Next free, last free and maximum PIDs. */ 182/* Next free, last free and maximum PIDs. */
183static u_int next_free_pt __cacheline_aligned; 183static u_int next_free_pt __cacheline_aligned;
184static u_int last_free_pt __cacheline_aligned; 184static u_int last_free_pt __cacheline_aligned;
185static pid_t pid_max __read_mostly; 185static pid_t pid_max __read_mostly;
186 186
187/* Components of the first process -- never freed. */ 187/* Components of the first process -- never freed. */
188 188
189extern struct emul emul_netbsd; /* defined in kern_exec.c */ 189extern struct emul emul_netbsd; /* defined in kern_exec.c */
190 190
191struct session session0 = { 191struct session session0 = {
192 .s_count = 1, 192 .s_count = 1,
193 .s_sid = 0, 193 .s_sid = 0,
194}; 194};
195struct pgrp pgrp0 = { 195struct pgrp pgrp0 = {
196 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), 196 .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members),
197 .pg_session = &session0, 197 .pg_session = &session0,
198}; 198};
199filedesc_t filedesc0; 199filedesc_t filedesc0;
200struct cwdinfo cwdi0 = { 200struct cwdinfo cwdi0 = {
201 .cwdi_cmask = CMASK, 201 .cwdi_cmask = CMASK,
202 .cwdi_refcnt = 1, 202 .cwdi_refcnt = 1,
203}; 203};
204struct plimit limit0; 204struct plimit limit0;
205struct pstats pstat0; 205struct pstats pstat0;
206struct vmspace vmspace0; 206struct vmspace vmspace0;
207struct sigacts sigacts0; 207struct sigacts sigacts0;
208struct proc proc0 = { 208struct proc proc0 = {
209 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), 209 .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps),
210 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), 210 .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters),
211 .p_nlwps = 1, 211 .p_nlwps = 1,
212 .p_nrlwps = 1, 212 .p_nrlwps = 1,
213 .p_pgrp = &pgrp0, 213 .p_pgrp = &pgrp0,
214 .p_comm = "system", 214 .p_comm = "system",
215 /* 215 /*
216 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) 216 * Set P_NOCLDWAIT so that kernel threads are reparented to init(8)
217 * when they exit. init(8) can easily wait them out for us. 217 * when they exit. init(8) can easily wait them out for us.
218 */ 218 */
219 .p_flag = PK_SYSTEM | PK_NOCLDWAIT, 219 .p_flag = PK_SYSTEM | PK_NOCLDWAIT,
220 .p_stat = SACTIVE, 220 .p_stat = SACTIVE,
221 .p_nice = NZERO, 221 .p_nice = NZERO,
222 .p_emul = &emul_netbsd, 222 .p_emul = &emul_netbsd,
223 .p_cwdi = &cwdi0, 223 .p_cwdi = &cwdi0,
224 .p_limit = &limit0, 224 .p_limit = &limit0,
225 .p_fd = &filedesc0, 225 .p_fd = &filedesc0,
226 .p_vmspace = &vmspace0, 226 .p_vmspace = &vmspace0,
227 .p_stats = &pstat0, 227 .p_stats = &pstat0,
228 .p_sigacts = &sigacts0, 228 .p_sigacts = &sigacts0,
229#ifdef PROC0_MD_INITIALIZERS 229#ifdef PROC0_MD_INITIALIZERS
230 PROC0_MD_INITIALIZERS 230 PROC0_MD_INITIALIZERS
231#endif 231#endif
232}; 232};
233kauth_cred_t cred0; 233kauth_cred_t cred0;
234 234
235static const int nofile = NOFILE; 235static const int nofile = NOFILE;
236static const int maxuprc = MAXUPRC; 236static const int maxuprc = MAXUPRC;
237 237
238static int sysctl_doeproc(SYSCTLFN_PROTO); 238static int sysctl_doeproc(SYSCTLFN_PROTO);
239static int sysctl_kern_proc_args(SYSCTLFN_PROTO); 239static int sysctl_kern_proc_args(SYSCTLFN_PROTO);
240static int sysctl_security_expose_address(SYSCTLFN_PROTO); 240static int sysctl_security_expose_address(SYSCTLFN_PROTO);
241 241
242#ifdef KASLR 242#ifdef KASLR
243static int kern_expose_address = 0; 243static int kern_expose_address = 0;
244#else 244#else
245static int kern_expose_address = 1; 245static int kern_expose_address = 1;
246#endif 246#endif
247/* 247/*
248 * The process list descriptors, used during pid allocation and 248 * The process list descriptors, used during pid allocation and
249 * by sysctl. No locking on this data structure is needed since 249 * by sysctl. No locking on this data structure is needed since
250 * it is completely static. 250 * it is completely static.
251 */ 251 */
252const struct proclist_desc proclists[] = { 252const struct proclist_desc proclists[] = {
253 { &allproc }, 253 { &allproc },
254 { &zombproc }, 254 { &zombproc },
255 { NULL }, 255 { NULL },
256}; 256};
257 257
258static struct pgrp * pg_remove(pid_t); 258static struct pgrp * pg_remove(pid_t);
259static void pg_delete(pid_t); 259static void pg_delete(pid_t);
260static void orphanpg(struct pgrp *); 260static void orphanpg(struct pgrp *);
261 261
262static specificdata_domain_t proc_specificdata_domain; 262static specificdata_domain_t proc_specificdata_domain;
263 263
264static pool_cache_t proc_cache; 264static pool_cache_t proc_cache;
265 265
266static kauth_listener_t proc_listener; 266static kauth_listener_t proc_listener;
267 267
268static void fill_proc(const struct proc *, struct proc *, bool); 268static void fill_proc(const struct proc *, struct proc *, bool);
269static int fill_pathname(struct lwp *, pid_t, void *, size_t *); 269static int fill_pathname(struct lwp *, pid_t, void *, size_t *);
270static int fill_cwd(struct lwp *, pid_t, void *, size_t *); 270static int fill_cwd(struct lwp *, pid_t, void *, size_t *);
271 271
272static int 272static int
273proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 273proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
274 void *arg0, void *arg1, void *arg2, void *arg3) 274 void *arg0, void *arg1, void *arg2, void *arg3)
275{ 275{
276 struct proc *p; 276 struct proc *p;
277 int result; 277 int result;
278 278
279 result = KAUTH_RESULT_DEFER; 279 result = KAUTH_RESULT_DEFER;
280 p = arg0; 280 p = arg0;
281 281
282 switch (action) { 282 switch (action) {
283 case KAUTH_PROCESS_CANSEE: { 283 case KAUTH_PROCESS_CANSEE: {
284 enum kauth_process_req req; 284 enum kauth_process_req req;
285 285
286 req = (enum kauth_process_req)(uintptr_t)arg1; 286 req = (enum kauth_process_req)(uintptr_t)arg1;
287 287
288 switch (req) { 288 switch (req) {
289 case KAUTH_REQ_PROCESS_CANSEE_ARGS: 289 case KAUTH_REQ_PROCESS_CANSEE_ARGS:
290 case KAUTH_REQ_PROCESS_CANSEE_ENTRY: 290 case KAUTH_REQ_PROCESS_CANSEE_ENTRY:
291 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES: 291 case KAUTH_REQ_PROCESS_CANSEE_OPENFILES:
292 case KAUTH_REQ_PROCESS_CANSEE_EPROC: 292 case KAUTH_REQ_PROCESS_CANSEE_EPROC:
293 result = KAUTH_RESULT_ALLOW; 293 result = KAUTH_RESULT_ALLOW;
294 break; 294 break;
295 295
296 case KAUTH_REQ_PROCESS_CANSEE_ENV: 296 case KAUTH_REQ_PROCESS_CANSEE_ENV:
297 if (kauth_cred_getuid(cred) != 297 if (kauth_cred_getuid(cred) !=
298 kauth_cred_getuid(p->p_cred) || 298 kauth_cred_getuid(p->p_cred) ||
299 kauth_cred_getuid(cred) != 299 kauth_cred_getuid(cred) !=
300 kauth_cred_getsvuid(p->p_cred)) 300 kauth_cred_getsvuid(p->p_cred))
301 break; 301 break;
302 302
303 result = KAUTH_RESULT_ALLOW; 303 result = KAUTH_RESULT_ALLOW;
304 304
305 break; 305 break;
306 306
307 case KAUTH_REQ_PROCESS_CANSEE_KPTR: 307 case KAUTH_REQ_PROCESS_CANSEE_KPTR:
308 if (!kern_expose_address) 308 if (!kern_expose_address)
309 break; 309 break;
310 310
311 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM)) 311 if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM))
312 break; 312 break;
313 313
314 result = KAUTH_RESULT_ALLOW; 314 result = KAUTH_RESULT_ALLOW;
315 315
316 break; 316 break;
317 317
318 default: 318 default:
319 break; 319 break;
320 } 320 }
321 321
322 break; 322 break;
323 } 323 }
324 324
325 case KAUTH_PROCESS_FORK: { 325 case KAUTH_PROCESS_FORK: {
326 int lnprocs = (int)(unsigned long)arg2; 326 int lnprocs = (int)(unsigned long)arg2;
327 327
328 /* 328 /*
329 * Don't allow a nonprivileged user to use the last few 329 * Don't allow a nonprivileged user to use the last few
330 * processes. The variable lnprocs is the current number of 330 * processes. The variable lnprocs is the current number of
331 * processes, maxproc is the limit. 331 * processes, maxproc is the limit.
332 */ 332 */
333 if (__predict_false((lnprocs >= maxproc - 5))) 333 if (__predict_false((lnprocs >= maxproc - 5)))
334 break; 334 break;
335 335
336 result = KAUTH_RESULT_ALLOW; 336 result = KAUTH_RESULT_ALLOW;
337 337
338 break; 338 break;
339 } 339 }
340 340
341 case KAUTH_PROCESS_CORENAME: 341 case KAUTH_PROCESS_CORENAME:
342 case KAUTH_PROCESS_STOPFLAG: 342 case KAUTH_PROCESS_STOPFLAG:
343 if (proc_uidmatch(cred, p->p_cred) == 0) 343 if (proc_uidmatch(cred, p->p_cred) == 0)
344 result = KAUTH_RESULT_ALLOW; 344 result = KAUTH_RESULT_ALLOW;
345 345
346 break; 346 break;
347 347
348 default: 348 default:
349 break; 349 break;
350 } 350 }
351 351
352 return result; 352 return result;
353} 353}
354 354
355static int 355static int
356proc_ctor(void *arg __unused, void *obj, int flags __unused) 356proc_ctor(void *arg __unused, void *obj, int flags __unused)
357{ 357{
358 memset(obj, 0, sizeof(struct proc)); 358 memset(obj, 0, sizeof(struct proc));
359 return 0; 359 return 0;
360} 360}
361 361
362static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t); 362static pid_t proc_alloc_pid_slot(struct proc *, uintptr_t);
363 363
364/* 364/*
365 * Initialize global process hashing structures. 365 * Initialize global process hashing structures.
366 */ 366 */
367void 367void
368procinit(void) 368procinit(void)
369{ 369{
370 const struct proclist_desc *pd; 370 const struct proclist_desc *pd;
371 u_int i; 371 u_int i;
372#define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) 372#define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
373 373
374 for (pd = proclists; pd->pd_list != NULL; pd++) 374 for (pd = proclists; pd->pd_list != NULL; pd++)
375 LIST_INIT(pd->pd_list); 375 LIST_INIT(pd->pd_list);
376 376
377 mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE); 377 mutex_init(&proc_lock, MUTEX_DEFAULT, IPL_NONE);
378 378
379 proc_psz = pserialize_create(); 379 proc_psz = pserialize_create();
380 380
381 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE 381 pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE
382 * sizeof(struct pid_table), KM_SLEEP); 382 * sizeof(struct pid_table), KM_SLEEP);
383 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; 383 pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
384 pid_max = PID_MAX; 384 pid_max = PID_MAX;
385 385
386 /* Set free list running through table... 386 /* Set free list running through table...
387 Preset 'use count' above PID_MAX so we allocate pid 1 next. */ 387 Preset 'use count' above PID_MAX so we allocate pid 1 next. */
388 for (i = 0; i <= pid_tbl_mask; i++) { 388 for (i = 0; i <= pid_tbl_mask; i++) {
389 pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1); 389 pid_table[i].pt_slot = PT_SET_FREE(LINK_EMPTY + i + 1);
390 pid_table[i].pt_pgrp = 0; 390 pid_table[i].pt_pgrp = 0;
391 pid_table[i].pt_pid = 0; 391 pid_table[i].pt_pid = 0;
392 } 392 }
393 /* slot 0 is just grabbed */ 393 /* slot 0 is just grabbed */
394 next_free_pt = 1; 394 next_free_pt = 1;
395 /* Need to fix last entry. */ 395 /* Need to fix last entry. */
396 last_free_pt = pid_tbl_mask; 396 last_free_pt = pid_tbl_mask;
397 pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY); 397 pid_table[last_free_pt].pt_slot = PT_SET_FREE(LINK_EMPTY);
398 /* point at which we grow table - to avoid reusing pids too often */ 398 /* point at which we grow table - to avoid reusing pids too often */
399 pid_alloc_lim = pid_tbl_mask - 1; 399 pid_alloc_lim = pid_tbl_mask - 1;
400#undef LINK_EMPTY 400#undef LINK_EMPTY
401 401
402 /* Reserve PID 1 for init(8). */ /* XXX slightly gross */ 402 /* Reserve PID 1 for init(8). */ /* XXX slightly gross */
403 mutex_enter(&proc_lock); 403 mutex_enter(&proc_lock);
404 if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1) 404 if (proc_alloc_pid_slot(&proc0, PT_SET_RESERVED) != 1)
405 panic("failed to reserve PID 1 for init(8)"); 405 panic("failed to reserve PID 1 for init(8)");
406 mutex_exit(&proc_lock); 406 mutex_exit(&proc_lock);
407 407
408 proc_specificdata_domain = specificdata_domain_create(); 408 proc_specificdata_domain = specificdata_domain_create();
409 KASSERT(proc_specificdata_domain != NULL); 409 KASSERT(proc_specificdata_domain != NULL);
410 410
411 size_t proc_alignment = coherency_unit; 411 size_t proc_alignment = coherency_unit;
412 if (proc_alignment < MIN_PROC_ALIGNMENT) 412 if (proc_alignment < MIN_PROC_ALIGNMENT)
413 proc_alignment = MIN_PROC_ALIGNMENT; 413 proc_alignment = MIN_PROC_ALIGNMENT;
414 414
415 proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0, 415 proc_cache = pool_cache_init(sizeof(struct proc), proc_alignment, 0, 0,
416 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL); 416 "procpl", NULL, IPL_NONE, proc_ctor, NULL, NULL);
417 417
418 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 418 proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
419 proc_listener_cb, NULL); 419 proc_listener_cb, NULL);
420} 420}
421 421
422void 422void
423procinit_sysctl(void) 423procinit_sysctl(void)
424{ 424{
425 static struct sysctllog *clog; 425 static struct sysctllog *clog;
426 426
427 sysctl_createv(&clog, 0, NULL, NULL, 427 sysctl_createv(&clog, 0, NULL, NULL,
428 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 428 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
429 CTLTYPE_INT, "expose_address", 429 CTLTYPE_INT, "expose_address",
430 SYSCTL_DESCR("Enable exposing kernel addresses"), 430 SYSCTL_DESCR("Enable exposing kernel addresses"),
431 sysctl_security_expose_address, 0, 431 sysctl_security_expose_address, 0,
432 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL); 432 &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL);
433 sysctl_createv(&clog, 0, NULL, NULL, 433 sysctl_createv(&clog, 0, NULL, NULL,
434 CTLFLAG_PERMANENT, 434 CTLFLAG_PERMANENT,
435 CTLTYPE_NODE, "proc", 435 CTLTYPE_NODE, "proc",
436 SYSCTL_DESCR("System-wide process information"), 436 SYSCTL_DESCR("System-wide process information"),
437 sysctl_doeproc, 0, NULL, 0, 437 sysctl_doeproc, 0, NULL, 0,
438 CTL_KERN, KERN_PROC, CTL_EOL); 438 CTL_KERN, KERN_PROC, CTL_EOL);
439 sysctl_createv(&clog, 0, NULL, NULL, 439 sysctl_createv(&clog, 0, NULL, NULL,
440 CTLFLAG_PERMANENT, 440 CTLFLAG_PERMANENT,
441 CTLTYPE_NODE, "proc2", 441 CTLTYPE_NODE, "proc2",
442 SYSCTL_DESCR("Machine-independent process information"), 442 SYSCTL_DESCR("Machine-independent process information"),
443 sysctl_doeproc, 0, NULL, 0, 443 sysctl_doeproc, 0, NULL, 0,
444 CTL_KERN, KERN_PROC2, CTL_EOL); 444 CTL_KERN, KERN_PROC2, CTL_EOL);
445 sysctl_createv(&clog, 0, NULL, NULL, 445 sysctl_createv(&clog, 0, NULL, NULL,
446 CTLFLAG_PERMANENT, 446 CTLFLAG_PERMANENT,
447 CTLTYPE_NODE, "proc_args", 447 CTLTYPE_NODE, "proc_args",
448 SYSCTL_DESCR("Process argument information"), 448 SYSCTL_DESCR("Process argument information"),
449 sysctl_kern_proc_args, 0, NULL, 0, 449 sysctl_kern_proc_args, 0, NULL, 0,
450 CTL_KERN, KERN_PROC_ARGS, CTL_EOL); 450 CTL_KERN, KERN_PROC_ARGS, CTL_EOL);
451 451
452 /* 452 /*
453 "nodes" under these: 453 "nodes" under these:
454 454
455 KERN_PROC_ALL 455 KERN_PROC_ALL
456 KERN_PROC_PID pid 456 KERN_PROC_PID pid
457 KERN_PROC_PGRP pgrp 457 KERN_PROC_PGRP pgrp
458 KERN_PROC_SESSION sess 458 KERN_PROC_SESSION sess
459 KERN_PROC_TTY tty 459 KERN_PROC_TTY tty
460 KERN_PROC_UID uid 460 KERN_PROC_UID uid
461 KERN_PROC_RUID uid 461 KERN_PROC_RUID uid
462 KERN_PROC_GID gid 462 KERN_PROC_GID gid
463 KERN_PROC_RGID gid 463 KERN_PROC_RGID gid
464 464
465 all in all, probably not worth the effort... 465 all in all, probably not worth the effort...
466 */ 466 */
467} 467}
468 468
469/* 469/*
470 * Initialize process 0. 470 * Initialize process 0.
