Sun May 30 00:17:20 2021 UTC ()
Unindent code to match the logical structure, ignoring the commented out if.

This code should be rewritten to use BUS_DMA_WAITOK, but that's a
project of its own.


(joerg)
diff -r1.45 -r1.46 src/sys/dev/pci/if_cas.c

cvs diff -r1.45 -r1.46 src/sys/dev/pci/if_cas.c (switch to unified diff)

--- src/sys/dev/pci/if_cas.c 2021/05/08 00:27:02 1.45
+++ src/sys/dev/pci/if_cas.c 2021/05/30 00:17:20 1.46
@@ -1,1786 +1,1786 @@ @@ -1,1786 +1,1786 @@
1/* $NetBSD: if_cas.c,v 1.45 2021/05/08 00:27:02 thorpej Exp $ */ 1/* $NetBSD: if_cas.c,v 1.46 2021/05/30 00:17:20 joerg Exp $ */
2/* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */ 2/* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3 3
4/* 4/*
5 * 5 *
6 * Copyright (C) 2007 Mark Kettenis. 6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath. 7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved. 8 * All rights reserved.
9 * 9 *
10 * 10 *
11 * Redistribution and use in source and binary forms, with or without 11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions 12 * modification, are permitted provided that the following conditions
13 * are met: 13 * are met:
14 * 1. Redistributions of source code must retain the above copyright 14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer. 15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright 16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the 17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution. 18 * documentation and/or other materials provided with the distribution.
19 * 19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE. 30 * SUCH DAMAGE.
31 * 31 *
32 */ 32 */
33 33
34/* 34/*
35 * Driver for Sun Cassini ethernet controllers. 35 * Driver for Sun Cassini ethernet controllers.
36 * 36 *
37 * There are basically two variants of this chip: Cassini and 37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and 38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+ 39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without 40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we 41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first 42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip. 43 * four to the chip.
44 */ 44 */
45 45
46#include <sys/cdefs.h> 46#include <sys/cdefs.h>
47__KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.45 2021/05/08 00:27:02 thorpej Exp $"); 47__KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.46 2021/05/30 00:17:20 joerg Exp $");
48 48
49#ifndef _MODULE 49#ifndef _MODULE
50#include "opt_inet.h" 50#include "opt_inet.h"
51#endif 51#endif
52 52
53#include <sys/param.h> 53#include <sys/param.h>
54#include <sys/systm.h> 54#include <sys/systm.h>
55#include <sys/callout.h> 55#include <sys/callout.h>
56#include <sys/mbuf.h> 56#include <sys/mbuf.h>
57#include <sys/syslog.h> 57#include <sys/syslog.h>
58#include <sys/malloc.h> 58#include <sys/malloc.h>
59#include <sys/kernel.h> 59#include <sys/kernel.h>
60#include <sys/socket.h> 60#include <sys/socket.h>
61#include <sys/ioctl.h> 61#include <sys/ioctl.h>
62#include <sys/errno.h> 62#include <sys/errno.h>
63#include <sys/device.h> 63#include <sys/device.h>
64#include <sys/module.h> 64#include <sys/module.h>
65 65
66#include <machine/endian.h> 66#include <machine/endian.h>
67 67
68#include <net/if.h> 68#include <net/if.h>
69#include <net/if_dl.h> 69#include <net/if_dl.h>
70#include <net/if_media.h> 70#include <net/if_media.h>
71#include <net/if_ether.h> 71#include <net/if_ether.h>
72 72
73#ifdef INET 73#ifdef INET
74#include <netinet/in.h> 74#include <netinet/in.h>
75#include <netinet/in_systm.h> 75#include <netinet/in_systm.h>
76#include <netinet/in_var.h> 76#include <netinet/in_var.h>
77#include <netinet/ip.h> 77#include <netinet/ip.h>
78#include <netinet/tcp.h> 78#include <netinet/tcp.h>
79#include <netinet/udp.h> 79#include <netinet/udp.h>
80#endif 80#endif
81 81
82#include <net/bpf.h> 82#include <net/bpf.h>
83 83
84#include <sys/bus.h> 84#include <sys/bus.h>
85#include <sys/intr.h> 85#include <sys/intr.h>
86#include <sys/rndsource.h> 86#include <sys/rndsource.h>
87 87
88#include <dev/mii/mii.h> 88#include <dev/mii/mii.h>
89#include <dev/mii/miivar.h> 89#include <dev/mii/miivar.h>
90#include <dev/mii/mii_bitbang.h> 90#include <dev/mii/mii_bitbang.h>
91 91
92#include <dev/pci/pcivar.h> 92#include <dev/pci/pcivar.h>
93#include <dev/pci/pcireg.h> 93#include <dev/pci/pcireg.h>
94#include <dev/pci/pcidevs.h> 94#include <dev/pci/pcidevs.h>
95#include <prop/proplib.h> 95#include <prop/proplib.h>
96 96
97#include <dev/pci/if_casreg.h> 97#include <dev/pci/if_casreg.h>
98#include <dev/pci/if_casvar.h> 98#include <dev/pci/if_casvar.h>
99 99
100#define TRIES 10000 100#define TRIES 10000
101 101
102static bool cas_estintr(struct cas_softc *sc, int); 102static bool cas_estintr(struct cas_softc *sc, int);
103bool cas_shutdown(device_t, int); 103bool cas_shutdown(device_t, int);
104static bool cas_suspend(device_t, const pmf_qual_t *); 104static bool cas_suspend(device_t, const pmf_qual_t *);
105static bool cas_resume(device_t, const pmf_qual_t *); 105static bool cas_resume(device_t, const pmf_qual_t *);
106static int cas_detach(device_t, int); 106static int cas_detach(device_t, int);
107static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage); 107static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108 108
109int cas_match(device_t, cfdata_t, void *); 109int cas_match(device_t, cfdata_t, void *);
110void cas_attach(device_t, device_t, void *); 110void cas_attach(device_t, device_t, void *);
111 111
112 112
113CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc), 113CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114 cas_match, cas_attach, cas_detach, NULL, NULL, NULL, 114 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115 DVF_DETACH_SHUTDOWN); 115 DVF_DETACH_SHUTDOWN);
116 116
117int cas_pci_readvpd(struct cas_softc *, struct pci_attach_args *, uint8_t *); 117int cas_pci_readvpd(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118 118
119void cas_config(struct cas_softc *, const uint8_t *); 119void cas_config(struct cas_softc *, const uint8_t *);
120void cas_start(struct ifnet *); 120void cas_start(struct ifnet *);
121void cas_stop(struct ifnet *, int); 121void cas_stop(struct ifnet *, int);
122int cas_ioctl(struct ifnet *, u_long, void *); 122int cas_ioctl(struct ifnet *, u_long, void *);
123void cas_tick(void *); 123void cas_tick(void *);
124void cas_watchdog(struct ifnet *); 124void cas_watchdog(struct ifnet *);
125int cas_init(struct ifnet *); 125int cas_init(struct ifnet *);
126void cas_init_regs(struct cas_softc *); 126void cas_init_regs(struct cas_softc *);
127int cas_ringsize(int); 127int cas_ringsize(int);