471 */ 471 */
472void 472void
473proc0_init(void) 473proc0_init(void)
474{ 474{
475 struct proc *p; 475 struct proc *p;
476 struct pgrp *pg; 476 struct pgrp *pg;
477 struct rlimit *rlim; 477 struct rlimit *rlim;
478 rlim_t lim; 478 rlim_t lim;
479 int i; 479 int i;
480 480
481 p = &proc0; 481 p = &proc0;
482 pg = &pgrp0; 482 pg = &pgrp0;
483 483
484 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 484 mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
485 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 485 mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
486 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 486 p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
487 487
488 rw_init(&p->p_reflock); 488 rw_init(&p->p_reflock);
489 cv_init(&p->p_waitcv, "wait"); 489 cv_init(&p->p_waitcv, "wait");
490 cv_init(&p->p_lwpcv, "lwpwait"); 490 cv_init(&p->p_lwpcv, "lwpwait");
491 491
492 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling); 492 LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling);
493 493
494 KASSERT(lwp0.l_lid == 0); 494 KASSERT(lwp0.l_lid == 0);
495 pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0); 495 pid_table[lwp0.l_lid].pt_slot = PT_SET_LWP(&lwp0);
496 LIST_INSERT_HEAD(&allproc, p, p_list); 496 LIST_INSERT_HEAD(&allproc, p, p_list);
497 497
498 pid_table[lwp0.l_lid].pt_pgrp = pg; 498 pid_table[lwp0.l_lid].pt_pgrp = pg;
499 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); 499 LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
500 500
501#ifdef __HAVE_SYSCALL_INTERN 501#ifdef __HAVE_SYSCALL_INTERN
502 (*p->p_emul->e_syscall_intern)(p); 502 (*p->p_emul->e_syscall_intern)(p);
503#endif 503#endif
504 504
505 /* Create credentials. */ 505 /* Create credentials. */
506 cred0 = kauth_cred_alloc(); 506 cred0 = kauth_cred_alloc();
507 p->p_cred = cred0; 507 p->p_cred = cred0;
508 508
509 /* Create the CWD info. */ 509 /* Create the CWD info. */
510 rw_init(&cwdi0.cwdi_lock); 510 rw_init(&cwdi0.cwdi_lock);
511 511
512 /* Create the limits structures. */ 512 /* Create the limits structures. */
513 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); 513 mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE);
514 514
515 rlim = limit0.pl_rlimit; 515 rlim = limit0.pl_rlimit;
516 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) { 516 for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) {
517 rlim[i].rlim_cur = RLIM_INFINITY; 517 rlim[i].rlim_cur = RLIM_INFINITY;
518 rlim[i].rlim_max = RLIM_INFINITY; 518 rlim[i].rlim_max = RLIM_INFINITY;
519 } 519 }
520 520
521 rlim[RLIMIT_NOFILE].rlim_max = maxfiles; 521 rlim[RLIMIT_NOFILE].rlim_max = maxfiles;
522 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile; 522 rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile;
523 523
524 rlim[RLIMIT_NPROC].rlim_max = maxproc; 524 rlim[RLIMIT_NPROC].rlim_max = maxproc;
525 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc; 525 rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc;
526 526
527 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false))); 527 lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvm_availmem(false)));
528 rlim[RLIMIT_RSS].rlim_max = lim; 528 rlim[RLIMIT_RSS].rlim_max = lim;
529 rlim[RLIMIT_MEMLOCK].rlim_max = lim; 529 rlim[RLIMIT_MEMLOCK].rlim_max = lim;
530 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3; 530 rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
531 531
532 rlim[RLIMIT_NTHR].rlim_max = maxlwp; 532 rlim[RLIMIT_NTHR].rlim_max = maxlwp;
533 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc; 533 rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc;
534 534
535 /* Note that default core name has zero length. */ 535 /* Note that default core name has zero length. */
536 limit0.pl_corename = defcorename; 536 limit0.pl_corename = defcorename;
537 limit0.pl_cnlen = 0; 537 limit0.pl_cnlen = 0;
538 limit0.pl_refcnt = 1; 538 limit0.pl_refcnt = 1;
539 limit0.pl_writeable = false; 539 limit0.pl_writeable = false;
540 limit0.pl_sv_limit = NULL; 540 limit0.pl_sv_limit = NULL;
541 541
542 /* Configure virtual memory system, set vm rlimits. */ 542 /* Configure virtual memory system, set vm rlimits. */
543 uvm_init_limits(p); 543 uvm_init_limits(p);
544 544
545 /* Initialize file descriptor table for proc0. */ 545 /* Initialize file descriptor table for proc0. */
546 fd_init(&filedesc0); 546 fd_init(&filedesc0);
547 547
548 /* 548 /*
549 * Initialize proc0's vmspace, which uses the kernel pmap. 549 * Initialize proc0's vmspace, which uses the kernel pmap.
550 * All kernel processes (which never have user space mappings) 550 * All kernel processes (which never have user space mappings)
551 * share proc0's vmspace, and thus, the kernel pmap. 551 * share proc0's vmspace, and thus, the kernel pmap.
552 */ 552 */
553 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), 553 uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
554 trunc_page(VM_MAXUSER_ADDRESS), 554 trunc_page(VM_MAXUSER_ADDRESS),
555#ifdef __USE_TOPDOWN_VM 555#ifdef __USE_TOPDOWN_VM
556 true 556 true
557#else 557#else
558 false 558 false
559#endif 559#endif
560 ); 560 );
561 561
562 /* Initialize signal state for proc0. XXX IPL_SCHED */ 562 /* Initialize signal state for proc0. XXX IPL_SCHED */
563 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); 563 mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED);
564 siginit(p); 564 siginit(p);
565 565
566 proc_initspecific(p); 566 proc_initspecific(p);
567 kdtrace_proc_ctor(NULL, p); 567 kdtrace_proc_ctor(NULL, p);
568} 568}
569 569
570/* 570/*
571 * Session reference counting. 571 * Session reference counting.
572 */ 572 */
573 573
574void 574void
575proc_sesshold(struct session *ss) 575proc_sesshold(struct session *ss)
576{ 576{
577 577
578 KASSERT(mutex_owned(&proc_lock)); 578 KASSERT(mutex_owned(&proc_lock));
579 ss->s_count++; 579 ss->s_count++;
580} 580}
581 581
582void 582void
583proc_sessrele(struct session *ss) 583proc_sessrele(struct session *ss)
584{ 584{
585 struct pgrp *pg; 585 struct pgrp *pg;
586 586
587 KASSERT(mutex_owned(&proc_lock)); 587 KASSERT(mutex_owned(&proc_lock));
588 KASSERT(ss->s_count > 0); 588 KASSERT(ss->s_count > 0);
589 589
590 /* 590 /*
591 * We keep the pgrp with the same id as the session in order to 591 * We keep the pgrp with the same id as the session in order to
592 * stop a process being given the same pid. Since the pgrp holds 592 * stop a process being given the same pid. Since the pgrp holds
593 * a reference to the session, it must be a 'zombie' pgrp by now. 593 * a reference to the session, it must be a 'zombie' pgrp by now.
594 */ 594 */
595 if (--ss->s_count == 0) { 595 if (--ss->s_count == 0) {
596 pg = pg_remove(ss->s_sid); 596 pg = pg_remove(ss->s_sid);
597 } else { 597 } else {
598 pg = NULL; 598 pg = NULL;
599 ss = NULL; 599 ss = NULL;
600 } 600 }
601 601
602 mutex_exit(&proc_lock); 602 mutex_exit(&proc_lock);
603 603
604 if (pg) 604 if (pg)
605 kmem_free(pg, sizeof(struct pgrp)); 605 kmem_free(pg, sizeof(struct pgrp));
606 if (ss) 606 if (ss)
607 kmem_free(ss, sizeof(struct session)); 607 kmem_free(ss, sizeof(struct session));
608} 608}
609 609
610/* 610/*
611 * Check that the specified process group is in the session of the 611 * Check that the specified process group is in the session of the
612 * specified process. 612 * specified process.
613 * Treats -ve ids as process ids. 613 * Treats -ve ids as process ids.
614 * Used to validate TIOCSPGRP requests. 614 * Used to validate TIOCSPGRP requests.
615 */ 615 */
616int 616int
617pgid_in_session(struct proc *p, pid_t pg_id) 617pgid_in_session(struct proc *p, pid_t pg_id)
618{ 618{
619 struct pgrp *pgrp; 619 struct pgrp *pgrp;
620 struct session *session; 620 struct session *session;
621 int error; 621 int error;
622 622
623 mutex_enter(&proc_lock); 623 mutex_enter(&proc_lock);
624 if (pg_id < 0) { 624 if (pg_id < 0) {
625 struct proc *p1 = proc_find(-pg_id); 625 struct proc *p1 = proc_find(-pg_id);
626 if (p1 == NULL) { 626 if (p1 == NULL) {
627 error = EINVAL; 627 error = EINVAL;
628 goto fail; 628 goto fail;
629 } 629 }
630 pgrp = p1->p_pgrp; 630 pgrp = p1->p_pgrp;
631 } else { 631 } else {
632 pgrp = pgrp_find(pg_id); 632 pgrp = pgrp_find(pg_id);
633 if (pgrp == NULL) { 633 if (pgrp == NULL) {
634 error = EINVAL; 634 error = EINVAL;
635 goto fail; 635 goto fail;
636 } 636 }
637 } 637 }
638 session = pgrp->pg_session; 638 session = pgrp->pg_session;
639 error = (session != p->p_pgrp->pg_session) ? EPERM : 0; 639 error = (session != p->p_pgrp->pg_session) ? EPERM : 0;
640fail: 640fail:
641 mutex_exit(&proc_lock); 641 mutex_exit(&proc_lock);
642 return error; 642 return error;
643} 643}
644 644
645/* 645/*
646 * p_inferior: is p an inferior of q? 646 * p_inferior: is p an inferior of q?
647 */ 647 */
648static inline bool 648static inline bool
649p_inferior(struct proc *p, struct proc *q) 649p_inferior(struct proc *p, struct proc *q)
650{ 650{
651 651
652 KASSERT(mutex_owned(&proc_lock)); 652 KASSERT(mutex_owned(&proc_lock));
653 653
654 for (; p != q; p = p->p_pptr) 654 for (; p != q; p = p->p_pptr)
655 if (p->p_pid == 0) 655 if (p->p_pid == 0)
656 return false; 656 return false;
657 return true; 657 return true;
658} 658}
659 659
660/* 660/*
661 * proc_find_lwp: locate an lwp in said proc by the ID. 661 * proc_find_lwp: locate an lwp in said proc by the ID.
662 * 662 *
663 * => Must be called with p::p_lock held. 663 * => Must be called with p::p_lock held.
664 * => LSIDL lwps are not returned because they are only partially 664 * => LSIDL lwps are not returned because they are only partially
665 * constructed while occupying the slot. 665 * constructed while occupying the slot.
666 * => Callers need to be careful about lwp::l_stat of the returned 666 * => Callers need to be careful about lwp::l_stat of the returned
667 * lwp. 667 * lwp.
668 */ 668 */
669struct lwp * 669struct lwp *
670proc_find_lwp(proc_t *p, pid_t pid) 670proc_find_lwp(proc_t *p, pid_t pid)
671{ 671{
672 struct pid_table *pt; 672 struct pid_table *pt;
673 struct lwp *l = NULL; 673 struct lwp *l = NULL;
674 uintptr_t slot; 674 uintptr_t slot;
675 int s; 675 int s;
676 676
677 KASSERT(mutex_owned(p->p_lock)); 677 KASSERT(mutex_owned(p->p_lock));
678 678
679 /* 679 /*
680 * Look in the pid_table. This is done unlocked inside a pserialize 680 * Look in the pid_table. This is done unlocked inside a pserialize
681 * read section covering pid_table's memory allocation only, so take 681 * read section covering pid_table's memory allocation only, so take
682 * care to read the slot atomically and only once. This issues a 682 * care to read the slot atomically and only once. This issues a
683 * memory barrier for dependent loads on alpha. 683 * memory barrier for dependent loads on alpha.
684 */ 684 */
685 s = pserialize_read_enter(); 685 s = pserialize_read_enter();
686 pt = &pid_table[pid & pid_tbl_mask]; 686 pt = &pid_table[pid & pid_tbl_mask];
687 slot = atomic_load_consume(&pt->pt_slot); 687 slot = atomic_load_consume(&pt->pt_slot);
688 if (__predict_false(!PT_IS_LWP(slot))) { 688 if (__predict_false(!PT_IS_LWP(slot))) {
689 pserialize_read_exit(s); 689 pserialize_read_exit(s);
690 return NULL; 690 return NULL;
691 } 691 }
692 692
693 /* 693 /*
694 * Check to see if the LWP is from the correct process. We won't 694 * Check to see if the LWP is from the correct process. We won't
695 * see entries in pid_table from a prior process that also used "p", 695 * see entries in pid_table from a prior process that also used "p",
696 * by virtue of the fact that allocating "p" means all prior updates 696 * by virtue of the fact that allocating "p" means all prior updates
697 * to dependant data structures are visible to this thread. 697 * to dependant data structures are visible to this thread.
698 */ 698 */
699 l = PT_GET_LWP(slot); 699 l = PT_GET_LWP(slot);
700 if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) { 700 if (__predict_false(atomic_load_relaxed(&l->l_proc) != p)) {
701 pserialize_read_exit(s); 701 pserialize_read_exit(s);
702 return NULL; 702 return NULL;
703 } 703 }
704 704
705 /* 705 /*
706 * We now know that p->p_lock holds this LWP stable. 706 * We now know that p->p_lock holds this LWP stable.
707 * 707 *
708 * If the status is not LSIDL, it means the LWP is intended to be 708 * If the status is not LSIDL, it means the LWP is intended to be
709 * findable by LID and l_lid cannot change behind us. 709 * findable by LID and l_lid cannot change behind us.
710 * 710 *
711 * No need to acquire the LWP's lock to check for LSIDL, as 711 * No need to acquire the LWP's lock to check for LSIDL, as
712 * p->p_lock must be held to transition in and out of LSIDL. 712 * p->p_lock must be held to transition in and out of LSIDL.
713 * Any other observed state of is no particular interest. 713 * Any other observed state of is no particular interest.
714 */ 714 */
715 pserialize_read_exit(s); 715 pserialize_read_exit(s);
716 return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL; 716 return l->l_stat != LSIDL && l->l_lid == pid ? l : NULL;
717} 717}
718 718
719/* 719/*
720 * proc_find_lwp_unlocked: locate an lwp in said proc by the ID. 720 * proc_find_lwp_unlocked: locate an lwp in said proc by the ID.
721 * 721 *
722 * => Called in a pserialize read section with no locks held. 722 * => Called in a pserialize read section with no locks held.
723 * => LSIDL lwps are not returned because they are only partially 723 * => LSIDL lwps are not returned because they are only partially
724 * constructed while occupying the slot. 724 * constructed while occupying the slot.
725 * => Callers need to be careful about lwp::l_stat of the returned 725 * => Callers need to be careful about lwp::l_stat of the returned
726 * lwp. 726 * lwp.
727 * => If an LWP is found, it's returned locked. 727 * => If an LWP is found, it's returned locked.
728 */ 728 */
729struct lwp * 729struct lwp *
730proc_find_lwp_unlocked(proc_t *p, pid_t pid) 730proc_find_lwp_unlocked(proc_t *p, pid_t pid)
731{ 731{
732 struct pid_table *pt; 732 struct pid_table *pt;
733 struct lwp *l = NULL; 733 struct lwp *l = NULL;
734 uintptr_t slot; 734 uintptr_t slot;
735 735
736 KASSERT(pserialize_in_read_section()); 736 KASSERT(pserialize_in_read_section());
737 737
738 /* 738 /*
739 * Look in the pid_table. This is done unlocked inside a pserialize 739 * Look in the pid_table. This is done unlocked inside a pserialize
740 * read section covering pid_table's memory allocation only, so take 740 * read section covering pid_table's memory allocation only, so take
741 * care to read the slot atomically and only once. This issues a 741 * care to read the slot atomically and only once. This issues a
742 * memory barrier for dependent loads on alpha. 742 * memory barrier for dependent loads on alpha.
743 */ 743 */
744 pt = &pid_table[pid & pid_tbl_mask]; 744 pt = &pid_table[pid & pid_tbl_mask];
745 slot = atomic_load_consume(&pt->pt_slot); 745 slot = atomic_load_consume(&pt->pt_slot);
746 if (__predict_false(!PT_IS_LWP(slot))) { 746 if (__predict_false(!PT_IS_LWP(slot))) {
747 return NULL; 747 return NULL;
748 } 748 }
749 749
750 /* 750 /*
751 * Lock the LWP we found to get it stable. If it's embryonic or 751 * Lock the LWP we found to get it stable. If it's embryonic or
752 * reaped (LSIDL) then none of the other fields can safely be 752 * reaped (LSIDL) then none of the other fields can safely be
753 * checked. 753 * checked.
754 */ 754 */
755 l = PT_GET_LWP(slot); 755 l = PT_GET_LWP(slot);
756 lwp_lock(l); 756 lwp_lock(l);
757 if (__predict_false(l->l_stat == LSIDL)) { 757 if (__predict_false(l->l_stat == LSIDL)) {
758 lwp_unlock(l); 758 lwp_unlock(l);
759 return NULL; 759 return NULL;
760 } 760 }
761 761
762 /* 762 /*
763 * l_proc and l_lid are now known stable because the LWP is not 763 * l_proc and l_lid are now known stable because the LWP is not
764 * LSIDL, so check those fields too to make sure we found the 764 * LSIDL, so check those fields too to make sure we found the
765 * right thing. 765 * right thing.
766 */ 766 */
767 if (__predict_false(l->l_proc != p || l->l_lid != pid)) { 767 if (__predict_false(l->l_proc != p || l->l_lid != pid)) {
768 lwp_unlock(l); 768 lwp_unlock(l);
769 return NULL; 769 return NULL;
770 } 770 }
771 771
772 /* Everything checks out, return it locked. */ 772 /* Everything checks out, return it locked. */
773 return l; 773 return l;
774} 774}
775 775
776/* 776/*
777 * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock 777 * proc_find_lwp_acquire_proc: locate an lwp and acquire a lock
778 * on its containing proc. 778 * on its containing proc.
779 * 779 *
780 * => Similar to proc_find_lwp(), but does not require you to have 780 * => Similar to proc_find_lwp(), but does not require you to have
781 * the proc a priori. 781 * the proc a priori.
782 * => Also returns proc * to caller, with p::p_lock held. 782 * => Also returns proc * to caller, with p::p_lock held.
783 * => Same caveats apply. 783 * => Same caveats apply.
784 */ 784 */
785struct lwp * 785struct lwp *
786proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp) 786proc_find_lwp_acquire_proc(pid_t pid, struct proc **pp)
787{ 787{
788 struct pid_table *pt; 788 struct pid_table *pt;
789 struct proc *p = NULL; 789 struct proc *p = NULL;
790 struct lwp *l = NULL; 790 struct lwp *l = NULL;
791 uintptr_t slot; 791 uintptr_t slot;
792 792
793 KASSERT(pp != NULL); 793 KASSERT(pp != NULL);
794 mutex_enter(&proc_lock); 794 mutex_enter(&proc_lock);
795 pt = &pid_table[pid & pid_tbl_mask]; 795 pt = &pid_table[pid & pid_tbl_mask];
796 796
797 slot = pt->pt_slot; 797 slot = pt->pt_slot;
798 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) { 798 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
799 l = PT_GET_LWP(slot); 799 l = PT_GET_LWP(slot);
800 p = l->l_proc; 800 p = l->l_proc;
801 mutex_enter(p->p_lock); 801 mutex_enter(p->p_lock);
802 if (__predict_false(l->l_stat == LSIDL)) { 802 if (__predict_false(l->l_stat == LSIDL)) {
803 mutex_exit(p->p_lock); 803 mutex_exit(p->p_lock);
804 l = NULL; 804 l = NULL;
805 p = NULL; 805 p = NULL;
806 } 806 }
807 } 807 }
808 mutex_exit(&proc_lock); 808 mutex_exit(&proc_lock);
809 809
810 KASSERT(p == NULL || mutex_owned(p->p_lock)); 810 KASSERT(p == NULL || mutex_owned(p->p_lock));
811 *pp = p; 811 *pp = p;
812 return l; 812 return l;
813} 813}
814 814
815/* 815/*
816 * proc_find_raw_pid_table_locked: locate a process by the ID. 816 * proc_find_raw_pid_table_locked: locate a process by the ID.