128int cas_cringsize(int); 128int cas_cringsize(int);
129int cas_meminit(struct cas_softc *); 129int cas_meminit(struct cas_softc *);
130void cas_mifinit(struct cas_softc *); 130void cas_mifinit(struct cas_softc *);
131int cas_bitwait(struct cas_softc *, bus_space_handle_t, int, 131int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132 uint32_t, uint32_t); 132 uint32_t, uint32_t);
133void cas_reset(struct cas_softc *); 133void cas_reset(struct cas_softc *);
134int cas_reset_rx(struct cas_softc *); 134int cas_reset_rx(struct cas_softc *);
135int cas_reset_tx(struct cas_softc *); 135int cas_reset_tx(struct cas_softc *);
136int cas_disable_rx(struct cas_softc *); 136int cas_disable_rx(struct cas_softc *);
137int cas_disable_tx(struct cas_softc *); 137int cas_disable_tx(struct cas_softc *);
138void cas_rxdrain(struct cas_softc *); 138void cas_rxdrain(struct cas_softc *);
139int cas_add_rxbuf(struct cas_softc *, int); 139int cas_add_rxbuf(struct cas_softc *, int);
140void cas_iff(struct cas_softc *); 140void cas_iff(struct cas_softc *);
141int cas_encap(struct cas_softc *, struct mbuf *, uint32_t *); 141int cas_encap(struct cas_softc *, struct mbuf *, uint32_t *);
142 142
143/* MII methods & callbacks */ 143/* MII methods & callbacks */
144int cas_mii_readreg(device_t, int, int, uint16_t*); 144int cas_mii_readreg(device_t, int, int, uint16_t*);
145int cas_mii_writereg(device_t, int, int, uint16_t); 145int cas_mii_writereg(device_t, int, int, uint16_t);
146void cas_mii_statchg(struct ifnet *); 146void cas_mii_statchg(struct ifnet *);
147int cas_pcs_readreg(device_t, int, int, uint16_t *); 147int cas_pcs_readreg(device_t, int, int, uint16_t *);
148int cas_pcs_writereg(device_t, int, int, uint16_t); 148int cas_pcs_writereg(device_t, int, int, uint16_t);
149 149
150int cas_mediachange(struct ifnet *); 150int cas_mediachange(struct ifnet *);
151void cas_mediastatus(struct ifnet *, struct ifmediareq *); 151void cas_mediastatus(struct ifnet *, struct ifmediareq *);
152 152
153int cas_eint(struct cas_softc *, u_int); 153int cas_eint(struct cas_softc *, u_int);
154int cas_rint(struct cas_softc *); 154int cas_rint(struct cas_softc *);
155int cas_tint(struct cas_softc *, uint32_t); 155int cas_tint(struct cas_softc *, uint32_t);
156int cas_pint(struct cas_softc *); 156int cas_pint(struct cas_softc *);
157int cas_intr(void *); 157int cas_intr(void *);
158 158
159#ifdef CAS_DEBUG 159#ifdef CAS_DEBUG
160#define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \ 160#define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161 printf x 161 printf x
162#else 162#else
163#define DPRINTF(sc, x) /* nothing */ 163#define DPRINTF(sc, x) /* nothing */
164#endif 164#endif
165 165
166static const struct device_compatible_entry compat_data[] = { 166static const struct device_compatible_entry compat_data[] = {
167 { .id = PCI_ID_CODE(PCI_VENDOR_SUN, 167 { .id = PCI_ID_CODE(PCI_VENDOR_SUN,
168 PCI_PRODUCT_SUN_CASSINI), 168 PCI_PRODUCT_SUN_CASSINI),
169 .value = CAS_CAS }, 169 .value = CAS_CAS },
170 170
171 { .id = PCI_ID_CODE(PCI_VENDOR_NS, 171 { .id = PCI_ID_CODE(PCI_VENDOR_NS,
172 PCI_PRODUCT_NS_SATURN), 172 PCI_PRODUCT_NS_SATURN),
173 .value = CAS_SATURN }, 173 .value = CAS_SATURN },
174 174
175 PCI_COMPAT_EOL 175 PCI_COMPAT_EOL
176}; 176};
177 177
178#define CAS_LOCAL_MAC_ADDRESS "local-mac-address" 178#define CAS_LOCAL_MAC_ADDRESS "local-mac-address"
179#define CAS_PHY_INTERFACE "phy-interface" 179#define CAS_PHY_INTERFACE "phy-interface"
180#define CAS_PHY_TYPE "phy-type" 180#define CAS_PHY_TYPE "phy-type"
181#define CAS_PHY_TYPE_PCS "pcs" 181#define CAS_PHY_TYPE_PCS "pcs"
182 182
183int 183int
184cas_match(device_t parent, cfdata_t cf, void *aux) 184cas_match(device_t parent, cfdata_t cf, void *aux)
185{ 185{
186 struct pci_attach_args *pa = aux; 186 struct pci_attach_args *pa = aux;
187 187
188 return pci_compatible_match(pa, compat_data); 188 return pci_compatible_match(pa, compat_data);
189} 189}
190 190
191#define PROMHDR_PTR_DATA 0x18 191#define PROMHDR_PTR_DATA 0x18
192#define PROMDATA_PTR_VPD 0x08 192#define PROMDATA_PTR_VPD 0x08
193#define PROMDATA_DATA2 0x0a 193#define PROMDATA_DATA2 0x0a
194 194
195static const uint8_t cas_promhdr[] = { 0x55, 0xaa }; 195static const uint8_t cas_promhdr[] = { 0x55, 0xaa };
196static const uint8_t cas_promdat[] = { 196static const uint8_t cas_promdat[] = {
197 'P', 'C', 'I', 'R', 197 'P', 'C', 'I', 'R',
198 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8, 198 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
199 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8 199 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
200}; 200};
201static const uint8_t cas_promdat_ns[] = { 201static const uint8_t cas_promdat_ns[] = {
202 'P', 'C', 'I', 'R', 202 'P', 'C', 'I', 'R',
203 PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8, 203 PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
204 PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8 204 PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
205}; 205};
206 206
207static const uint8_t cas_promdat2[] = { 207static const uint8_t cas_promdat2[] = {
208 0x18, 0x00, /* structure length */ 208 0x18, 0x00, /* structure length */
209 0x00, /* structure revision */ 209 0x00, /* structure revision */
210 0x00, /* interface revision */ 210 0x00, /* interface revision */
211 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */ 211 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
212 PCI_CLASS_NETWORK /* class code */ 212 PCI_CLASS_NETWORK /* class code */
213}; 213};
214 214
215#define CAS_LMA_MAXNUM 4 215#define CAS_LMA_MAXNUM 4
216int 216int
217cas_pci_readvpd(struct cas_softc *sc, struct pci_attach_args *pa, 217cas_pci_readvpd(struct cas_softc *sc, struct pci_attach_args *pa,
218 uint8_t *enaddr) 218 uint8_t *enaddr)
219{ 219{
220 struct pci_vpd_largeres *res; 220 struct pci_vpd_largeres *res;
221 struct pci_vpd *vpd; 221 struct pci_vpd *vpd;
222 bus_space_handle_t romh; 222 bus_space_handle_t romh;
223 bus_space_tag_t romt; 223 bus_space_tag_t romt;
224 bus_size_t romsize = 0; 224 bus_size_t romsize = 0;
225 uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN]; 225 uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN];
226 bool pcs[4] = {false, false, false, false}; 226 bool pcs[4] = {false, false, false, false};
227 uint8_t buf[32], *desc; 227 uint8_t buf[32], *desc;
228 pcireg_t address; 228 pcireg_t address;
229 int dataoff, vpdoff, len, lma = 0, phy = 0; 229 int dataoff, vpdoff, len, lma = 0, phy = 0;
230 int i, rv = -1; 230 int i, rv = -1;
231 231
232 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0, 232 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
233 &romt, &romh, NULL, &romsize)) 233 &romt, &romh, NULL, &romsize))