817 * 817 *
818 * => Must be called with proc_lock held. 818 * => Must be called with proc_lock held.
819 */ 819 */
820static proc_t * 820static proc_t *
821proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid) 821proc_find_raw_pid_table_locked(pid_t pid, bool any_lwpid)
822{ 822{
823 struct pid_table *pt; 823 struct pid_table *pt;
824 proc_t *p = NULL; 824 proc_t *p = NULL;
825 uintptr_t slot; 825 uintptr_t slot;
826 826
827 /* No - used by DDB. KASSERT(mutex_owned(&proc_lock)); */ 827 /* No - used by DDB. KASSERT(mutex_owned(&proc_lock)); */
828 pt = &pid_table[pid & pid_tbl_mask]; 828 pt = &pid_table[pid & pid_tbl_mask];
829 829
830 slot = pt->pt_slot; 830 slot = pt->pt_slot;
831 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) { 831 if (__predict_true(PT_IS_LWP(slot) && pt->pt_pid == pid)) {
832 /* 832 /*
833 * When looking up processes, require a direct match 833 * When looking up processes, require a direct match
834 * on the PID assigned to the proc, not just one of 834 * on the PID assigned to the proc, not just one of
835 * its LWPs. 835 * its LWPs.
836 * 836 *
837 * N.B. We require lwp::l_proc of LSIDL LWPs to be 837 * N.B. We require lwp::l_proc of LSIDL LWPs to be
838 * valid here. 838 * valid here.
839 */ 839 */
840 p = PT_GET_LWP(slot)->l_proc; 840 p = PT_GET_LWP(slot)->l_proc;
841 if (__predict_false(p->p_pid != pid && !any_lwpid)) 841 if (__predict_false(p->p_pid != pid && !any_lwpid))
842 p = NULL; 842 p = NULL;
843 } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) { 843 } else if (PT_IS_PROC(slot) && pt->pt_pid == pid) {
844 p = PT_GET_PROC(slot); 844 p = PT_GET_PROC(slot);
845 } 845 }
846 return p; 846 return p;
847} 847}
848 848
849proc_t * 849proc_t *
850proc_find_raw(pid_t pid) 850proc_find_raw(pid_t pid)
851{ 851{
852 852
853 return proc_find_raw_pid_table_locked(pid, false); 853 return proc_find_raw_pid_table_locked(pid, false);
854} 854}
855 855
856static proc_t * 856static proc_t *
857proc_find_internal(pid_t pid, bool any_lwpid) 857proc_find_internal(pid_t pid, bool any_lwpid)
858{ 858{
859 proc_t *p; 859 proc_t *p;
860 860
861 KASSERT(mutex_owned(&proc_lock)); 861 KASSERT(mutex_owned(&proc_lock));
862 862
863 p = proc_find_raw_pid_table_locked(pid, any_lwpid); 863 p = proc_find_raw_pid_table_locked(pid, any_lwpid);
864 if (__predict_false(p == NULL)) { 864 if (__predict_false(p == NULL)) {
865 return NULL; 865 return NULL;
866 } 866 }
867 867
868 /* 868 /*
869 * Only allow live processes to be found by PID. 869 * Only allow live processes to be found by PID.
870 * XXX: p_stat might change, since proc unlocked. 870 * XXX: p_stat might change, since proc unlocked.
871 */ 871 */
872 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) { 872 if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) {
873 return p; 873 return p;
874 } 874 }
875 return NULL; 875 return NULL;
876} 876}
877 877
878proc_t * 878proc_t *
879proc_find(pid_t pid) 879proc_find(pid_t pid)
880{ 880{
881 return proc_find_internal(pid, false); 881 return proc_find_internal(pid, false);
882} 882}
883 883
884proc_t * 884proc_t *
885proc_find_lwpid(pid_t pid) 885proc_find_lwpid(pid_t pid)
886{ 886{
887 return proc_find_internal(pid, true); 887 return proc_find_internal(pid, true);
888} 888}
889 889
890/* 890/*
891 * pgrp_find: locate a process group by the ID. 891 * pgrp_find: locate a process group by the ID.
892 * 892 *
893 * => Must be called with proc_lock held. 893 * => Must be called with proc_lock held.
894 */ 894 */
895struct pgrp * 895struct pgrp *
896pgrp_find(pid_t pgid) 896pgrp_find(pid_t pgid)
897{ 897{
898 struct pgrp *pg; 898 struct pgrp *pg;
899 899
900 KASSERT(mutex_owned(&proc_lock)); 900 KASSERT(mutex_owned(&proc_lock));
901 901
902 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; 902 pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
903 903
904 /* 904 /*
905 * Cannot look up a process group that only exists because the 905 * Cannot look up a process group that only exists because the
906 * session has not died yet (traditional). 906 * session has not died yet (traditional).
907 */ 907 */
908 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { 908 if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
909 return NULL; 909 return NULL;
910 } 910 }
911 return pg; 911 return pg;
912} 912}
913 913
914static void 914static void
915expand_pid_table(void) 915expand_pid_table(void)
916{ 916{
917 size_t pt_size, tsz; 917 size_t pt_size, tsz;
918 struct pid_table *n_pt, *new_pt; 918 struct pid_table *n_pt, *new_pt;
919 uintptr_t slot; 919 uintptr_t slot;
920 struct pgrp *pgrp; 920 struct pgrp *pgrp;
921 pid_t pid, rpid; 921 pid_t pid, rpid;
922 u_int i; 922 u_int i;
923 uint new_pt_mask; 923 uint new_pt_mask;
924 924
925 KASSERT(mutex_owned(&proc_lock)); 925 KASSERT(mutex_owned(&proc_lock));
926 926
927 /* Unlock the pid_table briefly to allocate memory. */ 927 /* Unlock the pid_table briefly to allocate memory. */
928 pt_size = pid_tbl_mask + 1; 928 pt_size = pid_tbl_mask + 1;
929 mutex_exit(&proc_lock); 929 mutex_exit(&proc_lock);
930 930
931 tsz = pt_size * 2 * sizeof(struct pid_table); 931 tsz = pt_size * 2 * sizeof(struct pid_table);
932 new_pt = kmem_alloc(tsz, KM_SLEEP); 932 new_pt = kmem_alloc(tsz, KM_SLEEP);
933 new_pt_mask = pt_size * 2 - 1; 933 new_pt_mask = pt_size * 2 - 1;
934 934
935 /* XXX For now. The pratical limit is much lower anyway. */ 935 /* XXX For now. The pratical limit is much lower anyway. */
936 KASSERT(new_pt_mask <= FUTEX_TID_MASK); 936 KASSERT(new_pt_mask <= FUTEX_TID_MASK);
937 937
938 mutex_enter(&proc_lock); 938 mutex_enter(&proc_lock);
939 if (pt_size != pid_tbl_mask + 1) { 939 if (pt_size != pid_tbl_mask + 1) {
940 /* Another process beat us to it... */ 940 /* Another process beat us to it... */
941 mutex_exit(&proc_lock); 941 mutex_exit(&proc_lock);
942 kmem_free(new_pt, tsz); 942 kmem_free(new_pt, tsz);
943 goto out; 943 goto out;
944 } 944 }
945 945
946 /* 946 /*
947 * Copy entries from old table into new one. 947 * Copy entries from old table into new one.
948 * If 'pid' is 'odd' we need to place in the upper half, 948 * If 'pid' is 'odd' we need to place in the upper half,
949 * even pid's to the lower half. 949 * even pid's to the lower half.
950 * Free items stay in the low half so we don't have to 950 * Free items stay in the low half so we don't have to
951 * fixup the reference to them. 951 * fixup the reference to them.
952 * We stuff free items on the front of the freelist 952 * We stuff free items on the front of the freelist
953 * because we can't write to unmodified entries. 953 * because we can't write to unmodified entries.
954 * Processing the table backwards maintains a semblance 954 * Processing the table backwards maintains a semblance
955 * of issuing pid numbers that increase with time. 955 * of issuing pid numbers that increase with time.
956 */ 956 */
957 i = pt_size - 1; 957 i = pt_size - 1;
958 n_pt = new_pt + i; 958 n_pt = new_pt + i;
959 for (; ; i--, n_pt--) { 959 for (; ; i--, n_pt--) {
960 slot = pid_table[i].pt_slot; 960 slot = pid_table[i].pt_slot;
961 pgrp = pid_table[i].pt_pgrp; 961 pgrp = pid_table[i].pt_pgrp;
962 if (!PT_VALID(slot)) { 962 if (!PT_VALID(slot)) {
963 /* Up 'use count' so that link is valid */ 963 /* Up 'use count' so that link is valid */
964 pid = (PT_NEXT(slot) + pt_size) & ~pt_size; 964 pid = (PT_NEXT(slot) + pt_size) & ~pt_size;
965 rpid = 0; 965 rpid = 0;
966 slot = PT_SET_FREE(pid); 966 slot = PT_SET_FREE(pid);
967 if (pgrp) 967 if (pgrp)
968 pid = pgrp->pg_id; 968 pid = pgrp->pg_id;
969 } else { 969 } else {
970 pid = pid_table[i].pt_pid; 970 pid = pid_table[i].pt_pid;
971 rpid = pid; 971 rpid = pid;
972 } 972 }
973 973
974 /* Save entry in appropriate half of table */ 974 /* Save entry in appropriate half of table */
975 n_pt[pid & pt_size].pt_slot = slot; 975 n_pt[pid & pt_size].pt_slot = slot;
976 n_pt[pid & pt_size].pt_pgrp = pgrp; 976 n_pt[pid & pt_size].pt_pgrp = pgrp;
977 n_pt[pid & pt_size].pt_pid = rpid; 977 n_pt[pid & pt_size].pt_pid = rpid;
978 978
979 /* Put other piece on start of free list */ 979 /* Put other piece on start of free list */
980 pid = (pid ^ pt_size) & ~pid_tbl_mask; 980 pid = (pid ^ pt_size) & ~pid_tbl_mask;
981 n_pt[pid & pt_size].pt_slot = 981 n_pt[pid & pt_size].pt_slot =
982 PT_SET_FREE((pid & ~pt_size) | next_free_pt); 982 PT_SET_FREE((pid & ~pt_size) | next_free_pt);
983 n_pt[pid & pt_size].pt_pgrp = 0; 983 n_pt[pid & pt_size].pt_pgrp = 0;
984 n_pt[pid & pt_size].pt_pid = 0; 984 n_pt[pid & pt_size].pt_pid = 0;
985 985
986 next_free_pt = i | (pid & pt_size); 986 next_free_pt = i | (pid & pt_size);
987 if (i == 0) 987 if (i == 0)
988 break; 988 break;
989 } 989 }
990 990
991 /* Save old table size and switch tables */ 991 /* Save old table size and switch tables */
992 tsz = pt_size * sizeof(struct pid_table); 992 tsz = pt_size * sizeof(struct pid_table);
993 n_pt = pid_table; 993 n_pt = pid_table;
994 pid_table = new_pt; 994 pid_table = new_pt;
995 pid_tbl_mask = new_pt_mask; 995 pid_tbl_mask = new_pt_mask;
996 996
997 /* 997 /*
998 * pid_max starts as PID_MAX (= 30000), once we have 16384 998 * pid_max starts as PID_MAX (= 30000), once we have 16384
999 * allocated pids we need it to be larger! 999 * allocated pids we need it to be larger!
1000 */ 1000 */
1001 if (pid_tbl_mask > PID_MAX) { 1001 if (pid_tbl_mask > PID_MAX) {
1002 pid_max = pid_tbl_mask * 2 + 1; 1002 pid_max = pid_tbl_mask * 2 + 1;
1003 pid_alloc_lim |= pid_alloc_lim << 1; 1003 pid_alloc_lim |= pid_alloc_lim << 1;
1004 } else 1004 } else
1005 pid_alloc_lim <<= 1; /* doubles number of free slots... */ 1005 pid_alloc_lim <<= 1; /* doubles number of free slots... */
1006 1006
1007 mutex_exit(&proc_lock); 1007 mutex_exit(&proc_lock);
1008 1008
1009 /* 1009 /*
1010 * Make sure that unlocked access to the old pid_table is complete 1010 * Make sure that unlocked access to the old pid_table is complete
1011 * and then free it. 1011 * and then free it.
1012 */ 1012 */
1013 pserialize_perform(proc_psz); 1013 pserialize_perform(proc_psz);
1014 kmem_free(n_pt, tsz); 1014 kmem_free(n_pt, tsz);
1015 1015
1016 out: /* Return with proc_lock held again. */ 1016 out: /* Return with proc_lock held again. */
1017 mutex_enter(&proc_lock); 1017 mutex_enter(&proc_lock);
1018} 1018}
1019 1019
1020struct proc * 1020struct proc *
1021proc_alloc(void) 1021proc_alloc(void)
1022{ 1022{
1023 struct proc *p; 1023 struct proc *p;
1024 1024
1025 p = pool_cache_get(proc_cache, PR_WAITOK); 1025 p = pool_cache_get(proc_cache, PR_WAITOK);
1026 p->p_stat = SIDL; /* protect against others */ 1026 p->p_stat = SIDL; /* protect against others */
1027 proc_initspecific(p); 1027 proc_initspecific(p);
1028 kdtrace_proc_ctor(NULL, p); 1028 kdtrace_proc_ctor(NULL, p);
1029 1029
1030 /* 1030 /*
1031 * Allocate a placeholder in the pid_table. When we create the 1031 * Allocate a placeholder in the pid_table. When we create the
1032 * first LWP for this process, it will take ownership of the 1032 * first LWP for this process, it will take ownership of the
1033 * slot. 1033 * slot.
1034 */ 1034 */
1035 if (__predict_false(proc_alloc_pid(p) == -1)) { 1035 if (__predict_false(proc_alloc_pid(p) == -1)) {
1036 /* Allocating the PID failed; unwind. */ 1036 /* Allocating the PID failed; unwind. */
1037 proc_finispecific(p); 1037 proc_finispecific(p);
1038 proc_free_mem(p); 1038 proc_free_mem(p);
1039 p = NULL; 1039 p = NULL;
1040 } 1040 }
1041 return p; 1041 return p;
1042} 1042}
1043 1043
1044/* 1044/*
1045 * proc_alloc_pid_slot: allocate PID and record the occcupant so that 1045 * proc_alloc_pid_slot: allocate PID and record the occcupant so that
1046 * proc_find_raw() can find it by the PID. 1046 * proc_find_raw() can find it by the PID.
1047 */ 1047 */
1048static pid_t __noinline 1048static pid_t __noinline
1049proc_alloc_pid_slot(struct proc *p, uintptr_t slot) 1049proc_alloc_pid_slot(struct proc *p, uintptr_t slot)
1050{ 1050{
1051 struct pid_table *pt; 1051 struct pid_table *pt;
1052 pid_t pid; 1052 pid_t pid;
1053 int nxt; 1053 int nxt;
1054 1054
1055 KASSERT(mutex_owned(&proc_lock)); 1055 KASSERT(mutex_owned(&proc_lock));
1056 1056
1057 for (;;expand_pid_table()) { 1057 for (;;expand_pid_table()) {
1058 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) { 1058 if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) {
1059 /* ensure pids cycle through 2000+ values */ 1059 /* ensure pids cycle through 2000+ values */
1060 continue; 1060 continue;
1061 } 1061 }
1062 /* 1062 /*
1063 * The first user process *must* be given PID 1. 1063 * The first user process *must* be given PID 1.
1064 * it has already been reserved for us. This 1064 * it has already been reserved for us. This
@@ -1580,1504 +1580,1504 @@ orphanpg(struct pgrp *pg) @@ -1580,1504 +1580,1504 @@ orphanpg(struct pgrp *pg)
1580{ 1580{
1581 struct proc *p; 1581 struct proc *p;
1582 1582
1583 KASSERT(mutex_owned(&proc_lock)); 1583 KASSERT(mutex_owned(&proc_lock));
1584 1584
1585 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1585 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
1586 if (p->p_stat == SSTOP) { 1586 if (p->p_stat == SSTOP) {
1587 p->p_lflag |= PL_ORPHANPG; 1587 p->p_lflag |= PL_ORPHANPG;
1588 psignal(p, SIGHUP); 1588 psignal(p, SIGHUP);
1589 psignal(p, SIGCONT); 1589 psignal(p, SIGCONT);
1590 } 1590 }
1591 } 1591 }
1592} 1592}
1593 1593
1594#ifdef DDB 1594#ifdef DDB
1595#include <ddb/db_output.h> 1595#include <ddb/db_output.h>
1596void pidtbl_dump(void); 1596void pidtbl_dump(void);
1597void 1597void
1598pidtbl_dump(void) 1598pidtbl_dump(void)
1599{ 1599{
1600 struct pid_table *pt; 1600 struct pid_table *pt;
1601 struct proc *p; 1601 struct proc *p;
1602 struct pgrp *pgrp; 1602 struct pgrp *pgrp;
1603 uintptr_t slot; 1603 uintptr_t slot;
1604 int id; 1604 int id;
1605 1605
1606 db_printf("pid table %p size %x, next %x, last %x\n", 1606 db_printf("pid table %p size %x, next %x, last %x\n",
1607 pid_table, pid_tbl_mask+1, 1607 pid_table, pid_tbl_mask+1,
1608 next_free_pt, last_free_pt); 1608 next_free_pt, last_free_pt);
1609 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { 1609 for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
1610 slot = pt->pt_slot; 1610 slot = pt->pt_slot;
1611 if (!PT_VALID(slot) && !pt->pt_pgrp) 1611 if (!PT_VALID(slot) && !pt->pt_pgrp)
1612 continue; 1612 continue;
1613 if (PT_IS_LWP(slot)) { 1613 if (PT_IS_LWP(slot)) {
1614 p = PT_GET_LWP(slot)->l_proc; 1614 p = PT_GET_LWP(slot)->l_proc;
1615 } else if (PT_IS_PROC(slot)) { 1615 } else if (PT_IS_PROC(slot)) {
1616 p = PT_GET_PROC(slot); 1616 p = PT_GET_PROC(slot);
1617 } else { 1617 } else {
1618 p = NULL; 1618 p = NULL;
1619 } 1619 }
1620 db_printf(" id %x: ", id); 1620 db_printf(" id %x: ", id);
1621 if (p != NULL) 1621 if (p != NULL)
1622 db_printf("slotpid %d proc %p id %d (0x%x) %s\n", 1622 db_printf("slotpid %d proc %p id %d (0x%x) %s\n",
1623 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm); 1623 pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm);
1624 else 1624 else
1625 db_printf("next %x use %x\n", 1625 db_printf("next %x use %x\n",
1626 PT_NEXT(slot) & pid_tbl_mask, 1626 PT_NEXT(slot) & pid_tbl_mask,
1627 PT_NEXT(slot) & ~pid_tbl_mask); 1627 PT_NEXT(slot) & ~pid_tbl_mask);
1628 if ((pgrp = pt->pt_pgrp)) { 1628 if ((pgrp = pt->pt_pgrp)) {
1629 db_printf("\tsession %p, sid %d, count %d, login %s\n", 1629 db_printf("\tsession %p, sid %d, count %d, login %s\n",
1630 pgrp->pg_session, pgrp->pg_session->s_sid, 1630 pgrp->pg_session, pgrp->pg_session->s_sid,
1631 pgrp->pg_session->s_count, 1631 pgrp->pg_session->s_count,
1632 pgrp->pg_session->s_login); 1632 pgrp->pg_session->s_login);
1633 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n", 1633 db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
1634 pgrp, pgrp->pg_id, pgrp->pg_jobc, 1634 pgrp, pgrp->pg_id, pgrp->pg_jobc,
1635 LIST_FIRST(&pgrp->pg_members)); 1635 LIST_FIRST(&pgrp->pg_members));
1636 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 1636 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
1637 db_printf("\t\tpid %d addr %p pgrp %p %s\n", 1637 db_printf("\t\tpid %d addr %p pgrp %p %s\n",
1638 p->p_pid, p, p->p_pgrp, p->p_comm); 1638 p->p_pid, p, p->p_pgrp, p->p_comm);
1639 } 1639 }
1640 } 1640 }
1641 } 1641 }
1642} 1642}
1643#endif /* DDB */ 1643#endif /* DDB */
1644 1644
1645#ifdef KSTACK_CHECK_MAGIC 1645#ifdef KSTACK_CHECK_MAGIC
1646 1646
1647#define KSTACK_MAGIC 0xdeadbeaf 1647#define KSTACK_MAGIC 0xdeadbeaf
1648 1648
1649/* XXX should be per process basis? */ 1649/* XXX should be per process basis? */
1650static int kstackleftmin = KSTACK_SIZE; 1650static int kstackleftmin = KSTACK_SIZE;
1651static int kstackleftthres = KSTACK_SIZE / 8; 1651static int kstackleftthres = KSTACK_SIZE / 8;
1652 1652
1653void 1653void
1654kstack_setup_magic(const struct lwp *l) 1654kstack_setup_magic(const struct lwp *l)
1655{ 1655{
1656 uint32_t *ip; 1656 uint32_t *ip;
1657 uint32_t const *end; 1657 uint32_t const *end;
1658 1658
1659 KASSERT(l != NULL); 1659 KASSERT(l != NULL);
1660 KASSERT(l != &lwp0); 1660 KASSERT(l != &lwp0);
1661 1661
1662 /* 1662 /*
1663 * fill all the stack with magic number 1663 * fill all the stack with magic number
1664 * so that later modification on it can be detected. 1664 * so that later modification on it can be detected.
1665 */ 1665 */
1666 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1666 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1667 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1667 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1668 for (; ip < end; ip++) { 1668 for (; ip < end; ip++) {
1669 *ip = KSTACK_MAGIC; 1669 *ip = KSTACK_MAGIC;
1670 } 1670 }
1671} 1671}
1672 1672
1673void 1673void
1674kstack_check_magic(const struct lwp *l) 1674kstack_check_magic(const struct lwp *l)
1675{ 1675{
1676 uint32_t const *ip, *end; 1676 uint32_t const *ip, *end;
1677 int stackleft; 1677 int stackleft;
1678 1678
1679 KASSERT(l != NULL); 1679 KASSERT(l != NULL);
1680 1680
1681 /* don't check proc0 */ /*XXX*/ 1681 /* don't check proc0 */ /*XXX*/
1682 if (l == &lwp0) 1682 if (l == &lwp0)
1683 return; 1683 return;
1684 1684
1685#ifdef __MACHINE_STACK_GROWS_UP 1685#ifdef __MACHINE_STACK_GROWS_UP
1686 /* stack grows upwards (eg. hppa) */ 1686 /* stack grows upwards (eg. hppa) */
1687 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1687 ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1688 end = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1688 end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1689 for (ip--; ip >= end; ip--) 1689 for (ip--; ip >= end; ip--)
1690 if (*ip != KSTACK_MAGIC) 1690 if (*ip != KSTACK_MAGIC)
1691 break; 1691 break;
1692 1692
1693 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; 1693 stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
1694#else /* __MACHINE_STACK_GROWS_UP */ 1694#else /* __MACHINE_STACK_GROWS_UP */
1695 /* stack grows downwards (eg. i386) */ 1695 /* stack grows downwards (eg. i386) */
1696 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); 1696 ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
1697 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); 1697 end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
1698 for (; ip < end; ip++) 1698 for (; ip < end; ip++)
1699 if (*ip != KSTACK_MAGIC) 1699 if (*ip != KSTACK_MAGIC)
1700 break; 1700 break;
1701 1701
1702 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); 1702 stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
1703#endif /* __MACHINE_STACK_GROWS_UP */ 1703#endif /* __MACHINE_STACK_GROWS_UP */
1704 1704
1705 if (kstackleftmin > stackleft) { 1705 if (kstackleftmin > stackleft) {
1706 kstackleftmin = stackleft; 1706 kstackleftmin = stackleft;
1707 if (stackleft < kstackleftthres) 1707 if (stackleft < kstackleftthres)
1708 printf("warning: kernel stack left %d bytes" 1708 printf("warning: kernel stack left %d bytes"
1709 "(pid %u:lid %u)\n", stackleft, 1709 "(pid %u:lid %u)\n", stackleft,
1710 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1710 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1711 } 1711 }
1712 1712
1713 if (stackleft <= 0) { 1713 if (stackleft <= 0) {
1714 panic("magic on the top of kernel stack changed for " 1714 panic("magic on the top of kernel stack changed for "
1715 "pid %u, lid %u: maybe kernel stack overflow", 1715 "pid %u, lid %u: maybe kernel stack overflow",
1716 (u_int)l->l_proc->p_pid, (u_int)l->l_lid); 1716 (u_int)l->l_proc->p_pid, (u_int)l->l_lid);
1717 } 1717 }
1718} 1718}
1719#endif /* KSTACK_CHECK_MAGIC */ 1719#endif /* KSTACK_CHECK_MAGIC */
1720 1720
1721int 1721int
1722proclist_foreach_call(struct proclist *list, 1722proclist_foreach_call(struct proclist *list,
1723 int (*callback)(struct proc *, void *arg), void *arg) 1723 int (*callback)(struct proc *, void *arg), void *arg)
1724{ 1724{
1725 struct proc marker; 1725 struct proc marker;
1726 struct proc *p; 1726 struct proc *p;
1727 int ret = 0; 1727 int ret = 0;
1728 1728
1729 marker.p_flag = PK_MARKER; 1729 marker.p_flag = PK_MARKER;
1730 mutex_enter(&proc_lock); 1730 mutex_enter(&proc_lock);
1731 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { 1731 for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
1732 if (p->p_flag & PK_MARKER) { 1732 if (p->p_flag & PK_MARKER) {
1733 p = LIST_NEXT(p, p_list); 1733 p = LIST_NEXT(p, p_list);
1734 continue; 1734 continue;
1735 } 1735 }
1736 LIST_INSERT_AFTER(p, &marker, p_list); 1736 LIST_INSERT_AFTER(p, &marker, p_list);
1737 ret = (*callback)(p, arg); 1737 ret = (*callback)(p, arg);
1738 KASSERT(mutex_owned(&proc_lock)); 1738 KASSERT(mutex_owned(&proc_lock));
1739 p = LIST_NEXT(&marker, p_list); 1739 p = LIST_NEXT(&marker, p_list);
1740 LIST_REMOVE(&marker, p_list); 1740 LIST_REMOVE(&marker, p_list);
1741 } 1741 }
1742 mutex_exit(&proc_lock); 1742 mutex_exit(&proc_lock);
1743 1743
1744 return ret; 1744 return ret;
1745} 1745}
1746 1746
1747int 1747int
1748proc_vmspace_getref(struct proc *p, struct vmspace **vm) 1748proc_vmspace_getref(struct proc *p, struct vmspace **vm)
1749{ 1749{
1750 1750
1751 /* XXXCDC: how should locking work here? */ 1751 /* XXXCDC: how should locking work here? */
1752 1752
1753 /* curproc exception is for coredump. */ 1753 /* curproc exception is for coredump. */
1754 1754
1755 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || 1755 if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
1756 (p->p_vmspace->vm_refcnt < 1)) { 1756 (p->p_vmspace->vm_refcnt < 1)) {
1757 return EFAULT; 1757 return EFAULT;
1758 } 1758 }
1759 1759
1760 uvmspace_addref(p->p_vmspace); 1760 uvmspace_addref(p->p_vmspace);
1761 *vm = p->p_vmspace; 1761 *vm = p->p_vmspace;
1762 1762
1763 return 0; 1763 return 0;
1764} 1764}
1765 1765
1766/* 1766/*
1767 * Acquire a write lock on the process credential. 1767 * Acquire a write lock on the process credential.
1768 */ 1768 */
1769void 1769void
1770proc_crmod_enter(void) 1770proc_crmod_enter(void)
1771{ 1771{
1772 struct lwp *l = curlwp; 1772 struct lwp *l = curlwp;
1773 struct proc *p = l->l_proc; 1773 struct proc *p = l->l_proc;
1774 kauth_cred_t oc; 1774 kauth_cred_t oc;
1775 1775
1776 /* Reset what needs to be reset in plimit. */ 1776 /* Reset what needs to be reset in plimit. */
1777 if (p->p_limit->pl_corename != defcorename) { 1777 if (p->p_limit->pl_corename != defcorename) {
1778 lim_setcorename(p, defcorename, 0); 1778 lim_setcorename(p, defcorename, 0);
1779 } 1779 }
1780 1780
1781 mutex_enter(p->p_lock); 1781 mutex_enter(p->p_lock);
1782 1782
1783 /* Ensure the LWP cached credentials are up to date. */ 1783 /* Ensure the LWP cached credentials are up to date. */
1784 if ((oc = l->l_cred) != p->p_cred) { 1784 if ((oc = l->l_cred) != p->p_cred) {
1785 kauth_cred_hold(p->p_cred); 1785 kauth_cred_hold(p->p_cred);
1786 l->l_cred = p->p_cred; 1786 l->l_cred = p->p_cred;
1787 kauth_cred_free(oc); 1787 kauth_cred_free(oc);
1788 } 1788 }
1789} 1789}
1790 1790
1791/* 1791/*
1792 * Set in a new process credential, and drop the write lock. The credential 1792 * Set in a new process credential, and drop the write lock. The credential
1793 * must have a reference already. Optionally, free a no-longer required 1793 * must have a reference already. Optionally, free a no-longer required
1794 * credential. The scheduler also needs to inspect p_cred, so we also 1794 * credential. The scheduler also needs to inspect p_cred, so we also
1795 * briefly acquire the sched state mutex. 1795 * briefly acquire the sched state mutex.
1796 */ 1796 */
1797void 1797void
1798proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) 1798proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
1799{ 1799{
1800 struct lwp *l = curlwp, *l2; 1800 struct lwp *l = curlwp, *l2;
1801 struct proc *p = l->l_proc; 1801 struct proc *p = l->l_proc;
1802 kauth_cred_t oc; 1802 kauth_cred_t oc;
1803 1803
1804 KASSERT(mutex_owned(p->p_lock)); 1804 KASSERT(mutex_owned(p->p_lock));
1805 1805
1806 /* Is there a new credential to set in? */ 1806 /* Is there a new credential to set in? */
1807 if (scred != NULL) { 1807 if (scred != NULL) {
1808 p->p_cred = scred; 1808 p->p_cred = scred;
1809 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1809 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1810 if (l2 != l) 1810 if (l2 != l)
1811 l2->l_prflag |= LPR_CRMOD; 1811 l2->l_prflag |= LPR_CRMOD;
1812 } 1812 }
1813 1813
1814 /* Ensure the LWP cached credentials are up to date. */ 1814 /* Ensure the LWP cached credentials are up to date. */
1815 if ((oc = l->l_cred) != scred) { 1815 if ((oc = l->l_cred) != scred) {
1816 kauth_cred_hold(scred); 1816 kauth_cred_hold(scred);
1817 l->l_cred = scred; 1817 l->l_cred = scred;
1818 } 1818 }
1819 } else 1819 } else
1820 oc = NULL; /* XXXgcc */ 1820 oc = NULL; /* XXXgcc */
1821 1821
1822 if (sugid) { 1822 if (sugid) {
1823 /* 1823 /*
1824 * Mark process as having changed credentials, stops 1824 * Mark process as having changed credentials, stops
1825 * tracing etc. 1825 * tracing etc.
1826 */ 1826 */
1827 p->p_flag |= PK_SUGID; 1827 p->p_flag |= PK_SUGID;
1828 } 1828 }
1829 1829
1830 mutex_exit(p->p_lock); 1830 mutex_exit(p->p_lock);
1831 1831
1832 /* If there is a credential to be released, free it now. */ 1832 /* If there is a credential to be released, free it now. */
1833 if (fcred != NULL) { 1833 if (fcred != NULL) {
1834 KASSERT(scred != NULL); 1834 KASSERT(scred != NULL);
1835 kauth_cred_free(fcred); 1835 kauth_cred_free(fcred);
1836 if (oc != scred) 1836 if (oc != scred)
1837 kauth_cred_free(oc); 1837 kauth_cred_free(oc);
1838 } 1838 }
1839} 1839}
1840 1840
1841/* 1841/*
1842 * proc_specific_key_create -- 1842 * proc_specific_key_create --
1843 * Create a key for subsystem proc-specific data. 1843 * Create a key for subsystem proc-specific data.
1844 */ 1844 */
1845int 1845int
1846proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1846proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1847{ 1847{
1848 1848
1849 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); 1849 return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
1850} 1850}
1851 1851
1852/* 1852/*
1853 * proc_specific_key_delete -- 1853 * proc_specific_key_delete --
1854 * Delete a key for subsystem proc-specific data. 1854 * Delete a key for subsystem proc-specific data.
1855 */ 1855 */
1856void 1856void
1857proc_specific_key_delete(specificdata_key_t key) 1857proc_specific_key_delete(specificdata_key_t key)
1858{ 1858{
1859 1859
1860 specificdata_key_delete(proc_specificdata_domain, key); 1860 specificdata_key_delete(proc_specificdata_domain, key);
1861} 1861}
1862 1862
1863/* 1863/*
1864 * proc_initspecific -- 1864 * proc_initspecific --
1865 * Initialize a proc's specificdata container. 1865 * Initialize a proc's specificdata container.
1866 */ 1866 */
1867void 1867void
1868proc_initspecific(struct proc *p) 1868proc_initspecific(struct proc *p)
1869{ 1869{
1870 int error __diagused; 1870 int error __diagused;
1871 1871
1872 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); 1872 error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
1873 KASSERT(error == 0); 1873 KASSERT(error == 0);
1874} 1874}
1875 1875
1876/* 1876/*
1877 * proc_finispecific -- 1877 * proc_finispecific --
1878 * Finalize a proc's specificdata container. 1878 * Finalize a proc's specificdata container.
1879 */ 1879 */
1880void 1880void
1881proc_finispecific(struct proc *p) 1881proc_finispecific(struct proc *p)
1882{ 1882{
1883 1883
1884 specificdata_fini(proc_specificdata_domain, &p->p_specdataref); 1884 specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
1885} 1885}
1886 1886
1887/* 1887/*
1888 * proc_getspecific -- 1888 * proc_getspecific --
1889 * Return proc-specific data corresponding to the specified key. 1889 * Return proc-specific data corresponding to the specified key.
1890 */ 1890 */
1891void * 1891void *
1892proc_getspecific(struct proc *p, specificdata_key_t key) 1892proc_getspecific(struct proc *p, specificdata_key_t key)
1893{ 1893{
1894 1894
1895 return (specificdata_getspecific(proc_specificdata_domain, 1895 return (specificdata_getspecific(proc_specificdata_domain,
1896 &p->p_specdataref, key)); 1896 &p->p_specdataref, key));
1897} 1897}
1898 1898
1899/* 1899/*
1900 * proc_setspecific -- 1900 * proc_setspecific --
1901 * Set proc-specific data corresponding to the specified key. 1901 * Set proc-specific data corresponding to the specified key.