234 return (-1); 234 return (-1);
235 235
236 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START); 236 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
237 address |= PCI_MAPREG_ROM_ENABLE; 237 address |= PCI_MAPREG_ROM_ENABLE;
238 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address); 238 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
239 239
240 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf)); 240 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
241 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr))) 241 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
242 goto fail; 242 goto fail;
243 243
244 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8); 244 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
245 if (dataoff < 0x1c) 245 if (dataoff < 0x1c)
246 goto fail; 246 goto fail;
247 247
248 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf)); 248 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
249 if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) && 249 if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
250 bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) || 250 bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
251 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2))) 251 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
252 goto fail; 252 goto fail;
253 253
254 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8); 254 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
255 if (vpdoff < 0x1c) 255 if (vpdoff < 0x1c)
256 goto fail; 256 goto fail;
257 257
258next: 258next:
259 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf)); 259 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
260 if (!PCI_VPDRES_ISLARGE(buf[0])) 260 if (!PCI_VPDRES_ISLARGE(buf[0]))
261 goto fail; 261 goto fail;
262 262
263 res = (struct pci_vpd_largeres *)buf; 263 res = (struct pci_vpd_largeres *)buf;
264 vpdoff += sizeof(*res); 264 vpdoff += sizeof(*res);
265 265
266 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb); 266 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
267 switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) { 267 switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
268 case PCI_VPDRES_TYPE_IDENTIFIER_STRING: 268 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
269 /* Skip identifier string. */ 269 /* Skip identifier string. */
270 vpdoff += len; 270 vpdoff += len;
271 goto next; 271 goto next;
272 272
273 case PCI_VPDRES_TYPE_VPD: 273 case PCI_VPDRES_TYPE_VPD:
274#ifdef CAS_DEBUG 274#ifdef CAS_DEBUG
275 printf("\n"); 275 printf("\n");
276 for (i = 0; i < len; i++) { 276 for (i = 0; i < len; i++) {
277 uint8_t byte; 277 uint8_t byte;
278 if (i % 16 == 0) 278 if (i % 16 == 0)
279 printf("%04x :", i); 279 printf("%04x :", i);
280 byte = bus_space_read_1(romt, romh, vpdoff + i); 280 byte = bus_space_read_1(romt, romh, vpdoff + i);
281 printf(" %02x", byte); 281 printf(" %02x", byte);
282 if (i % 16 == 15) 282 if (i % 16 == 15)
283 printf("\n"); 283 printf("\n");
284 } 284 }
285 printf("\n"); 285 printf("\n");
286#endif 286#endif
287 287
288 while (len > 0) { 288 while (len > 0) {
289 bus_space_read_region_1(romt, romh, vpdoff, 289 bus_space_read_region_1(romt, romh, vpdoff,
290 buf, sizeof(buf)); 290 buf, sizeof(buf));
291 291
292 vpd = (struct pci_vpd *)buf; 292 vpd = (struct pci_vpd *)buf;
293 vpdoff += sizeof(*vpd) + vpd->vpd_len; 293 vpdoff += sizeof(*vpd) + vpd->vpd_len;
294 len -= sizeof(*vpd) + vpd->vpd_len; 294 len -= sizeof(*vpd) + vpd->vpd_len;
295 295
296 /* 296 /*
297 * We're looking for an "Enhanced" VPD... 297 * We're looking for an "Enhanced" VPD...
298 */ 298 */
299 if (vpd->vpd_key0 != 'Z') 299 if (vpd->vpd_key0 != 'Z')
300 continue; 300 continue;
301 301
302 desc = buf + sizeof(*vpd); 302 desc = buf + sizeof(*vpd);
303 303
304 /* 304 /*
305 * ...which is an instance property... 305 * ...which is an instance property...
306 */ 306 */
307 if (desc[0] != 'I') 307 if (desc[0] != 'I')
308 continue; 308 continue;
309 desc += 3; 309 desc += 3;
310 310
311 if (desc[0] == 'B' || desc[1] == ETHER_ADDR_LEN) { 311 if (desc[0] == 'B' || desc[1] == ETHER_ADDR_LEN) {
312 /* 312 /*
313 * ...that's a byte array with the proper 313 * ...that's a byte array with the proper
314 * length for a MAC address... 314 * length for a MAC address...
315 */ 315 */
316 desc += 2; 316 desc += 2;
317 317
318 /* 318 /*
319 * ...named "local-mac-address". 319 * ...named "local-mac-address".
320 */ 320 */
321 if (strcmp(desc, CAS_LOCAL_MAC_ADDRESS) != 0) 321 if (strcmp(desc, CAS_LOCAL_MAC_ADDRESS) != 0)
322 continue; 322 continue;
323 desc += sizeof(CAS_LOCAL_MAC_ADDRESS); 323 desc += sizeof(CAS_LOCAL_MAC_ADDRESS);
324 324
325 if (lma == CAS_LMA_MAXNUM) 325 if (lma == CAS_LMA_MAXNUM)
326 continue; 326 continue;
327 327
328 memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN); 328 memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN);
329 lma++; 329 lma++;
330 rv = 0; 330 rv = 0;
331 continue; 331 continue;
332 } else if (desc[0] == 'S') { 332 } else if (desc[0] == 'S') {
333 size_t k; 333 size_t k;
334 334
335 /* String */ 335 /* String */
336 desc += 2; 336 desc += 2;
337#ifdef CAS_DEBUG 337#ifdef CAS_DEBUG
338 /* ...named "pcs". */ 338 /* ...named "pcs". */
339 printf("STR: \"%s\"\n", desc); 339 printf("STR: \"%s\"\n", desc);
340 if (strcmp(desc, CAS_PHY_TYPE_PCS) != 0) 340 if (strcmp(desc, CAS_PHY_TYPE_PCS) != 0)
341 continue; 341 continue;
342 desc += sizeof(CAS_PHY_TYPE_PCS); 342 desc += sizeof(CAS_PHY_TYPE_PCS);
343 printf("STR: \"%s\"\n", desc); 343 printf("STR: \"%s\"\n", desc);
344#endif 344#endif
345 /* ...named "phy-interface" or "phy-type". */ 345 /* ...named "phy-interface" or "phy-type". */
346 if (strcmp(desc, CAS_PHY_INTERFACE) == 0) 346 if (strcmp(desc, CAS_PHY_INTERFACE) == 0)
347 k = sizeof(CAS_PHY_INTERFACE); 347 k = sizeof(CAS_PHY_INTERFACE);
348 else if (strcmp(desc, CAS_PHY_TYPE) == 0) 348 else if (strcmp(desc, CAS_PHY_TYPE) == 0)
349 k = sizeof(CAS_PHY_TYPE); 349 k = sizeof(CAS_PHY_TYPE);
350 else 350 else
351 continue; 351 continue;
352 352
353 desc += k; 353 desc += k;
354#ifdef CAS_DEBUG 354#ifdef CAS_DEBUG
355 printf("STR: \"%s\"\n", desc); 355 printf("STR: \"%s\"\n", desc);
356#endif 356#endif
357 if (strcmp(desc, CAS_PHY_TYPE_PCS) == 0) 357 if (strcmp(desc, CAS_PHY_TYPE_PCS) == 0)
358 pcs[phy] = true; 358 pcs[phy] = true;
359 phy++; 359 phy++;
360 continue; 360 continue;
361 } 361 }
362 } 362 }
363 break; 363 break;
364 364
365 default: 365 default:
366 goto fail; 366 goto fail;
367 } 367 }
368 368
369 /* 369 /*
370 * Multi port card has bridge chip. The device number is fixed: 370 * Multi port card has bridge chip. The device number is fixed:
371 * e.g. 371 * e.g.