1902 */ 1902 */
1903void 1903void
1904proc_setspecific(struct proc *p, specificdata_key_t key, void *data) 1904proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
1905{ 1905{
1906 1906
1907 specificdata_setspecific(proc_specificdata_domain, 1907 specificdata_setspecific(proc_specificdata_domain,
1908 &p->p_specdataref, key, data); 1908 &p->p_specdataref, key, data);
1909} 1909}
1910 1910
1911int 1911int
1912proc_uidmatch(kauth_cred_t cred, kauth_cred_t target) 1912proc_uidmatch(kauth_cred_t cred, kauth_cred_t target)
1913{ 1913{
1914 int r = 0; 1914 int r = 0;
1915 1915
1916 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) || 1916 if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) ||
1917 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) { 1917 kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) {
1918 /* 1918 /*
1919 * suid proc of ours or proc not ours 1919 * suid proc of ours or proc not ours
1920 */ 1920 */
1921 r = EPERM; 1921 r = EPERM;
1922 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) { 1922 } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) {
1923 /* 1923 /*
1924 * sgid proc has sgid back to us temporarily 1924 * sgid proc has sgid back to us temporarily
1925 */ 1925 */
1926 r = EPERM; 1926 r = EPERM;
1927 } else { 1927 } else {
1928 /* 1928 /*
1929 * our rgid must be in target's group list (ie, 1929 * our rgid must be in target's group list (ie,
1930 * sub-processes started by a sgid process) 1930 * sub-processes started by a sgid process)
1931 */ 1931 */
1932 int ismember = 0; 1932 int ismember = 0;
1933 1933
1934 if (kauth_cred_ismember_gid(cred, 1934 if (kauth_cred_ismember_gid(cred,
1935 kauth_cred_getgid(target), &ismember) != 0 || 1935 kauth_cred_getgid(target), &ismember) != 0 ||
1936 !ismember) 1936 !ismember)
1937 r = EPERM; 1937 r = EPERM;
1938 } 1938 }
1939 1939
1940 return (r); 1940 return (r);
1941} 1941}
1942 1942
1943/* 1943/*
1944 * sysctl stuff 1944 * sysctl stuff
1945 */ 1945 */
1946 1946
1947#define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc)) 1947#define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc))
1948 1948
1949static const u_int sysctl_flagmap[] = { 1949static const u_int sysctl_flagmap[] = {
1950 PK_ADVLOCK, P_ADVLOCK, 1950 PK_ADVLOCK, P_ADVLOCK,
1951 PK_EXEC, P_EXEC, 1951 PK_EXEC, P_EXEC,
1952 PK_NOCLDWAIT, P_NOCLDWAIT, 1952 PK_NOCLDWAIT, P_NOCLDWAIT,
1953 PK_32, P_32, 1953 PK_32, P_32,
1954 PK_CLDSIGIGN, P_CLDSIGIGN, 1954 PK_CLDSIGIGN, P_CLDSIGIGN,
1955 PK_SUGID, P_SUGID, 1955 PK_SUGID, P_SUGID,
1956 0 1956 0
1957}; 1957};
1958 1958
1959static const u_int sysctl_sflagmap[] = { 1959static const u_int sysctl_sflagmap[] = {
1960 PS_NOCLDSTOP, P_NOCLDSTOP, 1960 PS_NOCLDSTOP, P_NOCLDSTOP,
1961 PS_WEXIT, P_WEXIT, 1961 PS_WEXIT, P_WEXIT,
1962 PS_STOPFORK, P_STOPFORK, 1962 PS_STOPFORK, P_STOPFORK,
1963 PS_STOPEXEC, P_STOPEXEC, 1963 PS_STOPEXEC, P_STOPEXEC,
1964 PS_STOPEXIT, P_STOPEXIT, 1964 PS_STOPEXIT, P_STOPEXIT,
1965 0 1965 0
1966}; 1966};
1967 1967
1968static const u_int sysctl_slflagmap[] = { 1968static const u_int sysctl_slflagmap[] = {
1969 PSL_TRACED, P_TRACED, 1969 PSL_TRACED, P_TRACED,
1970 PSL_CHTRACED, P_CHTRACED, 1970 PSL_CHTRACED, P_CHTRACED,
1971 PSL_SYSCALL, P_SYSCALL, 1971 PSL_SYSCALL, P_SYSCALL,
1972 0 1972 0
1973}; 1973};
1974 1974
1975static const u_int sysctl_lflagmap[] = { 1975static const u_int sysctl_lflagmap[] = {
1976 PL_CONTROLT, P_CONTROLT, 1976 PL_CONTROLT, P_CONTROLT,
1977 PL_PPWAIT, P_PPWAIT, 1977 PL_PPWAIT, P_PPWAIT,
1978 0 1978 0
1979}; 1979};
1980 1980
1981static const u_int sysctl_stflagmap[] = { 1981static const u_int sysctl_stflagmap[] = {
1982 PST_PROFIL, P_PROFIL, 1982 PST_PROFIL, P_PROFIL,
1983 0 1983 0
1984 1984
1985}; 1985};
1986 1986
1987/* used by kern_lwp also */ 1987/* used by kern_lwp also */
1988const u_int sysctl_lwpflagmap[] = { 1988const u_int sysctl_lwpflagmap[] = {
1989 LW_SINTR, L_SINTR, 1989 LW_SINTR, L_SINTR,
1990 LW_SYSTEM, L_SYSTEM, 1990 LW_SYSTEM, L_SYSTEM,
1991 0 1991 0
1992}; 1992};
1993 1993
1994/* 1994/*
1995 * Find the most ``active'' lwp of a process and return it for ps display 1995 * Find the most ``active'' lwp of a process and return it for ps display
1996 * purposes 1996 * purposes
1997 */ 1997 */
1998static struct lwp * 1998static struct lwp *
1999proc_active_lwp(struct proc *p) 1999proc_active_lwp(struct proc *p)
2000{ 2000{
2001 static const int ostat[] = { 2001 static const int ostat[] = {
2002 0, 2002 0,
2003 2, /* LSIDL */ 2003 2, /* LSIDL */
2004 6, /* LSRUN */ 2004 6, /* LSRUN */
2005 5, /* LSSLEEP */ 2005 5, /* LSSLEEP */
2006 4, /* LSSTOP */ 2006 4, /* LSSTOP */
2007 0, /* LSZOMB */ 2007 0, /* LSZOMB */
2008 1, /* LSDEAD */ 2008 1, /* LSDEAD */
2009 7, /* LSONPROC */ 2009 7, /* LSONPROC */
2010 3 /* LSSUSPENDED */ 2010 3 /* LSSUSPENDED */
2011 }; 2011 };
2012 2012
2013 struct lwp *l, *lp = NULL; 2013 struct lwp *l, *lp = NULL;
2014 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2014 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2015 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat)); 2015 KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat));
2016 if (lp == NULL || 2016 if (lp == NULL ||
2017 ostat[l->l_stat] > ostat[lp->l_stat] || 2017 ostat[l->l_stat] > ostat[lp->l_stat] ||
2018 (ostat[l->l_stat] == ostat[lp->l_stat] && 2018 (ostat[l->l_stat] == ostat[lp->l_stat] &&
2019 l->l_cpticks > lp->l_cpticks)) { 2019 l->l_cpticks > lp->l_cpticks)) {
2020 lp = l; 2020 lp = l;
2021 continue; 2021 continue;
2022 } 2022 }
2023 } 2023 }
2024 return lp; 2024 return lp;
2025} 2025}
2026 2026
2027static int 2027static int
2028sysctl_doeproc(SYSCTLFN_ARGS) 2028sysctl_doeproc(SYSCTLFN_ARGS)
2029{ 2029{
2030 union { 2030 union {
2031 struct kinfo_proc kproc; 2031 struct kinfo_proc kproc;
2032 struct kinfo_proc2 kproc2; 2032 struct kinfo_proc2 kproc2;
2033 } *kbuf; 2033 } *kbuf;
2034 struct proc *p, *next, *marker; 2034 struct proc *p, *next, *marker;
2035 char *where, *dp; 2035 char *where, *dp;
2036 int type, op, arg, error; 2036 int type, op, arg, error;
2037 u_int elem_size, kelem_size, elem_count; 2037 u_int elem_size, kelem_size, elem_count;
2038 size_t buflen, needed; 2038 size_t buflen, needed;
2039 bool match, zombie, mmmbrains; 2039 bool match, zombie, mmmbrains;
2040 const bool allowaddr = get_expose_address(curproc); 2040 const bool allowaddr = get_expose_address(curproc);
2041 2041
2042 if (namelen == 1 && name[0] == CTL_QUERY) 2042 if (namelen == 1 && name[0] == CTL_QUERY)
2043 return (sysctl_query(SYSCTLFN_CALL(rnode))); 2043 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2044 2044
2045 dp = where = oldp; 2045 dp = where = oldp;
2046 buflen = where != NULL ? *oldlenp : 0; 2046 buflen = where != NULL ? *oldlenp : 0;
2047 error = 0; 2047 error = 0;
2048 needed = 0; 2048 needed = 0;
2049 type = rnode->sysctl_num; 2049 type = rnode->sysctl_num;
2050 2050
2051 if (type == KERN_PROC) { 2051 if (type == KERN_PROC) {
2052 if (namelen == 0) 2052 if (namelen == 0)
2053 return EINVAL; 2053 return EINVAL;
2054 switch (op = name[0]) { 2054 switch (op = name[0]) {
2055 case KERN_PROC_ALL: 2055 case KERN_PROC_ALL:
2056 if (namelen != 1) 2056 if (namelen != 1)
2057 return EINVAL; 2057 return EINVAL;
2058 arg = 0; 2058 arg = 0;
2059 break; 2059 break;
2060 default: 2060 default:
2061 if (namelen != 2) 2061 if (namelen != 2)
2062 return EINVAL; 2062 return EINVAL;
2063 arg = name[1]; 2063 arg = name[1];
2064 break; 2064 break;
2065 } 2065 }
2066 elem_count = 0; /* Hush little compiler, don't you cry */ 2066 elem_count = 0; /* Hush little compiler, don't you cry */
2067 kelem_size = elem_size = sizeof(kbuf->kproc); 2067 kelem_size = elem_size = sizeof(kbuf->kproc);
2068 } else { 2068 } else {
2069 if (namelen != 4) 2069 if (namelen != 4)
2070 return EINVAL; 2070 return EINVAL;
2071 op = name[0]; 2071 op = name[0];
2072 arg = name[1]; 2072 arg = name[1];
2073 elem_size = name[2]; 2073 elem_size = name[2];
2074 elem_count = name[3]; 2074 elem_count = name[3];
2075 kelem_size = sizeof(kbuf->kproc2); 2075 kelem_size = sizeof(kbuf->kproc2);
2076 } 2076 }
2077 2077
2078 sysctl_unlock(); 2078 sysctl_unlock();
2079 2079
2080 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP); 2080 kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP);
2081 marker = kmem_alloc(sizeof(*marker), KM_SLEEP); 2081 marker = kmem_alloc(sizeof(*marker), KM_SLEEP);
2082 marker->p_flag = PK_MARKER; 2082 marker->p_flag = PK_MARKER;
2083 2083
2084 mutex_enter(&proc_lock); 2084 mutex_enter(&proc_lock);
2085 /* 2085 /*
2086 * Start with zombies to prevent reporting processes twice, in case they 2086 * Start with zombies to prevent reporting processes twice, in case they
2087 * are dying and being moved from the list of alive processes to zombies. 2087 * are dying and being moved from the list of alive processes to zombies.
2088 */ 2088 */
2089 mmmbrains = true; 2089 mmmbrains = true;
2090 for (p = LIST_FIRST(&zombproc);; p = next) { 2090 for (p = LIST_FIRST(&zombproc);; p = next) {
2091 if (p == NULL) { 2091 if (p == NULL) {
2092 if (mmmbrains) { 2092 if (mmmbrains) {
2093 p = LIST_FIRST(&allproc); 2093 p = LIST_FIRST(&allproc);
2094 mmmbrains = false; 2094 mmmbrains = false;
2095 } 2095 }
2096 if (p == NULL) 2096 if (p == NULL)
2097 break; 2097 break;
2098 } 2098 }
2099 next = LIST_NEXT(p, p_list); 2099 next = LIST_NEXT(p, p_list);
2100 if ((p->p_flag & PK_MARKER) != 0) 2100 if ((p->p_flag & PK_MARKER) != 0)
2101 continue; 2101 continue;
2102 2102
2103 /* 2103 /*
2104 * Skip embryonic processes. 2104 * Skip embryonic processes.
2105 */ 2105 */
2106 if (p->p_stat == SIDL) 2106 if (p->p_stat == SIDL)
2107 continue; 2107 continue;
2108 2108
2109 mutex_enter(p->p_lock); 2109 mutex_enter(p->p_lock);
2110 error = kauth_authorize_process(l->l_cred, 2110 error = kauth_authorize_process(l->l_cred,
2111 KAUTH_PROCESS_CANSEE, p, 2111 KAUTH_PROCESS_CANSEE, p,
2112 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL); 2112 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL);
2113 if (error != 0) { 2113 if (error != 0) {
2114 mutex_exit(p->p_lock); 2114 mutex_exit(p->p_lock);
2115 continue; 2115 continue;
2116 } 2116 }
2117 2117
2118 /* 2118 /*
2119 * Hande all the operations in one switch on the cost of 2119 * Hande all the operations in one switch on the cost of
2120 * algorithm complexity is on purpose. The win splitting this 2120 * algorithm complexity is on purpose. The win splitting this
2121 * function into several similar copies makes maintenance burden 2121 * function into several similar copies makes maintenance burden
2122 * burden, code grow and boost is neglible in practical systems. 2122 * burden, code grow and boost is neglible in practical systems.
2123 */ 2123 */
2124 switch (op) { 2124 switch (op) {
2125 case KERN_PROC_PID: 2125 case KERN_PROC_PID:
2126 match = (p->p_pid == (pid_t)arg); 2126 match = (p->p_pid == (pid_t)arg);
2127 break; 2127 break;
2128 2128
2129 case KERN_PROC_PGRP: 2129 case KERN_PROC_PGRP:
2130 match = (p->p_pgrp->pg_id == (pid_t)arg); 2130 match = (p->p_pgrp->pg_id == (pid_t)arg);
2131 break; 2131 break;
2132 2132
2133 case KERN_PROC_SESSION: 2133 case KERN_PROC_SESSION:
2134 match = (p->p_session->s_sid == (pid_t)arg); 2134 match = (p->p_session->s_sid == (pid_t)arg);
2135 break; 2135 break;
2136 2136
2137 case KERN_PROC_TTY: 2137 case KERN_PROC_TTY:
2138 match = true; 2138 match = true;
2139 if (arg == (int) KERN_PROC_TTY_REVOKE) { 2139 if (arg == (int) KERN_PROC_TTY_REVOKE) {
2140 if ((p->p_lflag & PL_CONTROLT) == 0 || 2140 if ((p->p_lflag & PL_CONTROLT) == 0 ||
2141 p->p_session->s_ttyp == NULL || 2141 p->p_session->s_ttyp == NULL ||
2142 p->p_session->s_ttyvp != NULL) { 2142 p->p_session->s_ttyvp != NULL) {
2143 match = false; 2143 match = false;
2144 } 2144 }
2145 } else if ((p->p_lflag & PL_CONTROLT) == 0 || 2145 } else if ((p->p_lflag & PL_CONTROLT) == 0 ||
2146 p->p_session->s_ttyp == NULL) { 2146 p->p_session->s_ttyp == NULL) {
2147 if ((dev_t)arg != KERN_PROC_TTY_NODEV) { 2147 if ((dev_t)arg != KERN_PROC_TTY_NODEV) {
2148 match = false; 2148 match = false;
2149 } 2149 }
2150 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) { 2150 } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) {
2151 match = false; 2151 match = false;
2152 } 2152 }
2153 break; 2153 break;
2154 2154
2155 case KERN_PROC_UID: 2155 case KERN_PROC_UID:
2156 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg); 2156 match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg);
2157 break; 2157 break;
2158 2158
2159 case KERN_PROC_RUID: 2159 case KERN_PROC_RUID:
2160 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg); 2160 match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg);
2161 break; 2161 break;
2162 2162
2163 case KERN_PROC_GID: 2163 case KERN_PROC_GID:
2164 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg); 2164 match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg);
2165 break; 2165 break;
2166 2166
2167 case KERN_PROC_RGID: 2167 case KERN_PROC_RGID:
2168 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg); 2168 match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg);
2169 break; 2169 break;
2170 2170
2171 case KERN_PROC_ALL: 2171 case KERN_PROC_ALL:
2172 match = true; 2172 match = true;
2173 /* allow everything */ 2173 /* allow everything */
2174 break; 2174 break;
2175 2175
2176 default: 2176 default:
2177 error = EINVAL; 2177 error = EINVAL;
2178 mutex_exit(p->p_lock); 2178 mutex_exit(p->p_lock);
2179 goto cleanup; 2179 goto cleanup;
2180 } 2180 }
2181 if (!match) { 2181 if (!match) {
2182 mutex_exit(p->p_lock); 2182 mutex_exit(p->p_lock);
2183 continue; 2183 continue;
2184 } 2184 }
2185 2185
2186 /* 2186 /*
2187 * Grab a hold on the process. 2187 * Grab a hold on the process.
2188 */ 2188 */
2189 if (mmmbrains) { 2189 if (mmmbrains) {
2190 zombie = true; 2190 zombie = true;
2191 } else { 2191 } else {
2192 zombie = !rw_tryenter(&p->p_reflock, RW_READER); 2192 zombie = !rw_tryenter(&p->p_reflock, RW_READER);
2193 } 2193 }
2194 if (zombie) { 2194 if (zombie) {
2195 LIST_INSERT_AFTER(p, marker, p_list); 2195 LIST_INSERT_AFTER(p, marker, p_list);
2196 } 2196 }
2197 2197
2198 if (buflen >= elem_size && 2198 if (buflen >= elem_size &&
2199 (type == KERN_PROC || elem_count > 0)) { 2199 (type == KERN_PROC || elem_count > 0)) {
2200 ruspace(p); /* Update process vm resource use */ 2200 ruspace(p); /* Update process vm resource use */
2201 2201
2202 if (type == KERN_PROC) { 2202 if (type == KERN_PROC) {
2203 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr); 2203 fill_proc(p, &kbuf->kproc.kp_proc, allowaddr);
2204 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie, 2204 fill_eproc(p, &kbuf->kproc.kp_eproc, zombie,
2205 allowaddr); 2205 allowaddr);
2206 } else { 2206 } else {
2207 fill_kproc2(p, &kbuf->kproc2, zombie, 2207 fill_kproc2(p, &kbuf->kproc2, zombie,
2208 allowaddr); 2208 allowaddr);
2209 elem_count--; 2209 elem_count--;
2210 } 2210 }
2211 mutex_exit(p->p_lock); 2211 mutex_exit(p->p_lock);
2212 mutex_exit(&proc_lock); 2212 mutex_exit(&proc_lock);
2213 /* 2213 /*
2214 * Copy out elem_size, but not larger than kelem_size 2214 * Copy out elem_size, but not larger than kelem_size
2215 */ 2215 */
2216 error = sysctl_copyout(l, kbuf, dp, 2216 error = sysctl_copyout(l, kbuf, dp,
2217 uimin(kelem_size, elem_size)); 2217 uimin(kelem_size, elem_size));
2218 mutex_enter(&proc_lock); 2218 mutex_enter(&proc_lock);
2219 if (error) { 2219 if (error) {
2220 goto bah; 2220 goto bah;
2221 } 2221 }
2222 dp += elem_size; 2222 dp += elem_size;
2223 buflen -= elem_size; 2223 buflen -= elem_size;
2224 } else { 2224 } else {
2225 mutex_exit(p->p_lock); 2225 mutex_exit(p->p_lock);
2226 } 2226 }
2227 needed += elem_size; 2227 needed += elem_size;
2228 2228
2229 /* 2229 /*
2230 * Release reference to process. 2230 * Release reference to process.
2231 */ 2231 */
2232 if (zombie) { 2232 if (zombie) {
2233 next = LIST_NEXT(marker, p_list); 2233 next = LIST_NEXT(marker, p_list);
2234 LIST_REMOVE(marker, p_list); 2234 LIST_REMOVE(marker, p_list);
2235 } else { 2235 } else {
2236 rw_exit(&p->p_reflock); 2236 rw_exit(&p->p_reflock);
2237 next = LIST_NEXT(p, p_list); 2237 next = LIST_NEXT(p, p_list);
2238 } 2238 }
2239 2239
2240 /* 2240 /*
2241 * Short-circuit break quickly! 2241 * Short-circuit break quickly!