372 * p0: 005:00:0 372 * p0: 005:00:0
373 * p1: 005:01:0 373 * p1: 005:01:0
374 * p2: 006:02:0 374 * p2: 006:02:0
375 * p3: 006:03:0 375 * p3: 006:03:0
376 */ 376 */
377 if (enaddr != 0) { 377 if (enaddr != 0) {
378 i = 0; 378 i = 0;
379 if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM) 379 if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM)
380 && (pa->pa_device < lma)) 380 && (pa->pa_device < lma))
381 i = pa->pa_device; 381 i = pa->pa_device;
382 memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN); 382 memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN);
383 } 383 }
384 if (pcs[pa->pa_device]) 384 if (pcs[pa->pa_device])
385 sc->sc_flags |= CAS_SERDES; 385 sc->sc_flags |= CAS_SERDES;
386 fail: 386 fail:
387 if (romsize != 0) 387 if (romsize != 0)
388 bus_space_unmap(romt, romh, romsize); 388 bus_space_unmap(romt, romh, romsize);
389 389
390 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM); 390 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
391 address &= ~PCI_MAPREG_ROM_ENABLE; 391 address &= ~PCI_MAPREG_ROM_ENABLE;
392 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address); 392 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
393 393
394 return (rv); 394 return (rv);
395} 395}
396 396
397void 397void
398cas_attach(device_t parent, device_t self, void *aux) 398cas_attach(device_t parent, device_t self, void *aux)
399{ 399{
400 struct pci_attach_args *pa = aux; 400 struct pci_attach_args *pa = aux;
401 const struct device_compatible_entry *dce; 401 const struct device_compatible_entry *dce;
402 struct cas_softc *sc = device_private(self); 402 struct cas_softc *sc = device_private(self);
403 prop_data_t data; 403 prop_data_t data;
404 uint8_t enaddr[ETHER_ADDR_LEN]; 404 uint8_t enaddr[ETHER_ADDR_LEN];
405 405
406 sc->sc_dev = self; 406 sc->sc_dev = self;
407 pci_aprint_devinfo(pa, NULL); 407 pci_aprint_devinfo(pa, NULL);
408 sc->sc_rev = PCI_REVISION(pa->pa_class); 408 sc->sc_rev = PCI_REVISION(pa->pa_class);
409 409
410 if (pci_dma64_available(pa)) 410 if (pci_dma64_available(pa))
411 sc->sc_dmatag = pa->pa_dmat64; 411 sc->sc_dmatag = pa->pa_dmat64;
412 else 412 else
413 sc->sc_dmatag = pa->pa_dmat; 413 sc->sc_dmatag = pa->pa_dmat;
414 414
415 dce = pci_compatible_lookup(pa, compat_data); 415 dce = pci_compatible_lookup(pa, compat_data);
416 KASSERT(dce != NULL); 416 KASSERT(dce != NULL);
417 sc->sc_variant = (u_int)dce->value; 417 sc->sc_variant = (u_int)dce->value;
418 418
419 aprint_debug_dev(sc->sc_dev, "variant = %d\n", sc->sc_variant); 419 aprint_debug_dev(sc->sc_dev, "variant = %d\n", sc->sc_variant);
420 420
421#define PCI_CAS_BASEADDR 0x10 421#define PCI_CAS_BASEADDR 0x10
422 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0, 422 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
423 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) { 423 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
424 aprint_error_dev(sc->sc_dev, 424 aprint_error_dev(sc->sc_dev,
425 "unable to map device registers\n"); 425 "unable to map device registers\n");
426 return; 426 return;
427 } 427 }
428 428
429 if ((data = prop_dictionary_get(device_properties(sc->sc_dev), 429 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
430 "mac-address")) != NULL) 430 "mac-address")) != NULL)
431 memcpy(enaddr, prop_data_value(data), ETHER_ADDR_LEN); 431 memcpy(enaddr, prop_data_value(data), ETHER_ADDR_LEN);
432 if (cas_pci_readvpd(sc, pa, (data == NULL) ? enaddr : 0) != 0) { 432 if (cas_pci_readvpd(sc, pa, (data == NULL) ? enaddr : 0) != 0) {
433 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n"); 433 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
434 memset(enaddr, 0, sizeof(enaddr)); 434 memset(enaddr, 0, sizeof(enaddr));
435 } 435 }
436 436
437 sc->sc_burst = 16; /* XXX */ 437 sc->sc_burst = 16; /* XXX */
438 438
439 sc->sc_att_stage = CAS_ATT_BACKEND_0; 439 sc->sc_att_stage = CAS_ATT_BACKEND_0;
440 440
441 if (pci_intr_map(pa, &sc->sc_handle) != 0) { 441 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
442 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n"); 442 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
443 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size); 443 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
444 return; 444 return;
445 } 445 }
446 sc->sc_pc = pa->pa_pc; 446 sc->sc_pc = pa->pa_pc;
447 if (!cas_estintr(sc, CAS_INTR_PCI)) { 447 if (!cas_estintr(sc, CAS_INTR_PCI)) {
448 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size); 448 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
449 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n"); 449 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
450 return; 450 return;
451 } 451 }
452 452
453 sc->sc_att_stage = CAS_ATT_BACKEND_1; 453 sc->sc_att_stage = CAS_ATT_BACKEND_1;
454 454
455 /* 455 /*
456 * call the main configure 456 * call the main configure
457 */ 457 */
458 cas_config(sc, enaddr); 458 cas_config(sc, enaddr);
459 459
460 if (pmf_device_register1(sc->sc_dev, 460 if (pmf_device_register1(sc->sc_dev,
461 cas_suspend, cas_resume, cas_shutdown)) 461 cas_suspend, cas_resume, cas_shutdown))
462 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if); 462 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
463 else 463 else
464 aprint_error_dev(sc->sc_dev, 464 aprint_error_dev(sc->sc_dev,
465 "could not establish power handlers\n"); 465 "could not establish power handlers\n");
466 466
467 sc->sc_att_stage = CAS_ATT_FINISHED; 467 sc->sc_att_stage = CAS_ATT_FINISHED;
468 /*FALLTHROUGH*/ 468 /*FALLTHROUGH*/
469} 469}
470 470
471/* 471/*
472 * cas_config: 472 * cas_config:
473 * 473 *
474 * Attach a Cassini interface to the system. 474 * Attach a Cassini interface to the system.