2242 */ 2242 */
2243 if (op == KERN_PROC_PID) 2243 if (op == KERN_PROC_PID)
2244 break; 2244 break;
2245 } 2245 }
2246 mutex_exit(&proc_lock); 2246 mutex_exit(&proc_lock);
2247 2247
2248 if (where != NULL) { 2248 if (where != NULL) {
2249 *oldlenp = dp - where; 2249 *oldlenp = dp - where;
2250 if (needed > *oldlenp) { 2250 if (needed > *oldlenp) {
2251 error = ENOMEM; 2251 error = ENOMEM;
2252 goto out; 2252 goto out;
2253 } 2253 }
2254 } else { 2254 } else {
2255 needed += KERN_PROCSLOP; 2255 needed += KERN_PROCSLOP;
2256 *oldlenp = needed; 2256 *oldlenp = needed;
2257 } 2257 }
2258 kmem_free(kbuf, sizeof(*kbuf)); 2258 kmem_free(kbuf, sizeof(*kbuf));
2259 kmem_free(marker, sizeof(*marker)); 2259 kmem_free(marker, sizeof(*marker));
2260 sysctl_relock(); 2260 sysctl_relock();
2261 return 0; 2261 return 0;
2262 bah: 2262 bah:
2263 if (zombie) 2263 if (zombie)
2264 LIST_REMOVE(marker, p_list); 2264 LIST_REMOVE(marker, p_list);
2265 else 2265 else
2266 rw_exit(&p->p_reflock); 2266 rw_exit(&p->p_reflock);
2267 cleanup: 2267 cleanup:
2268 mutex_exit(&proc_lock); 2268 mutex_exit(&proc_lock);
2269 out: 2269 out:
2270 kmem_free(kbuf, sizeof(*kbuf)); 2270 kmem_free(kbuf, sizeof(*kbuf));
2271 kmem_free(marker, sizeof(*marker)); 2271 kmem_free(marker, sizeof(*marker));
2272 sysctl_relock(); 2272 sysctl_relock();
2273 return error; 2273 return error;
2274} 2274}
2275 2275
2276int 2276int
2277copyin_psstrings(struct proc *p, struct ps_strings *arginfo) 2277copyin_psstrings(struct proc *p, struct ps_strings *arginfo)
2278{ 2278{
2279#if !defined(_RUMPKERNEL) 2279#if !defined(_RUMPKERNEL)
2280 int retval; 2280 int retval;
2281 2281
2282 if (p->p_flag & PK_32) { 2282 if (p->p_flag & PK_32) {
2283 MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo), 2283 MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo),
2284 enosys(), retval); 2284 enosys(), retval);
2285 return retval; 2285 return retval;
2286 } 2286 }
2287#endif /* !defined(_RUMPKERNEL) */ 2287#endif /* !defined(_RUMPKERNEL) */
2288 2288
2289 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo)); 2289 return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo));
2290} 2290}
2291 2291
2292static int 2292static int
2293copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len) 2293copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len)
2294{ 2294{
2295 void **cookie = cookie_; 2295 void **cookie = cookie_;
2296 struct lwp *l = cookie[0]; 2296 struct lwp *l = cookie[0];
2297 char *dst = cookie[1]; 2297 char *dst = cookie[1];
2298 2298
2299 return sysctl_copyout(l, src, dst + off, len); 2299 return sysctl_copyout(l, src, dst + off, len);
2300} 2300}
2301 2301
2302/* 2302/*
2303 * sysctl helper routine for kern.proc_args pseudo-subtree. 2303 * sysctl helper routine for kern.proc_args pseudo-subtree.
2304 */ 2304 */
2305static int 2305static int
2306sysctl_kern_proc_args(SYSCTLFN_ARGS) 2306sysctl_kern_proc_args(SYSCTLFN_ARGS)
2307{ 2307{
2308 struct ps_strings pss; 2308 struct ps_strings pss;
2309 struct proc *p; 2309 struct proc *p;
2310 pid_t pid; 2310 pid_t pid;
2311 int type, error; 2311 int type, error;
2312 void *cookie[2]; 2312 void *cookie[2];
2313 2313
2314 if (namelen == 1 && name[0] == CTL_QUERY) 2314 if (namelen == 1 && name[0] == CTL_QUERY)
2315 return (sysctl_query(SYSCTLFN_CALL(rnode))); 2315 return (sysctl_query(SYSCTLFN_CALL(rnode)));
2316 2316
2317 if (newp != NULL || namelen != 2) 2317 if (newp != NULL || namelen != 2)
2318 return (EINVAL); 2318 return (EINVAL);
2319 pid = name[0]; 2319 pid = name[0];
2320 type = name[1]; 2320 type = name[1];
2321 2321
2322 switch (type) { 2322 switch (type) {
2323 case KERN_PROC_PATHNAME: 2323 case KERN_PROC_PATHNAME:
2324 sysctl_unlock(); 2324 sysctl_unlock();
2325 error = fill_pathname(l, pid, oldp, oldlenp); 2325 error = fill_pathname(l, pid, oldp, oldlenp);
2326 sysctl_relock(); 2326 sysctl_relock();
2327 return error; 2327 return error;
2328 2328
2329 case KERN_PROC_CWD: 2329 case KERN_PROC_CWD:
2330 sysctl_unlock(); 2330 sysctl_unlock();
2331 error = fill_cwd(l, pid, oldp, oldlenp); 2331 error = fill_cwd(l, pid, oldp, oldlenp);
2332 sysctl_relock(); 2332 sysctl_relock();
2333 return error; 2333 return error;
2334 2334
2335 case KERN_PROC_ARGV: 2335 case KERN_PROC_ARGV:
2336 case KERN_PROC_NARGV: 2336 case KERN_PROC_NARGV:
2337 case KERN_PROC_ENV: 2337 case KERN_PROC_ENV:
2338 case KERN_PROC_NENV: 2338 case KERN_PROC_NENV:
2339 /* ok */ 2339 /* ok */
2340 break; 2340 break;
2341 default: 2341 default:
2342 return (EINVAL); 2342 return (EINVAL);
2343 } 2343 }
2344 2344
2345 sysctl_unlock(); 2345 sysctl_unlock();
2346 2346
2347 /* check pid */ 2347 /* check pid */
2348 mutex_enter(&proc_lock); 2348 mutex_enter(&proc_lock);
2349 if ((p = proc_find(pid)) == NULL) { 2349 if ((p = proc_find(pid)) == NULL) {
2350 error = EINVAL; 2350 error = EINVAL;
2351 goto out_locked; 2351 goto out_locked;
2352 } 2352 }
2353 mutex_enter(p->p_lock); 2353 mutex_enter(p->p_lock);
2354 2354
2355 /* Check permission. */ 2355 /* Check permission. */
2356 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) 2356 if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV)
2357 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, 2357 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2358 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL); 2358 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL);
2359 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) 2359 else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV)
2360 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, 2360 error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
2361 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL); 2361 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL);
2362 else 2362 else
2363 error = EINVAL; /* XXXGCC */ 2363 error = EINVAL; /* XXXGCC */
2364 if (error) { 2364 if (error) {
2365 mutex_exit(p->p_lock); 2365 mutex_exit(p->p_lock);
2366 goto out_locked; 2366 goto out_locked;
2367 } 2367 }
2368 2368
2369 if (oldp == NULL) { 2369 if (oldp == NULL) {
2370 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) 2370 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV)
2371 *oldlenp = sizeof (int); 2371 *oldlenp = sizeof (int);
2372 else 2372 else
2373 *oldlenp = ARG_MAX; /* XXX XXX XXX */ 2373 *oldlenp = ARG_MAX; /* XXX XXX XXX */
2374 error = 0; 2374 error = 0;
2375 mutex_exit(p->p_lock); 2375 mutex_exit(p->p_lock);
2376 goto out_locked; 2376 goto out_locked;
2377 } 2377 }
2378 2378
2379 /* 2379 /*
2380 * Zombies don't have a stack, so we can't read their psstrings. 2380 * Zombies don't have a stack, so we can't read their psstrings.
2381 * System processes also don't have a user stack. 2381 * System processes also don't have a user stack.
2382 */ 2382 */
2383 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) { 2383 if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) {
2384 error = EINVAL; 2384 error = EINVAL;
2385 mutex_exit(p->p_lock); 2385 mutex_exit(p->p_lock);
2386 goto out_locked; 2386 goto out_locked;
2387 } 2387 }
2388 2388
2389 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY; 2389 error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY;
2390 mutex_exit(p->p_lock); 2390 mutex_exit(p->p_lock);
2391 if (error) { 2391 if (error) {
2392 goto out_locked; 2392 goto out_locked;
2393 } 2393 }
2394 mutex_exit(&proc_lock); 2394 mutex_exit(&proc_lock);
2395 2395
2396 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) { 2396 if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) {
2397 int value; 2397 int value;
2398 if ((error = copyin_psstrings(p, &pss)) == 0) { 2398 if ((error = copyin_psstrings(p, &pss)) == 0) {
2399 if (type == KERN_PROC_NARGV) 2399 if (type == KERN_PROC_NARGV)
2400 value = pss.ps_nargvstr; 2400 value = pss.ps_nargvstr;
2401 else 2401 else
2402 value = pss.ps_nenvstr; 2402 value = pss.ps_nenvstr;
2403 error = sysctl_copyout(l, &value, oldp, sizeof(value)); 2403 error = sysctl_copyout(l, &value, oldp, sizeof(value));
2404 *oldlenp = sizeof(value); 2404 *oldlenp = sizeof(value);
2405 } 2405 }
2406 } else { 2406 } else {
2407 cookie[0] = l; 2407 cookie[0] = l;
2408 cookie[1] = oldp; 2408 cookie[1] = oldp;
2409 error = copy_procargs(p, type, oldlenp, 2409 error = copy_procargs(p, type, oldlenp,
2410 copy_procargs_sysctl_cb, cookie); 2410 copy_procargs_sysctl_cb, cookie);
2411 } 2411 }
2412 rw_exit(&p->p_reflock); 2412 rw_exit(&p->p_reflock);
2413 sysctl_relock(); 2413 sysctl_relock();
2414 return error; 2414 return error;
2415 2415
2416out_locked: 2416out_locked:
2417 mutex_exit(&proc_lock); 2417 mutex_exit(&proc_lock);
2418 sysctl_relock(); 2418 sysctl_relock();
2419 return error; 2419 return error;
2420} 2420}
2421 2421
2422int 2422int
2423copy_procargs(struct proc *p, int oid, size_t *limit, 2423copy_procargs(struct proc *p, int oid, size_t *limit,
2424 int (*cb)(void *, const void *, size_t, size_t), void *cookie) 2424 int (*cb)(void *, const void *, size_t, size_t), void *cookie)
2425{ 2425{
2426 struct ps_strings pss; 2426 struct ps_strings pss;
2427 size_t len, i, loaded, entry_len; 2427 size_t len, i, loaded, entry_len;
2428 struct uio auio; 2428 struct uio auio;
2429 struct iovec aiov; 2429 struct iovec aiov;
2430 int error, argvlen; 2430 int error, argvlen;
2431 char *arg; 2431 char *arg;
2432 char **argv; 2432 char **argv;
2433 vaddr_t user_argv; 2433 vaddr_t user_argv;
2434 struct vmspace *vmspace; 2434 struct vmspace *vmspace;
2435 2435
2436 /* 2436 /*
2437 * Allocate a temporary buffer to hold the argument vector and 2437 * Allocate a temporary buffer to hold the argument vector and
2438 * the arguments themselve. 2438 * the arguments themselve.
2439 */ 2439 */
2440 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP); 2440 arg = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2441 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP); 2441 argv = kmem_alloc(PAGE_SIZE, KM_SLEEP);
2442 2442
2443 /* 2443 /*
2444 * Lock the process down in memory. 2444 * Lock the process down in memory.
2445 */ 2445 */
2446 vmspace = p->p_vmspace; 2446 vmspace = p->p_vmspace;
2447 uvmspace_addref(vmspace); 2447 uvmspace_addref(vmspace);
2448 2448
2449 /* 2449 /*
2450 * Read in the ps_strings structure. 2450 * Read in the ps_strings structure.
2451 */ 2451 */
2452 if ((error = copyin_psstrings(p, &pss)) != 0) 2452 if ((error = copyin_psstrings(p, &pss)) != 0)
2453 goto done; 2453 goto done;
2454 2454
2455 /* 2455 /*
2456 * Now read the address of the argument vector. 2456 * Now read the address of the argument vector.
2457 */ 2457 */
2458 switch (oid) { 2458 switch (oid) {
2459 case KERN_PROC_ARGV: 2459 case KERN_PROC_ARGV:
2460 user_argv = (uintptr_t)pss.ps_argvstr; 2460 user_argv = (uintptr_t)pss.ps_argvstr;
2461 argvlen = pss.ps_nargvstr; 2461 argvlen = pss.ps_nargvstr;
2462 break; 2462 break;
2463 case KERN_PROC_ENV: 2463 case KERN_PROC_ENV:
2464 user_argv = (uintptr_t)pss.ps_envstr; 2464 user_argv = (uintptr_t)pss.ps_envstr;
2465 argvlen = pss.ps_nenvstr; 2465 argvlen = pss.ps_nenvstr;
2466 break; 2466 break;
2467 default: 2467 default:
2468 error = EINVAL; 2468 error = EINVAL;
2469 goto done; 2469 goto done;
2470 } 2470 }
2471 2471
2472 if (argvlen < 0) { 2472 if (argvlen < 0) {
2473 error = EIO; 2473 error = EIO;
2474 goto done; 2474 goto done;
2475 } 2475 }
2476 2476
2477 2477
2478 /* 2478 /*
2479 * Now copy each string. 2479 * Now copy each string.
2480 */ 2480 */
2481 len = 0; /* bytes written to user buffer */ 2481 len = 0; /* bytes written to user buffer */
2482 loaded = 0; /* bytes from argv already processed */ 2482 loaded = 0; /* bytes from argv already processed */
2483 i = 0; /* To make compiler happy */ 2483 i = 0; /* To make compiler happy */
2484 entry_len = PROC_PTRSZ(p); 2484 entry_len = PROC_PTRSZ(p);
2485 2485
2486 for (; argvlen; --argvlen) { 2486 for (; argvlen; --argvlen) {
2487 int finished = 0; 2487 int finished = 0;
2488 vaddr_t base; 2488 vaddr_t base;
2489 size_t xlen; 2489 size_t xlen;
2490 int j; 2490 int j;
2491 2491
2492 if (loaded == 0) { 2492 if (loaded == 0) {
2493 size_t rem = entry_len * argvlen; 2493 size_t rem = entry_len * argvlen;
2494 loaded = MIN(rem, PAGE_SIZE); 2494 loaded = MIN(rem, PAGE_SIZE);
2495 error = copyin_vmspace(vmspace, 2495 error = copyin_vmspace(vmspace,
2496 (const void *)user_argv, argv, loaded); 2496 (const void *)user_argv, argv, loaded);
2497 if (error) 2497 if (error)
2498 break; 2498 break;
2499 user_argv += loaded; 2499 user_argv += loaded;
2500 i = 0; 2500 i = 0;
2501 } 2501 }
2502 2502
2503#if !defined(_RUMPKERNEL) 2503#if !defined(_RUMPKERNEL)
2504 if (p->p_flag & PK_32) 2504 if (p->p_flag & PK_32)
2505 MODULE_HOOK_CALL(kern_proc32_base_hook, 2505 MODULE_HOOK_CALL(kern_proc32_base_hook,
2506 (argv, i++), 0, base); 2506 (argv, i++), 0, base);
2507 else 2507 else
2508#endif /* !defined(_RUMPKERNEL) */ 2508#endif /* !defined(_RUMPKERNEL) */
2509 base = (vaddr_t)argv[i++]; 2509 base = (vaddr_t)argv[i++];
2510 loaded -= entry_len; 2510 loaded -= entry_len;
2511 2511
2512 /* 2512 /*
2513 * The program has messed around with its arguments, 2513 * The program has messed around with its arguments,
2514 * possibly deleting some, and replacing them with 2514 * possibly deleting some, and replacing them with
2515 * NULL's. Treat this as the last argument and not 2515 * NULL's. Treat this as the last argument and not
2516 * a failure. 2516 * a failure.
2517 */ 2517 */
2518 if (base == 0) 2518 if (base == 0)
2519 break; 2519 break;
2520 2520
2521 while (!finished) { 2521 while (!finished) {
2522 xlen = PAGE_SIZE - (base & PAGE_MASK); 2522 xlen = PAGE_SIZE - (base & PAGE_MASK);
2523 2523
2524 aiov.iov_base = arg; 2524 aiov.iov_base = arg;
2525 aiov.iov_len = PAGE_SIZE; 2525 aiov.iov_len = PAGE_SIZE;
2526 auio.uio_iov = &aiov; 2526 auio.uio_iov = &aiov;
2527 auio.uio_iovcnt = 1; 2527 auio.uio_iovcnt = 1;
2528 auio.uio_offset = base; 2528 auio.uio_offset = base;
2529 auio.uio_resid = xlen; 2529 auio.uio_resid = xlen;
2530 auio.uio_rw = UIO_READ; 2530 auio.uio_rw = UIO_READ;
2531 UIO_SETUP_SYSSPACE(&auio); 2531 UIO_SETUP_SYSSPACE(&auio);
2532 error = uvm_io(&vmspace->vm_map, &auio, 0); 2532 error = uvm_io(&vmspace->vm_map, &auio, 0);
2533 if (error) 2533 if (error)
2534 goto done; 2534 goto done;
2535 2535
2536 /* Look for the end of the string */ 2536 /* Look for the end of the string */
2537 for (j = 0; j < xlen; j++) { 2537 for (j = 0; j < xlen; j++) {
2538 if (arg[j] == '\0') { 2538 if (arg[j] == '\0') {
2539 xlen = j + 1; 2539 xlen = j + 1;
2540 finished = 1; 2540 finished = 1;
2541 break; 2541 break;
2542 } 2542 }
2543 } 2543 }
2544 2544
2545 /* Check for user buffer overflow */ 2545 /* Check for user buffer overflow */
2546 if (len + xlen > *limit) { 2546 if (len + xlen > *limit) {
2547 finished = 1; 2547 finished = 1;
2548 if (len > *limit) 2548 if (len > *limit)
2549 xlen = 0; 2549 xlen = 0;
2550 else 2550 else
2551 xlen = *limit - len; 2551 xlen = *limit - len;
2552 } 2552 }
2553 2553
2554 /* Copyout the page */ 2554 /* Copyout the page */
2555 error = (*cb)(cookie, arg, len, xlen); 2555 error = (*cb)(cookie, arg, len, xlen);
2556 if (error) 2556 if (error)
2557 goto done; 2557 goto done;
2558 2558
2559 len += xlen; 2559 len += xlen;
2560 base += xlen; 2560 base += xlen;
2561 } 2561 }
2562 } 2562 }
2563 *limit = len; 2563 *limit = len;
2564 2564
2565done: 2565done:
2566 kmem_free(argv, PAGE_SIZE); 2566 kmem_free(argv, PAGE_SIZE);
2567 kmem_free(arg, PAGE_SIZE); 2567 kmem_free(arg, PAGE_SIZE);
2568 uvmspace_free(vmspace); 2568 uvmspace_free(vmspace);
2569 return error; 2569 return error;
2570} 2570}
2571 2571
2572/* 2572/*
2573 * Fill in a proc structure for the specified process. 2573 * Fill in a proc structure for the specified process.
2574 */ 2574 */
2575static void 2575static void
2576fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr) 2576fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr)
2577{ 2577{
2578 COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr); 2578 COND_SET_STRUCT(p->p_list, psrc->p_list, allowaddr);
2579 memset(&p->p_auxlock, 0, allowaddr); 2579 memset(&p->p_auxlock, 0, sizeof(p->p_auxlock));
2580 COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr); 2580 COND_SET_STRUCT(p->p_lock, psrc->p_lock, allowaddr);
2581 memset(&p->p_stmutex, 0, allowaddr); 2581 memset(&p->p_stmutex, 0, sizeof(p->p_stmutex));
2582 memset(&p->p_reflock, 0, allowaddr); 2582 memset(&p->p_reflock, 0, sizeof(p->p_reflock));
2583 COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr); 2583 COND_SET_STRUCT(p->p_waitcv, psrc->p_waitcv, allowaddr);
2584 COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr); 2584 COND_SET_STRUCT(p->p_lwpcv, psrc->p_lwpcv, allowaddr);
2585 COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr); 2585 COND_SET_PTR(p->p_cred, psrc->p_cred, allowaddr);
2586 COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr); 2586 COND_SET_PTR(p->p_fd, psrc->p_fd, allowaddr);
2587 COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr); 2587 COND_SET_PTR(p->p_cwdi, psrc->p_cwdi, allowaddr);
2588 COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr); 2588 COND_SET_PTR(p->p_stats, psrc->p_stats, allowaddr);
2589 COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr); 2589 COND_SET_PTR(p->p_limit, psrc->p_limit, allowaddr);
2590 COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr); 2590 COND_SET_PTR(p->p_vmspace, psrc->p_vmspace, allowaddr);
2591 COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr); 2591 COND_SET_PTR(p->p_sigacts, psrc->p_sigacts, allowaddr);
2592 COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr); 2592 COND_SET_PTR(p->p_aio, psrc->p_aio, allowaddr);
2593 p->p_mqueue_cnt = psrc->p_mqueue_cnt; 2593 p->p_mqueue_cnt = psrc->p_mqueue_cnt;
2594 memset(&p->p_specdataref, 0, allowaddr); 2594 memset(&p->p_specdataref, 0, sizeof(p->p_specdataref));
2595 p->p_exitsig = psrc->p_exitsig; 2595 p->p_exitsig = psrc->p_exitsig;
2596 p->p_flag = psrc->p_flag; 2596 p->p_flag = psrc->p_flag;
2597 p->p_sflag = psrc->p_sflag; 2597 p->p_sflag = psrc->p_sflag;
2598 p->p_slflag = psrc->p_slflag; 2598 p->p_slflag = psrc->p_slflag;
2599 p->p_lflag = psrc->p_lflag; 2599 p->p_lflag = psrc->p_lflag;
2600 p->p_stflag = psrc->p_stflag; 2600 p->p_stflag = psrc->p_stflag;
2601 p->p_stat = psrc->p_stat; 2601 p->p_stat = psrc->p_stat;
2602 p->p_trace_enabled = psrc->p_trace_enabled; 2602 p->p_trace_enabled = psrc->p_trace_enabled;
2603 p->p_pid = psrc->p_pid; 2603 p->p_pid = psrc->p_pid;
2604 COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr); 2604 COND_SET_STRUCT(p->p_pglist, psrc->p_pglist, allowaddr);
2605 COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr); 2605 COND_SET_PTR(p->p_pptr, psrc->p_pptr, allowaddr);
2606 COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr); 2606 COND_SET_STRUCT(p->p_sibling, psrc->p_sibling, allowaddr);
2607 COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr); 2607 COND_SET_STRUCT(p->p_children, psrc->p_children, allowaddr);
2608 COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr); 2608 COND_SET_STRUCT(p->p_lwps, psrc->p_lwps, allowaddr);
2609 COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr); 2609 COND_SET_PTR(p->p_raslist, psrc->p_raslist, allowaddr);
2610 p->p_nlwps = psrc->p_nlwps; 2610 p->p_nlwps = psrc->p_nlwps;
2611 p->p_nzlwps = psrc->p_nzlwps; 2611 p->p_nzlwps = psrc->p_nzlwps;
2612 p->p_nrlwps = psrc->p_nrlwps; 2612 p->p_nrlwps = psrc->p_nrlwps;
2613 p->p_nlwpwait = psrc->p_nlwpwait; 2613 p->p_nlwpwait = psrc->p_nlwpwait;
2614 p->p_ndlwps = psrc->p_ndlwps; 2614 p->p_ndlwps = psrc->p_ndlwps;
2615 p->p_nstopchild = psrc->p_nstopchild; 2615 p->p_nstopchild = psrc->p_nstopchild;
2616 p->p_waited = psrc->p_waited; 2616 p->p_waited = psrc->p_waited;
2617 COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr); 2617 COND_SET_PTR(p->p_zomblwp, psrc->p_zomblwp, allowaddr);
2618 COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr); 2618 COND_SET_PTR(p->p_vforklwp, psrc->p_vforklwp, allowaddr);
2619 COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr); 2619 COND_SET_PTR(p->p_sched_info, psrc->p_sched_info, allowaddr);
2620 p->p_estcpu = psrc->p_estcpu; 2620 p->p_estcpu = psrc->p_estcpu;
2621 p->p_estcpu_inherited = psrc->p_estcpu_inherited; 2621 p->p_estcpu_inherited = psrc->p_estcpu_inherited;
2622 p->p_forktime = psrc->p_forktime; 2622 p->p_forktime = psrc->p_forktime;
2623 p->p_pctcpu = psrc->p_pctcpu; 2623 p->p_pctcpu = psrc->p_pctcpu;
2624 COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr); 2624 COND_SET_PTR(p->p_opptr, psrc->p_opptr, allowaddr);
2625 COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr); 2625 COND_SET_PTR(p->p_timers, psrc->p_timers, allowaddr);
2626 p->p_rtime = psrc->p_rtime; 2626 p->p_rtime = psrc->p_rtime;
2627 p->p_uticks = psrc->p_uticks; 2627 p->p_uticks = psrc->p_uticks;
2628 p->p_sticks = psrc->p_sticks; 2628 p->p_sticks = psrc->p_sticks;
2629 p->p_iticks = psrc->p_iticks; 2629 p->p_iticks = psrc->p_iticks;
2630 p->p_xutime = psrc->p_xutime; 2630 p->p_xutime = psrc->p_xutime;
2631 p->p_xstime = psrc->p_xstime; 2631 p->p_xstime = psrc->p_xstime;
2632 p->p_traceflag = psrc->p_traceflag; 2632 p->p_traceflag = psrc->p_traceflag;
2633 COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr); 2633 COND_SET_PTR(p->p_tracep, psrc->p_tracep, allowaddr);
2634 COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr); 2634 COND_SET_PTR(p->p_textvp, psrc->p_textvp, allowaddr);
2635 COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr); 2635 COND_SET_PTR(p->p_emul, psrc->p_emul, allowaddr);
2636 COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr); 2636 COND_SET_PTR(p->p_emuldata, psrc->p_emuldata, allowaddr);
2637 COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr); 2637 COND_SET_CPTR(p->p_execsw, psrc->p_execsw, allowaddr);
2638 COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr); 2638 COND_SET_STRUCT(p->p_klist, psrc->p_klist, allowaddr);
2639 COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr); 2639 COND_SET_STRUCT(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr);
2640 COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info, 2640 COND_SET_STRUCT(p->p_sigpend.sp_info, psrc->p_sigpend.sp_info,
2641 allowaddr); 2641 allowaddr);
2642 p->p_sigpend.sp_set = psrc->p_sigpend.sp_set; 2642 p->p_sigpend.sp_set = psrc->p_sigpend.sp_set;
2643 COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr); 2643 COND_SET_PTR(p->p_lwpctl, psrc->p_lwpctl, allowaddr);
2644 p->p_ppid = psrc->p_ppid; 2644 p->p_ppid = psrc->p_ppid;
2645 p->p_oppid = psrc->p_oppid; 2645 p->p_oppid = psrc->p_oppid;
2646 COND_SET_PTR(p->p_path, psrc->p_path, allowaddr); 2646 COND_SET_PTR(p->p_path, psrc->p_path, allowaddr);
2647 p->p_sigctx = psrc->p_sigctx; 2647 p->p_sigctx = psrc->p_sigctx;
2648 p->p_nice = psrc->p_nice; 2648 p->p_nice = psrc->p_nice;
2649 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm)); 2649 memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm));
2650 COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr); 2650 COND_SET_PTR(p->p_pgrp, psrc->p_pgrp, allowaddr);
2651 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr); 2651 COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr);
2652 p->p_pax = psrc->p_pax; 2652 p->p_pax = psrc->p_pax;
2653 p->p_xexit = psrc->p_xexit; 2653 p->p_xexit = psrc->p_xexit;
2654 p->p_xsig = psrc->p_xsig; 2654 p->p_xsig = psrc->p_xsig;
2655 p->p_acflag = psrc->p_acflag; 2655 p->p_acflag = psrc->p_acflag;
2656 COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr); 2656 COND_SET_STRUCT(p->p_md, psrc->p_md, allowaddr);
2657 p->p_stackbase = psrc->p_stackbase; 2657 p->p_stackbase = psrc->p_stackbase;
2658 COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr); 2658 COND_SET_PTR(p->p_dtrace, psrc->p_dtrace, allowaddr);
2659} 2659}
2660 2660
2661/* 2661/*
2662 * Fill in an eproc structure for the specified process. 2662 * Fill in an eproc structure for the specified process.
2663 */ 2663 */
2664void 2664void
2665fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr) 2665fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr)
2666{ 2666{
2667 struct tty *tp; 2667 struct tty *tp;
2668 struct lwp *l; 2668 struct lwp *l;
2669 2669
2670 KASSERT(mutex_owned(&proc_lock)); 2670 KASSERT(mutex_owned(&proc_lock));
2671 KASSERT(mutex_owned(p->p_lock)); 2671 KASSERT(mutex_owned(p->p_lock));
2672 2672
2673 COND_SET_PTR(ep->e_paddr, p, allowaddr); 2673 COND_SET_PTR(ep->e_paddr, p, allowaddr);
2674 COND_SET_PTR(ep->e_sess, p->p_session, allowaddr); 2674 COND_SET_PTR(ep->e_sess, p->p_session, allowaddr);
2675 if (p->p_cred) { 2675 if (p->p_cred) {
2676 kauth_cred_topcred(p->p_cred, &ep->e_pcred); 2676 kauth_cred_topcred(p->p_cred, &ep->e_pcred);
2677 kauth_cred_toucred(p->p_cred, &ep->e_ucred); 2677 kauth_cred_toucred(p->p_cred, &ep->e_ucred);
2678 } 2678 }
2679 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { 2679 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2680 struct vmspace *vm = p->p_vmspace; 2680 struct vmspace *vm = p->p_vmspace;
2681 2681
2682 ep->e_vm.vm_rssize = vm_resident_count(vm); 2682 ep->e_vm.vm_rssize = vm_resident_count(vm);
2683 ep->e_vm.vm_tsize = vm->vm_tsize; 2683 ep->e_vm.vm_tsize = vm->vm_tsize;
2684 ep->e_vm.vm_dsize = vm->vm_dsize; 2684 ep->e_vm.vm_dsize = vm->vm_dsize;
2685 ep->e_vm.vm_ssize = vm->vm_ssize; 2685 ep->e_vm.vm_ssize = vm->vm_ssize;
2686 ep->e_vm.vm_map.size = vm->vm_map.size; 2686 ep->e_vm.vm_map.size = vm->vm_map.size;
2687 2687
2688 /* Pick the primary (first) LWP */ 2688 /* Pick the primary (first) LWP */
2689 l = proc_active_lwp(p); 2689 l = proc_active_lwp(p);
2690 KASSERT(l != NULL); 2690 KASSERT(l != NULL);
2691 lwp_lock(l); 2691 lwp_lock(l);
2692 if (l->l_wchan) 2692 if (l->l_wchan)
2693 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN); 2693 strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN);
2694 lwp_unlock(l); 2694 lwp_unlock(l);
2695 } 2695 }
2696 ep->e_ppid = p->p_ppid; 2696 ep->e_ppid = p->p_ppid;
2697 if (p->p_pgrp && p->p_session) { 2697 if (p->p_pgrp && p->p_session) {
2698 ep->e_pgid = p->p_pgrp->pg_id; 2698 ep->e_pgid = p->p_pgrp->pg_id;
2699 ep->e_jobc = p->p_pgrp->pg_jobc; 2699 ep->e_jobc = p->p_pgrp->pg_jobc;
2700 ep->e_sid = p->p_session->s_sid; 2700 ep->e_sid = p->p_session->s_sid;
2701 if ((p->p_lflag & PL_CONTROLT) && 2701 if ((p->p_lflag & PL_CONTROLT) &&
2702 (tp = p->p_session->s_ttyp)) { 2702 (tp = p->p_session->s_ttyp)) {
2703 ep->e_tdev = tp->t_dev; 2703 ep->e_tdev = tp->t_dev;
2704 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; 2704 ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2705 COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr); 2705 COND_SET_PTR(ep->e_tsess, tp->t_session, allowaddr);
2706 } else 2706 } else
2707 ep->e_tdev = (uint32_t)NODEV; 2707 ep->e_tdev = (uint32_t)NODEV;
2708 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0; 2708 ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0;
2709 if (SESS_LEADER(p)) 2709 if (SESS_LEADER(p))
2710 ep->e_flag |= EPROC_SLEADER; 2710 ep->e_flag |= EPROC_SLEADER;
2711 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME); 2711 strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME);
2712 } 2712 }
2713 ep->e_xsize = ep->e_xrssize = 0; 2713 ep->e_xsize = ep->e_xrssize = 0;
2714 ep->e_xccount = ep->e_xswrss = 0; 2714 ep->e_xccount = ep->e_xswrss = 0;
2715} 2715}
2716 2716
2717/* 2717/*
2718 * Fill in a kinfo_proc2 structure for the specified process. 2718 * Fill in a kinfo_proc2 structure for the specified process.
2719 */ 2719 */
2720void 2720void
2721fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr) 2721fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr)
2722{ 2722{
2723 struct tty *tp; 2723 struct tty *tp;
2724 struct lwp *l, *l2; 2724 struct lwp *l, *l2;
2725 struct timeval ut, st, rt; 2725 struct timeval ut, st, rt;
2726 sigset_t ss1, ss2; 2726 sigset_t ss1, ss2;
2727 struct rusage ru; 2727 struct rusage ru;
2728 struct vmspace *vm; 2728 struct vmspace *vm;
2729 2729
2730 KASSERT(mutex_owned(&proc_lock)); 2730 KASSERT(mutex_owned(&proc_lock));
2731 KASSERT(mutex_owned(p->p_lock)); 2731 KASSERT(mutex_owned(p->p_lock));
2732 2732
2733 sigemptyset(&ss1); 2733 sigemptyset(&ss1);
2734 sigemptyset(&ss2); 2734 sigemptyset(&ss2);
2735 2735
2736 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr); 2736 COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr);
2737 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr); 2737 COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr);
2738 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr); 2738 COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr);
2739 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr); 2739 COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr);
2740 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr); 2740 COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr);
2741 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr); 2741 COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr);
2742 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr); 2742 COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr);
2743 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr); 2743 COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr);
2744 ki->p_tsess = 0; /* may be changed if controlling tty below */ 2744 ki->p_tsess = 0; /* may be changed if controlling tty below */
2745 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr); 2745 COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr);
2746 ki->p_eflag = 0; 2746 ki->p_eflag = 0;
2747 ki->p_exitsig = p->p_exitsig; 2747 ki->p_exitsig = p->p_exitsig;
2748 ki->p_flag = L_INMEM; /* Process never swapped out */ 2748 ki->p_flag = L_INMEM; /* Process never swapped out */
2749 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag); 2749 ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag);
2750 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag); 2750 ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag);
2751 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag); 2751 ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag);
2752 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag); 2752 ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag);
2753 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag); 2753 ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag);
2754 ki->p_pid = p->p_pid; 2754 ki->p_pid = p->p_pid;
2755 ki->p_ppid = p->p_ppid; 2755 ki->p_ppid = p->p_ppid;
2756 ki->p_uid = kauth_cred_geteuid(p->p_cred); 2756 ki->p_uid = kauth_cred_geteuid(p->p_cred);
2757 ki->p_ruid = kauth_cred_getuid(p->p_cred); 2757 ki->p_ruid = kauth_cred_getuid(p->p_cred);
2758 ki->p_gid = kauth_cred_getegid(p->p_cred); 2758 ki->p_gid = kauth_cred_getegid(p->p_cred);
2759 ki->p_rgid = kauth_cred_getgid(p->p_cred); 2759 ki->p_rgid = kauth_cred_getgid(p->p_cred);
2760 ki->p_svuid = kauth_cred_getsvuid(p->p_cred); 2760 ki->p_svuid = kauth_cred_getsvuid(p->p_cred);
2761 ki->p_svgid = kauth_cred_getsvgid(p->p_cred); 2761 ki->p_svgid = kauth_cred_getsvgid(p->p_cred);
2762 ki->p_ngroups = kauth_cred_ngroups(p->p_cred); 2762 ki->p_ngroups = kauth_cred_ngroups(p->p_cred);
2763 kauth_cred_getgroups(p->p_cred, ki->p_groups, 2763 kauth_cred_getgroups(p->p_cred, ki->p_groups,
2764 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])), 2764 uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])),
2765 UIO_SYSSPACE); 2765 UIO_SYSSPACE);
2766 2766
2767 ki->p_uticks = p->p_uticks; 2767 ki->p_uticks = p->p_uticks;
2768 ki->p_sticks = p->p_sticks; 2768 ki->p_sticks = p->p_sticks;
2769 ki->p_iticks = p->p_iticks; 2769 ki->p_iticks = p->p_iticks;
2770 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */ 2770 ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */
2771 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr); 2771 COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr);
2772 ki->p_traceflag = p->p_traceflag; 2772 ki->p_traceflag = p->p_traceflag;
2773 2773
2774 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t)); 2774 memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t));
2775 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t)); 2775 memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t));
2776 2776
2777 ki->p_cpticks = 0; 2777 ki->p_cpticks = 0;
2778 ki->p_pctcpu = p->p_pctcpu; 2778 ki->p_pctcpu = p->p_pctcpu;
2779 ki->p_estcpu = 0; 2779 ki->p_estcpu = 0;
2780 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */ 2780 ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */
2781 ki->p_realstat = p->p_stat; 2781 ki->p_realstat = p->p_stat;
2782 ki->p_nice = p->p_nice; 2782 ki->p_nice = p->p_nice;
2783 ki->p_xstat = P_WAITSTATUS(p); 2783 ki->p_xstat = P_WAITSTATUS(p);
2784 ki->p_acflag = p->p_acflag; 2784 ki->p_acflag = p->p_acflag;
2785 2785
2786 strncpy(ki->p_comm, p->p_comm, 2786 strncpy(ki->p_comm, p->p_comm,
2787 uimin(sizeof(ki->p_comm), sizeof(p->p_comm))); 2787 uimin(sizeof(ki->p_comm), sizeof(p->p_comm)));
2788 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename)); 2788 strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename));
2789 2789
2790 ki->p_nlwps = p->p_nlwps; 2790 ki->p_nlwps = p->p_nlwps;
2791 ki->p_realflag = ki->p_flag; 2791 ki->p_realflag = ki->p_flag;
2792 2792
2793 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { 2793 if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) {
2794 vm = p->p_vmspace; 2794 vm = p->p_vmspace;
2795 ki->p_vm_rssize = vm_resident_count(vm); 2795 ki->p_vm_rssize = vm_resident_count(vm);
2796 ki->p_vm_tsize = vm->vm_tsize; 2796 ki->p_vm_tsize = vm->vm_tsize;
2797 ki->p_vm_dsize = vm->vm_dsize; 2797 ki->p_vm_dsize = vm->vm_dsize;
2798 ki->p_vm_ssize = vm->vm_ssize; 2798 ki->p_vm_ssize = vm->vm_ssize;
2799 ki->p_vm_vsize = atop(vm->vm_map.size); 2799 ki->p_vm_vsize = atop(vm->vm_map.size);
2800 /* 2800 /*
2801 * Since the stack is initially mapped mostly with 2801 * Since the stack is initially mapped mostly with
2802 * PROT_NONE and grown as needed, adjust the "mapped size" 2802 * PROT_NONE and grown as needed, adjust the "mapped size"
2803 * to skip the unused stack portion. 2803 * to skip the unused stack portion.