475 */ 475 */
476void 476void
477cas_config(struct cas_softc *sc, const uint8_t *enaddr) 477cas_config(struct cas_softc *sc, const uint8_t *enaddr)
478{ 478{
479 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 479 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
480 struct mii_data *mii = &sc->sc_mii; 480 struct mii_data *mii = &sc->sc_mii;
481 struct mii_softc *child; 481 struct mii_softc *child;
482 uint32_t reg; 482 uint32_t reg;
483 int i, error; 483 int i, error;
484 484
485 /* Make sure the chip is stopped. */ 485 /* Make sure the chip is stopped. */
486 ifp->if_softc = sc; 486 ifp->if_softc = sc;
487 cas_reset(sc); 487 cas_reset(sc);
488 488
489 /* 489 /*
490 * Allocate the control data structures, and create and load the 490 * Allocate the control data structures, and create and load the
491 * DMA map for it. 491 * DMA map for it.
492 */ 492 */
493 if ((error = bus_dmamem_alloc(sc->sc_dmatag, 493 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
494 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg, 494 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
495 1, &sc->sc_cdnseg, 0)) != 0) { 495 1, &sc->sc_cdnseg, 0)) != 0) {
496 aprint_error_dev(sc->sc_dev, 496 aprint_error_dev(sc->sc_dev,
497 "unable to allocate control data, error = %d\n", 497 "unable to allocate control data, error = %d\n",
498 error); 498 error);
499 cas_partial_detach(sc, CAS_ATT_0); 499 cas_partial_detach(sc, CAS_ATT_0);
500 } 500 }
501 501
502 /* XXX should map this in with correct endianness */ 502 /* XXX should map this in with correct endianness */
503 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, 503 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg,
504 sc->sc_cdnseg, sizeof(struct cas_control_data), 504 sc->sc_cdnseg, sizeof(struct cas_control_data),
505 (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) { 505 (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
506 aprint_error_dev(sc->sc_dev, 506 aprint_error_dev(sc->sc_dev,
507 "unable to map control data, error = %d\n", error); 507 "unable to map control data, error = %d\n", error);
508 cas_partial_detach(sc, CAS_ATT_1); 508 cas_partial_detach(sc, CAS_ATT_1);
509 } 509 }
510 510
511 if ((error = bus_dmamap_create(sc->sc_dmatag, 511 if ((error = bus_dmamap_create(sc->sc_dmatag,
512 sizeof(struct cas_control_data), 1, 512 sizeof(struct cas_control_data), 1,
513 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 513 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
514 aprint_error_dev(sc->sc_dev, 514 aprint_error_dev(sc->sc_dev,
515 "unable to create control data DMA map, error = %d\n", 515 "unable to create control data DMA map, error = %d\n",
516 error); 516 error);
517 cas_partial_detach(sc, CAS_ATT_2); 517 cas_partial_detach(sc, CAS_ATT_2);
518 } 518 }
519 519
520 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap, 520 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
521 sc->sc_control_data, sizeof(struct cas_control_data), NULL, 521 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
522 0)) != 0) { 522 0)) != 0) {
523 aprint_error_dev(sc->sc_dev, 523 aprint_error_dev(sc->sc_dev,
524 "unable to load control data DMA map, error = %d\n", 524 "unable to load control data DMA map, error = %d\n",
525 error); 525 error);
526 cas_partial_detach(sc, CAS_ATT_3); 526 cas_partial_detach(sc, CAS_ATT_3);
527 } 527 }
528 528
529 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data)); 529 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
530 530
531 /* 531 /*
532 * Create the receive buffer DMA maps. 532 * Create the receive buffer DMA maps.
533 */ 533 */
534 for (i = 0; i < CAS_NRXDESC; i++) { 534 for (i = 0; i < CAS_NRXDESC; i++) {
535 bus_dma_segment_t seg; 535 bus_dma_segment_t seg;
536 char *kva; 536 char *kva;
537 int rseg; 537 int rseg;
538 538
539 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE, 539 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
540 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { 540 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
541 aprint_error_dev(sc->sc_dev, 541 aprint_error_dev(sc->sc_dev,
542 "unable to alloc rx DMA mem %d, error = %d\n", 542 "unable to alloc rx DMA mem %d, error = %d\n",
543 i, error); 543 i, error);
544 cas_partial_detach(sc, CAS_ATT_5); 544 cas_partial_detach(sc, CAS_ATT_5);
545 } 545 }
546 sc->sc_rxsoft[i].rxs_dmaseg = seg; 546 sc->sc_rxsoft[i].rxs_dmaseg = seg;
547 547
548 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg, 548 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
549 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) { 549 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
550 aprint_error_dev(sc->sc_dev, 550 aprint_error_dev(sc->sc_dev,
551 "unable to alloc rx DMA mem %d, error = %d\n", 551 "unable to alloc rx DMA mem %d, error = %d\n",
552 i, error); 552 i, error);
553 cas_partial_detach(sc, CAS_ATT_5); 553 cas_partial_detach(sc, CAS_ATT_5);
554 } 554 }
555 sc->sc_rxsoft[i].rxs_kva = kva; 555 sc->sc_rxsoft[i].rxs_kva = kva;
556 556
557 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1, 557 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
558 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 558 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
559 aprint_error_dev(sc->sc_dev, 559 aprint_error_dev(sc->sc_dev,
560 "unable to create rx DMA map %d, error = %d\n", 560 "unable to create rx DMA map %d, error = %d\n",
561 i, error); 561 i, error);
562 cas_partial_detach(sc, CAS_ATT_5); 562 cas_partial_detach(sc, CAS_ATT_5);
563 } 563 }
564 564
565 if ((error = bus_dmamap_load(sc->sc_dmatag, 565 if ((error = bus_dmamap_load(sc->sc_dmatag,
566 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL, 566 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
567 BUS_DMA_NOWAIT)) != 0) { 567 BUS_DMA_NOWAIT)) != 0) {
568 aprint_error_dev(sc->sc_dev, 568 aprint_error_dev(sc->sc_dev,
569 "unable to load rx DMA map %d, error = %d\n", 569 "unable to load rx DMA map %d, error = %d\n",
570 i, error); 570 i, error);
571 cas_partial_detach(sc, CAS_ATT_5); 571 cas_partial_detach(sc, CAS_ATT_5);
572 } 572 }
573 } 573 }
574 574
575 /* 575 /*
576 * Create the transmit buffer DMA maps. 576 * Create the transmit buffer DMA maps.
577 */ 577 */
578 for (i = 0; i < CAS_NTXDESC; i++) { 578 for (i = 0; i < CAS_NTXDESC; i++) {
579 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 579 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
580 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT, 580 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
581 &sc->sc_txd[i].sd_map)) != 0) { 581 &sc->sc_txd[i].sd_map)) != 0) {
582 aprint_error_dev(sc->sc_dev, 582 aprint_error_dev(sc->sc_dev,
583 "unable to create tx DMA map %d, error = %d\n", 583 "unable to create tx DMA map %d, error = %d\n",
584 i, error); 584 i, error);
585 cas_partial_detach(sc, CAS_ATT_6); 585 cas_partial_detach(sc, CAS_ATT_6);
586 } 586 }
587 sc->sc_txd[i].sd_mbuf = NULL; 587 sc->sc_txd[i].sd_mbuf = NULL;
588 } 588 }
589 589
590 /* 590 /*
591 * From this point forward, the attachment cannot fail. A failure 591 * From this point forward, the attachment cannot fail. A failure
592 * before this point releases all resources that may have been 592 * before this point releases all resources that may have been
593 * allocated. 593 * allocated.
594 */ 594 */
595 595
596 /* Announce ourselves. */ 596 /* Announce ourselves. */
597 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", 597 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
598 ether_sprintf(enaddr)); 598 ether_sprintf(enaddr));
599 aprint_naive(": Ethernet controller\n"); 599 aprint_naive(": Ethernet controller\n");
600 600
601 /* Get RX FIFO size */ 601 /* Get RX FIFO size */
602 sc->sc_rxfifosize = 16 * 1024; 602 sc->sc_rxfifosize = 16 * 1024;
603 603
604 /* Initialize ifnet structure. */ 604 /* Initialize ifnet structure. */
605 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 605 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
606 ifp->if_softc = sc; 606 ifp->if_softc = sc;
607 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 607 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
608 ifp->if_start = cas_start; 608 ifp->if_start = cas_start;
609 ifp->if_ioctl = cas_ioctl; 609 ifp->if_ioctl = cas_ioctl;
610 ifp->if_watchdog = cas_watchdog; 610 ifp->if_watchdog = cas_watchdog;
611 ifp->if_stop = cas_stop; 611 ifp->if_stop = cas_stop;
612 ifp->if_init = cas_init; 612 ifp->if_init = cas_init;
613 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1); 613 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
614 IFQ_SET_READY(&ifp->if_snd); 614 IFQ_SET_READY(&ifp->if_snd);
615 615
616 /* Initialize ifmedia structures and MII info */ 616 /* Initialize ifmedia structures and MII info */
617 mii->mii_ifp = ifp; 617 mii->mii_ifp = ifp;
618 mii->mii_readreg = cas_mii_readreg; 618 mii->mii_readreg = cas_mii_readreg;
619 mii->mii_writereg = cas_mii_writereg; 619 mii->mii_writereg = cas_mii_writereg;
620 mii->mii_statchg = cas_mii_statchg; 620 mii->mii_statchg = cas_mii_statchg;
621 621
622 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus); 622 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
623 sc->sc_ethercom.ec_mii = mii; 623 sc->sc_ethercom.ec_mii = mii;
624 624
625 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0); 625 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
626 626
627 cas_mifinit(sc); 627 cas_mifinit(sc);
628 628
629 if (sc->sc_mif_config & (CAS_MIF_CONFIG_MDI1 | CAS_MIF_CONFIG_MDI0)) { 629 if (sc->sc_mif_config & (CAS_MIF_CONFIG_MDI1 | CAS_MIF_CONFIG_MDI0)) {
630 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) { 630 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
631 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL; 631 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
632 bus_space_write_4(sc->sc_memt, sc->sc_memh, 632 bus_space_write_4(sc->sc_memt, sc->sc_memh,
633 CAS_MIF_CONFIG, sc->sc_mif_config); 633 CAS_MIF_CONFIG, sc->sc_mif_config);
634 } 634 }
635 /* Enable/unfreeze the GMII pins of Saturn. */ 635 /* Enable/unfreeze the GMII pins of Saturn. */
636 if (sc->sc_variant == CAS_SATURN) { 636 if (sc->sc_variant == CAS_SATURN) {
637 reg = bus_space_read_4(sc->sc_memt, sc->sc_memh, 637 reg = bus_space_read_4(sc->sc_memt, sc->sc_memh,
638 CAS_SATURN_PCFG) & ~CAS_SATURN_PCFG_FSI; 638 CAS_SATURN_PCFG) & ~CAS_SATURN_PCFG_FSI;
639 if ((sc->sc_mif_config & CAS_MIF_CONFIG_MDI0) != 0) 639 if ((sc->sc_mif_config & CAS_MIF_CONFIG_MDI0) != 0)
640 reg |= CAS_SATURN_PCFG_FSI; 640 reg |= CAS_SATURN_PCFG_FSI;
641 bus_space_write_4(sc->sc_memt, sc->sc_memh, 641 bus_space_write_4(sc->sc_memt, sc->sc_memh,
642 CAS_SATURN_PCFG, reg); 642 CAS_SATURN_PCFG, reg);
643 /* Read to flush */ 643 /* Read to flush */
644 bus_space_read_4(sc->sc_memt, sc->sc_memh, 644 bus_space_read_4(sc->sc_memt, sc->sc_memh,
645 CAS_SATURN_PCFG); 645 CAS_SATURN_PCFG);
646 DELAY(10000); 646 DELAY(10000);
647 } 647 }
648 } 648 }
649 649
650 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 650 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
651 MII_OFFSET_ANY, 0); 651 MII_OFFSET_ANY, 0);
652 652
653 child = LIST_FIRST(&mii->mii_phys); 653 child = LIST_FIRST(&mii->mii_phys);
654 if (child == NULL && 654 if (child == NULL &&
655 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) { 655 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) {
656 /* 656 /*
657 * Try the external PCS SERDES if we didn't find any 657 * Try the external PCS SERDES if we didn't find any
658 * MII devices. 658 * MII devices.
659 */ 659 */
660 bus_space_write_4(sc->sc_memt, sc->sc_memh, 660 bus_space_write_4(sc->sc_memt, sc->sc_memh,
661 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES); 661 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
662 662
663 bus_space_write_4(sc->sc_memt, sc->sc_memh, 663 bus_space_write_4(sc->sc_memt, sc->sc_memh,
664 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE); 664 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
665 665
666 mii->mii_readreg = cas_pcs_readreg; 666 mii->mii_readreg = cas_pcs_readreg;
667 mii->mii_writereg = cas_pcs_writereg; 667 mii->mii_writereg = cas_pcs_writereg;
668 668
669 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 669 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
670 MII_OFFSET_ANY, MIIF_NOISOLATE); 670 MII_OFFSET_ANY, MIIF_NOISOLATE);
671 } 671 }
672 672
673 child = LIST_FIRST(&mii->mii_phys); 673 child = LIST_FIRST(&mii->mii_phys);
674 if (child == NULL) { 674 if (child == NULL) {
675 /* No PHY attached */ 675 /* No PHY attached */
676 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL); 676 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
677 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL); 677 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
678 } else { 678 } else {
679 /* 679 /*
680 * Walk along the list of attached MII devices and 680 * Walk along the list of attached MII devices and
681 * establish an `MII instance' to `phy number' 681 * establish an `MII instance' to `phy number'
682 * mapping. We'll use this mapping in media change 682 * mapping. We'll use this mapping in media change
683 * requests to determine which phy to use to program 683 * requests to determine which phy to use to program
684 * the MIF configuration register. 684 * the MIF configuration register.