2804 */ 2804 */
2805 ki->p_vm_msize = 2805 ki->p_vm_msize =
2806 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize; 2806 atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize;
2807 2807
2808 /* Pick the primary (first) LWP */ 2808 /* Pick the primary (first) LWP */
2809 l = proc_active_lwp(p); 2809 l = proc_active_lwp(p);
2810 KASSERT(l != NULL); 2810 KASSERT(l != NULL);
2811 lwp_lock(l); 2811 lwp_lock(l);
2812 ki->p_nrlwps = p->p_nrlwps; 2812 ki->p_nrlwps = p->p_nrlwps;
2813 ki->p_forw = 0; 2813 ki->p_forw = 0;
2814 ki->p_back = 0; 2814 ki->p_back = 0;
2815 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr); 2815 COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr);
2816 ki->p_stat = l->l_stat; 2816 ki->p_stat = l->l_stat;
2817 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag); 2817 ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag);
2818 ki->p_swtime = l->l_swtime; 2818 ki->p_swtime = l->l_swtime;
2819 ki->p_slptime = l->l_slptime; 2819 ki->p_slptime = l->l_slptime;
2820 if (l->l_stat == LSONPROC) 2820 if (l->l_stat == LSONPROC)
2821 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags; 2821 ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags;
2822 else 2822 else
2823 ki->p_schedflags = 0; 2823 ki->p_schedflags = 0;
2824 ki->p_priority = lwp_eprio(l); 2824 ki->p_priority = lwp_eprio(l);
2825 ki->p_usrpri = l->l_priority; 2825 ki->p_usrpri = l->l_priority;
2826 if (l->l_wchan) 2826 if (l->l_wchan)
2827 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg)); 2827 strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg));
2828 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr); 2828 COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr);
2829 ki->p_cpuid = cpu_index(l->l_cpu); 2829 ki->p_cpuid = cpu_index(l->l_cpu);
2830 lwp_unlock(l); 2830 lwp_unlock(l);
2831 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 2831 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
2832 /* This is hardly correct, but... */ 2832 /* This is hardly correct, but... */
2833 sigplusset(&l->l_sigpend.sp_set, &ss1); 2833 sigplusset(&l->l_sigpend.sp_set, &ss1);
2834 sigplusset(&l->l_sigmask, &ss2); 2834 sigplusset(&l->l_sigmask, &ss2);
2835 ki->p_cpticks += l->l_cpticks; 2835 ki->p_cpticks += l->l_cpticks;
2836 ki->p_pctcpu += l->l_pctcpu; 2836 ki->p_pctcpu += l->l_pctcpu;
2837 ki->p_estcpu += l->l_estcpu; 2837 ki->p_estcpu += l->l_estcpu;
2838 } 2838 }
2839 } 2839 }
2840 sigplusset(&p->p_sigpend.sp_set, &ss1); 2840 sigplusset(&p->p_sigpend.sp_set, &ss1);
2841 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t)); 2841 memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t));
2842 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t)); 2842 memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t));
2843 2843
2844 if (p->p_session != NULL) { 2844 if (p->p_session != NULL) {
2845 ki->p_sid = p->p_session->s_sid; 2845 ki->p_sid = p->p_session->s_sid;
2846 ki->p__pgid = p->p_pgrp->pg_id; 2846 ki->p__pgid = p->p_pgrp->pg_id;
2847 if (p->p_session->s_ttyvp) 2847 if (p->p_session->s_ttyvp)
2848 ki->p_eflag |= EPROC_CTTY; 2848 ki->p_eflag |= EPROC_CTTY;
2849 if (SESS_LEADER(p)) 2849 if (SESS_LEADER(p))
2850 ki->p_eflag |= EPROC_SLEADER; 2850 ki->p_eflag |= EPROC_SLEADER;
2851 strncpy(ki->p_login, p->p_session->s_login, 2851 strncpy(ki->p_login, p->p_session->s_login,
2852 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login)); 2852 uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login));
2853 ki->p_jobc = p->p_pgrp->pg_jobc; 2853 ki->p_jobc = p->p_pgrp->pg_jobc;
2854 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) { 2854 if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) {
2855 ki->p_tdev = tp->t_dev; 2855 ki->p_tdev = tp->t_dev;
2856 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; 2856 ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID;
2857 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session), 2857 COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session),
2858 allowaddr); 2858 allowaddr);
2859 } else { 2859 } else {
2860 ki->p_tdev = (int32_t)NODEV; 2860 ki->p_tdev = (int32_t)NODEV;
2861 } 2861 }
2862 } 2862 }
2863 2863
2864 if (!P_ZOMBIE(p) && !zombie) { 2864 if (!P_ZOMBIE(p) && !zombie) {
2865 ki->p_uvalid = 1; 2865 ki->p_uvalid = 1;
2866 ki->p_ustart_sec = p->p_stats->p_start.tv_sec; 2866 ki->p_ustart_sec = p->p_stats->p_start.tv_sec;
2867 ki->p_ustart_usec = p->p_stats->p_start.tv_usec; 2867 ki->p_ustart_usec = p->p_stats->p_start.tv_usec;
2868 2868
2869 calcru(p, &ut, &st, NULL, &rt); 2869 calcru(p, &ut, &st, NULL, &rt);
2870 ki->p_rtime_sec = rt.tv_sec; 2870 ki->p_rtime_sec = rt.tv_sec;
2871 ki->p_rtime_usec = rt.tv_usec; 2871 ki->p_rtime_usec = rt.tv_usec;
2872 ki->p_uutime_sec = ut.tv_sec; 2872 ki->p_uutime_sec = ut.tv_sec;
2873 ki->p_uutime_usec = ut.tv_usec; 2873 ki->p_uutime_usec = ut.tv_usec;
2874 ki->p_ustime_sec = st.tv_sec; 2874 ki->p_ustime_sec = st.tv_sec;
2875 ki->p_ustime_usec = st.tv_usec; 2875 ki->p_ustime_usec = st.tv_usec;
2876 2876
2877 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru)); 2877 memcpy(&ru, &p->p_stats->p_ru, sizeof(ru));
2878 ki->p_uru_nvcsw = 0; 2878 ki->p_uru_nvcsw = 0;
2879 ki->p_uru_nivcsw = 0; 2879 ki->p_uru_nivcsw = 0;
2880 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 2880 LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
2881 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw); 2881 ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw);
2882 ki->p_uru_nivcsw += l2->l_nivcsw; 2882 ki->p_uru_nivcsw += l2->l_nivcsw;
2883 ruadd(&ru, &l2->l_ru); 2883 ruadd(&ru, &l2->l_ru);
2884 } 2884 }
2885 ki->p_uru_maxrss = ru.ru_maxrss; 2885 ki->p_uru_maxrss = ru.ru_maxrss;
2886 ki->p_uru_ixrss = ru.ru_ixrss; 2886 ki->p_uru_ixrss = ru.ru_ixrss;
2887 ki->p_uru_idrss = ru.ru_idrss; 2887 ki->p_uru_idrss = ru.ru_idrss;
2888 ki->p_uru_isrss = ru.ru_isrss; 2888 ki->p_uru_isrss = ru.ru_isrss;
2889 ki->p_uru_minflt = ru.ru_minflt; 2889 ki->p_uru_minflt = ru.ru_minflt;
2890 ki->p_uru_majflt = ru.ru_majflt; 2890 ki->p_uru_majflt = ru.ru_majflt;
2891 ki->p_uru_nswap = ru.ru_nswap; 2891 ki->p_uru_nswap = ru.ru_nswap;
2892 ki->p_uru_inblock = ru.ru_inblock; 2892 ki->p_uru_inblock = ru.ru_inblock;
2893 ki->p_uru_oublock = ru.ru_oublock; 2893 ki->p_uru_oublock = ru.ru_oublock;
2894 ki->p_uru_msgsnd = ru.ru_msgsnd; 2894 ki->p_uru_msgsnd = ru.ru_msgsnd;
2895 ki->p_uru_msgrcv = ru.ru_msgrcv; 2895 ki->p_uru_msgrcv = ru.ru_msgrcv;
2896 ki->p_uru_nsignals = ru.ru_nsignals; 2896 ki->p_uru_nsignals = ru.ru_nsignals;
2897 2897
2898 timeradd(&p->p_stats->p_cru.ru_utime, 2898 timeradd(&p->p_stats->p_cru.ru_utime,
2899 &p->p_stats->p_cru.ru_stime, &ut); 2899 &p->p_stats->p_cru.ru_stime, &ut);
2900 ki->p_uctime_sec = ut.tv_sec; 2900 ki->p_uctime_sec = ut.tv_sec;
2901 ki->p_uctime_usec = ut.tv_usec; 2901 ki->p_uctime_usec = ut.tv_usec;
2902 } 2902 }
2903} 2903}
2904 2904
2905 2905
2906int 2906int
2907proc_find_locked(struct lwp *l, struct proc **p, pid_t pid) 2907proc_find_locked(struct lwp *l, struct proc **p, pid_t pid)
2908{ 2908{
2909 int error; 2909 int error;
2910 2910
2911 mutex_enter(&proc_lock); 2911 mutex_enter(&proc_lock);
2912 if (pid == -1) 2912 if (pid == -1)
2913 *p = l->l_proc; 2913 *p = l->l_proc;
2914 else 2914 else
2915 *p = proc_find(pid); 2915 *p = proc_find(pid);
2916 2916
2917 if (*p == NULL) { 2917 if (*p == NULL) {
2918 if (pid != -1) 2918 if (pid != -1)
2919 mutex_exit(&proc_lock); 2919 mutex_exit(&proc_lock);
2920 return ESRCH; 2920 return ESRCH;
2921 } 2921 }
2922 if (pid != -1) 2922 if (pid != -1)
2923 mutex_enter((*p)->p_lock); 2923 mutex_enter((*p)->p_lock);
2924 mutex_exit(&proc_lock); 2924 mutex_exit(&proc_lock);
2925 2925
2926 error = kauth_authorize_process(l->l_cred, 2926 error = kauth_authorize_process(l->l_cred,
2927 KAUTH_PROCESS_CANSEE, *p, 2927 KAUTH_PROCESS_CANSEE, *p,
2928 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); 2928 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
2929 if (error) { 2929 if (error) {
2930 if (pid != -1) 2930 if (pid != -1)
2931 mutex_exit((*p)->p_lock); 2931 mutex_exit((*p)->p_lock);
2932 } 2932 }
2933 return error; 2933 return error;
2934} 2934}
2935 2935
2936static int 2936static int
2937fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp) 2937fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2938{ 2938{
2939 int error; 2939 int error;
2940 struct proc *p; 2940 struct proc *p;
2941 2941
2942 if ((error = proc_find_locked(l, &p, pid)) != 0) 2942 if ((error = proc_find_locked(l, &p, pid)) != 0)
2943 return error; 2943 return error;
2944 2944
2945 if (p->p_path == NULL) { 2945 if (p->p_path == NULL) {
2946 if (pid != -1) 2946 if (pid != -1)
2947 mutex_exit(p->p_lock); 2947 mutex_exit(p->p_lock);
2948 return ENOENT; 2948 return ENOENT;
2949 } 2949 }
2950 2950
2951 size_t len = strlen(p->p_path) + 1; 2951 size_t len = strlen(p->p_path) + 1;
2952 if (oldp != NULL) { 2952 if (oldp != NULL) {
2953 size_t copylen = uimin(len, *oldlenp); 2953 size_t copylen = uimin(len, *oldlenp);
2954 error = sysctl_copyout(l, p->p_path, oldp, copylen); 2954 error = sysctl_copyout(l, p->p_path, oldp, copylen);
2955 if (error == 0 && *oldlenp < len) 2955 if (error == 0 && *oldlenp < len)
2956 error = ENOSPC; 2956 error = ENOSPC;
2957 } 2957 }
2958 *oldlenp = len; 2958 *oldlenp = len;
2959 if (pid != -1) 2959 if (pid != -1)
2960 mutex_exit(p->p_lock); 2960 mutex_exit(p->p_lock);
2961 return error; 2961 return error;
2962} 2962}
2963 2963
2964static int 2964static int
2965fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp) 2965fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp)
2966{ 2966{
2967 int error; 2967 int error;
2968 struct proc *p; 2968 struct proc *p;
2969 char *path; 2969 char *path;
2970 char *bp, *bend; 2970 char *bp, *bend;
2971 struct cwdinfo *cwdi; 2971 struct cwdinfo *cwdi;
2972 struct vnode *vp; 2972 struct vnode *vp;
2973 size_t len, lenused; 2973 size_t len, lenused;
2974 2974
2975 if ((error = proc_find_locked(l, &p, pid)) != 0) 2975 if ((error = proc_find_locked(l, &p, pid)) != 0)
2976 return error; 2976 return error;
2977 2977
2978 len = MAXPATHLEN * 4; 2978 len = MAXPATHLEN * 4;
2979 2979
2980 path = kmem_alloc(len, KM_SLEEP); 2980 path = kmem_alloc(len, KM_SLEEP);
2981 2981
2982 bp = &path[len]; 2982 bp = &path[len];
2983 bend = bp; 2983 bend = bp;
2984 *(--bp) = '\0'; 2984 *(--bp) = '\0';
2985 2985
2986 cwdi = p->p_cwdi; 2986 cwdi = p->p_cwdi;
2987 rw_enter(&cwdi->cwdi_lock, RW_READER); 2987 rw_enter(&cwdi->cwdi_lock, RW_READER);
2988 vp = cwdi->cwdi_cdir; 2988 vp = cwdi->cwdi_cdir;
2989 error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l); 2989 error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l);
2990 rw_exit(&cwdi->cwdi_lock); 2990 rw_exit(&cwdi->cwdi_lock);
2991 2991
2992 if (error) 2992 if (error)
2993 goto out; 2993 goto out;
2994 2994
2995 lenused = bend - bp; 2995 lenused = bend - bp;
2996 2996
2997 if (oldp != NULL) { 2997 if (oldp != NULL) {
2998 size_t copylen = uimin(lenused, *oldlenp); 2998 size_t copylen = uimin(lenused, *oldlenp);
2999 error = sysctl_copyout(l, bp, oldp, copylen); 2999 error = sysctl_copyout(l, bp, oldp, copylen);
3000 if (error == 0 && *oldlenp < lenused) 3000 if (error == 0 && *oldlenp < lenused)
3001 error = ENOSPC; 3001 error = ENOSPC;
3002 } 3002 }
3003 *oldlenp = lenused; 3003 *oldlenp = lenused;
3004out: 3004out:
3005 if (pid != -1) 3005 if (pid != -1)
3006 mutex_exit(p->p_lock); 3006 mutex_exit(p->p_lock);
3007 kmem_free(path, len); 3007 kmem_free(path, len);
3008 return error; 3008 return error;
3009} 3009}
3010 3010
3011int 3011int
3012proc_getauxv(struct proc *p, void **buf, size_t *len) 3012proc_getauxv(struct proc *p, void **buf, size_t *len)
3013{ 3013{
3014 struct ps_strings pss; 3014 struct ps_strings pss;
3015 int error; 3015 int error;
3016 void *uauxv, *kauxv; 3016 void *uauxv, *kauxv;
3017 size_t size; 3017 size_t size;
3018 3018
3019 if ((error = copyin_psstrings(p, &pss)) != 0) 3019 if ((error = copyin_psstrings(p, &pss)) != 0)
3020 return error; 3020 return error;
3021 if (pss.ps_envstr == NULL) 3021 if (pss.ps_envstr == NULL)
3022 return EIO; 3022 return EIO;
3023 3023
3024 size = p->p_execsw->es_arglen; 3024 size = p->p_execsw->es_arglen;
3025 if (size == 0) 3025 if (size == 0)
3026 return EIO; 3026 return EIO;
3027 3027
3028 size_t ptrsz = PROC_PTRSZ(p); 3028 size_t ptrsz = PROC_PTRSZ(p);
3029 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz); 3029 uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz);
3030 3030
3031 kauxv = kmem_alloc(size, KM_SLEEP); 3031 kauxv = kmem_alloc(size, KM_SLEEP);
3032 3032
3033 error = copyin_proc(p, uauxv, kauxv, size); 3033 error = copyin_proc(p, uauxv, kauxv, size);
3034 if (error) { 3034 if (error) {
3035 kmem_free(kauxv, size); 3035 kmem_free(kauxv, size);
3036 return error; 3036 return error;
3037 } 3037 }
3038 3038
3039 *buf = kauxv; 3039 *buf = kauxv;
3040 *len = size; 3040 *len = size;
3041 3041
3042 return 0; 3042 return 0;
3043} 3043}
3044 3044
3045 3045
3046static int 3046static int
3047sysctl_security_expose_address(SYSCTLFN_ARGS) 3047sysctl_security_expose_address(SYSCTLFN_ARGS)
3048{ 3048{
3049 int expose_address, error; 3049 int expose_address, error;
3050 struct sysctlnode node; 3050 struct sysctlnode node;
3051 3051
3052 node = *rnode; 3052 node = *rnode;
3053 node.sysctl_data = &expose_address; 3053 node.sysctl_data = &expose_address;
3054 expose_address = *(int *)rnode->sysctl_data; 3054 expose_address = *(int *)rnode->sysctl_data;
3055 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 3055 error = sysctl_lookup(SYSCTLFN_CALL(&node));
3056 if (error || newp == NULL) 3056 if (error || newp == NULL)
3057 return error; 3057 return error;
3058 3058
3059 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR, 3059 if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR,
3060 0, NULL, NULL, NULL)) 3060 0, NULL, NULL, NULL))
3061 return EPERM; 3061 return EPERM;
3062 3062
3063 switch (expose_address) { 3063 switch (expose_address) {
3064 case 0: 3064 case 0:
3065 case 1: 3065 case 1:
3066 case 2: 3066 case 2:
3067 break; 3067 break;
3068 default: 3068 default:
3069 return EINVAL; 3069 return EINVAL;
3070 } 3070 }
3071 3071
3072 *(int *)rnode->sysctl_data = expose_address; 3072 *(int *)rnode->sysctl_data = expose_address;
3073 3073
3074 return 0; 3074 return 0;
3075} 3075}
3076 3076
3077bool 3077bool
3078get_expose_address(struct proc *p) 3078get_expose_address(struct proc *p)
3079{ 3079{
3080 /* allow only if sysctl variable is set or privileged */ 3080 /* allow only if sysctl variable is set or privileged */
3081 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE, 3081 return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE,
3082 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0; 3082 p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0;
3083} 3083}