685 */ 685 */
686 for (; child != NULL; child = LIST_NEXT(child, mii_list)) { 686 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
687 /* 687 /*
688 * Note: we support just two PHYs: the built-in 688 * Note: we support just two PHYs: the built-in
689 * internal device and an external on the MII 689 * internal device and an external on the MII
690 * connector. 690 * connector.
691 */ 691 */
692 if (child->mii_phy > 1 || child->mii_inst > 1) { 692 if (child->mii_phy > 1 || child->mii_inst > 1) {
693 aprint_error_dev(sc->sc_dev, 693 aprint_error_dev(sc->sc_dev,
694 "cannot accommodate MII device %s" 694 "cannot accommodate MII device %s"
695 " at phy %d, instance %d\n", 695 " at phy %d, instance %d\n",
696 device_xname(child->mii_dev), 696 device_xname(child->mii_dev),
697 child->mii_phy, child->mii_inst); 697 child->mii_phy, child->mii_inst);
698 continue; 698 continue;
699 } 699 }
700 700
701 sc->sc_phys[child->mii_inst] = child->mii_phy; 701 sc->sc_phys[child->mii_inst] = child->mii_phy;
702 } 702 }
703 703
704 /* 704 /*
705 * XXX - we can really do the following ONLY if the 705 * XXX - we can really do the following ONLY if the
706 * phy indeed has the auto negotiation capability!! 706 * phy indeed has the auto negotiation capability!!
707 */ 707 */
708 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); 708 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
709 } 709 }
710 710
711 /* claim 802.1q capability */ 711 /* claim 802.1q capability */
712 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 712 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
713 713
714 /* Attach the interface. */ 714 /* Attach the interface. */
715 if_attach(ifp); 715 if_attach(ifp);
716 if_deferred_start_init(ifp, NULL); 716 if_deferred_start_init(ifp, NULL);
717 ether_ifattach(ifp, enaddr); 717 ether_ifattach(ifp, enaddr);
718 718
719 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 719 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
720 RND_TYPE_NET, RND_FLAG_DEFAULT); 720 RND_TYPE_NET, RND_FLAG_DEFAULT);
721 721
722 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR, 722 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
723 NULL, device_xname(sc->sc_dev), "interrupts"); 723 NULL, device_xname(sc->sc_dev), "interrupts");
724 724
725 callout_init(&sc->sc_tick_ch, 0); 725 callout_init(&sc->sc_tick_ch, 0);
726 callout_setfunc(&sc->sc_tick_ch, cas_tick, sc); 726 callout_setfunc(&sc->sc_tick_ch, cas_tick, sc);
727 727
728 return; 728 return;
729} 729}
730 730
731int 731int
732cas_detach(device_t self, int flags) 732cas_detach(device_t self, int flags)
733{ 733{
734 int i; 734 int i;
735 struct cas_softc *sc = device_private(self); 735 struct cas_softc *sc = device_private(self);
736 bus_space_tag_t t = sc->sc_memt; 736 bus_space_tag_t t = sc->sc_memt;
737 bus_space_handle_t h = sc->sc_memh; 737 bus_space_handle_t h = sc->sc_memh;
738 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 738 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
739 739
740 /* 740 /*
741 * Free any resources we've allocated during the failed attach 741 * Free any resources we've allocated during the failed attach
742 * attempt. Do this in reverse order and fall through. 742 * attempt. Do this in reverse order and fall through.
743 */ 743 */
744 switch (sc->sc_att_stage) { 744 switch (sc->sc_att_stage) {
745 case CAS_ATT_FINISHED: 745 case CAS_ATT_FINISHED:
746 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0); 746 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
747 pmf_device_deregister(self); 747 pmf_device_deregister(self);
748 cas_stop(&sc->sc_ethercom.ec_if, 1); 748 cas_stop(&sc->sc_ethercom.ec_if, 1);
749 evcnt_detach(&sc->sc_ev_intr); 749 evcnt_detach(&sc->sc_ev_intr);
750 750
751 rnd_detach_source(&sc->rnd_source); 751 rnd_detach_source(&sc->rnd_source);
752 752
753 ether_ifdetach(ifp); 753 ether_ifdetach(ifp);
754 if_detach(ifp); 754 if_detach(ifp);
755 755
756 callout_destroy(&sc->sc_tick_ch); 756 callout_destroy(&sc->sc_tick_ch);
757 757
758 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 758 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
759 759
760 ifmedia_fini(&sc->sc_mii.mii_media); 760 ifmedia_fini(&sc->sc_mii.mii_media);
761 761
762 /*FALLTHROUGH*/ 762 /*FALLTHROUGH*/
763 case CAS_ATT_MII: 763 case CAS_ATT_MII:
764 case CAS_ATT_7: 764 case CAS_ATT_7:
765 case CAS_ATT_6: 765 case CAS_ATT_6:
766 for (i = 0; i < CAS_NTXDESC; i++) { 766 for (i = 0; i < CAS_NTXDESC; i++) {
767 if (sc->sc_txd[i].sd_map != NULL) 767 if (sc->sc_txd[i].sd_map != NULL)
768 bus_dmamap_destroy(sc->sc_dmatag, 768 bus_dmamap_destroy(sc->sc_dmatag,
769 sc->sc_txd[i].sd_map); 769 sc->sc_txd[i].sd_map);
770 } 770 }
771 /*FALLTHROUGH*/ 771 /*FALLTHROUGH*/
772 case CAS_ATT_5: 772 case CAS_ATT_5:
773 for (i = 0; i < CAS_NRXDESC; i++) { 773 for (i = 0; i < CAS_NRXDESC; i++) {
774 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 774 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
775 bus_dmamap_unload(sc->sc_dmatag, 775 bus_dmamap_unload(sc->sc_dmatag,
776 sc->sc_rxsoft[i].rxs_dmamap); 776 sc->sc_rxsoft[i].rxs_dmamap);
777 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 777 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
778 bus_dmamap_destroy(sc->sc_dmatag, 778 bus_dmamap_destroy(sc->sc_dmatag,
779 sc->sc_rxsoft[i].rxs_dmamap); 779 sc->sc_rxsoft[i].rxs_dmamap);
780 if (sc->sc_rxsoft[i].rxs_kva != NULL) 780 if (sc->sc_rxsoft[i].rxs_kva != NULL)
781 bus_dmamem_unmap(sc->sc_dmatag, 781 bus_dmamem_unmap(sc->sc_dmatag,
782 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE); 782 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
783 /* XXX need to check that bus_dmamem_alloc suceeded 783 /* XXX need to check that bus_dmamem_alloc suceeded
784 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL) 784 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
785 */ 785 */
786 bus_dmamem_free(sc->sc_dmatag, 786 bus_dmamem_free(sc->sc_dmatag,
787 &(sc->sc_rxsoft[i].rxs_dmaseg), 1); 787 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
788 } 788 }
789 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap); 789 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
790 /*FALLTHROUGH*/ 790 /*FALLTHROUGH*/
791 case CAS_ATT_4: 791 case CAS_ATT_4:
792 case CAS_ATT_3: 792 case CAS_ATT_3:
793 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap); 793 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
794 /*FALLTHROUGH*/ 794 /*FALLTHROUGH*/
795 case CAS_ATT_2: 795 case CAS_ATT_2:
796 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data, 796 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
797 sizeof(struct cas_control_data)); 797 sizeof(struct cas_control_data));
798 /*FALLTHROUGH*/ 798 /*FALLTHROUGH*/
799 case CAS_ATT_1: 799 case CAS_ATT_1:
800 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg); 800 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
801 /*FALLTHROUGH*/ 801 /*FALLTHROUGH*/
802 case CAS_ATT_0: 802 case CAS_ATT_0:
803 sc->sc_att_stage = CAS_ATT_0; 803 sc->sc_att_stage = CAS_ATT_0;
804 /*FALLTHROUGH*/ 804 /*FALLTHROUGH*/
805 case CAS_ATT_BACKEND_2: 805 case CAS_ATT_BACKEND_2:
806 case CAS_ATT_BACKEND_1: 806 case CAS_ATT_BACKEND_1:
807 if (sc->sc_ih != NULL) { 807 if (sc->sc_ih != NULL) {
808 pci_intr_disestablish(sc->sc_pc, sc->sc_ih); 808 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
809 sc->sc_ih = NULL; 809 sc->sc_ih = NULL;
810 } 810 }
811 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size); 811 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
812 /*FALLTHROUGH*/ 812 /*FALLTHROUGH*/
813 case CAS_ATT_BACKEND_0: 813 case CAS_ATT_BACKEND_0:
814 break; 814 break;
815 } 815 }
816 return 0; 816 return 0;
817} 817}
818 818
819static void 819static void
820cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage) 820cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
821{ 821{
822 cfattach_t ca = device_cfattach(sc->sc_dev); 822 cfattach_t ca = device_cfattach(sc->sc_dev);
823 823
824 sc->sc_att_stage = stage; 824 sc->sc_att_stage = stage;
825 (*ca->ca_detach)(sc->sc_dev, 0); 825 (*ca->ca_detach)(sc->sc_dev, 0);
826} 826}
827 827
828void 828void
829cas_tick(void *arg) 829cas_tick(void *arg)
830{ 830{
831 struct cas_softc *sc = arg; 831 struct cas_softc *sc = arg;
832 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 832 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
833 bus_space_tag_t t = sc->sc_memt; 833 bus_space_tag_t t = sc->sc_memt;
834 bus_space_handle_t mac = sc->sc_memh; 834 bus_space_handle_t mac = sc->sc_memh;
835 int s; 835 int s;
836 uint32_t v; 836 uint32_t v;
837 837
838 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 838 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
839 839
840 /* unload collisions counters */ 840 /* unload collisions counters */
841 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) + 841 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
842 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT); 842 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
843 if_statadd_ref(nsr, if_collisions, v + 843 if_statadd_ref(nsr, if_collisions, v +
844 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) + 844 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
845 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT)); 845 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT));
846 if_statadd_ref(nsr, if_oerrors, v); 846 if_statadd_ref(nsr, if_oerrors, v);
847 847
848 /* read error counters */ 848 /* read error counters */
849 if_statadd_ref(nsr, if_ierrors, 849 if_statadd_ref(nsr, if_ierrors,
850 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) + 850 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
851 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) + 851 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
852 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) + 852 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
853 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL)); 853 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL));
854 854
855 IF_STAT_PUTREF(ifp); 855 IF_STAT_PUTREF(ifp);
856 856
857 /* clear the hardware counters */ 857 /* clear the hardware counters */
858 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0); 858 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
859 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0); 859 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
860 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0); 860 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
861 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0); 861 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
862 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0); 862 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
863 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0); 863 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
864 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0); 864 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
865 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0); 865 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
866 866
867 s = splnet(); 867 s = splnet();
868 mii_tick(&sc->sc_mii); 868 mii_tick(&sc->sc_mii);
869 splx(s); 869 splx(s);
870 870
871 callout_schedule(&sc->sc_tick_ch, hz); 871 callout_schedule(&sc->sc_tick_ch, hz);
872} 872}
873 873
874int 874int
875cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r, 875cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
876 uint32_t clr, uint32_t set) 876 uint32_t clr, uint32_t set)
877{ 877{
878 int i; 878 int i;
879 uint32_t reg; 879 uint32_t reg;
880 880
881 for (i = TRIES; i--; DELAY(100)) { 881 for (i = TRIES; i--; DELAY(100)) {
882 reg = bus_space_read_4(sc->sc_memt, h, r); 882 reg = bus_space_read_4(sc->sc_memt, h, r);
883 if ((reg & clr) == 0 && (reg & set) == set) 883 if ((reg & clr) == 0 && (reg & set) == set)
884 return (1); 884 return (1);
885 } 885 }
886 886
887 return (0); 887 return (0);
888} 888}
889 889
890void 890void
891cas_reset(struct cas_softc *sc) 891cas_reset(struct cas_softc *sc)
892{ 892{
893 bus_space_tag_t t = sc->sc_memt; 893 bus_space_tag_t t = sc->sc_memt;
894 bus_space_handle_t h = sc->sc_memh; 894 bus_space_handle_t h = sc->sc_memh;
895 int s; 895 int s;
896 896
897 s = splnet(); 897 s = splnet();
898 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev))); 898 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
899 cas_reset_rx(sc); 899 cas_reset_rx(sc);
900 cas_reset_tx(sc); 900 cas_reset_tx(sc);
901 901
902 /* Disable interrupts */ 902 /* Disable interrupts */
903 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0); 903 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
904 904
905 /* Do a full reset */ 905 /* Do a full reset */
906 bus_space_write_4(t, h, CAS_RESET, 906 bus_space_write_4(t, h, CAS_RESET,
907 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS); 907 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
908 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0)) 908 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
909 aprint_error_dev(sc->sc_dev, "cannot reset device\n"); 909 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
910 splx(s); 910 splx(s);
911} 911}
912 912
913 913
914/* 914/*
915 * cas_rxdrain: 915 * cas_rxdrain:
916 * 916 *
917 * Drain the receive queue. 917 * Drain the receive queue.
918 */ 918 */
919void 919void
920cas_rxdrain(struct cas_softc *sc) 920cas_rxdrain(struct cas_softc *sc)
921{ 921{
922 /* Nothing to do yet. */ 922 /* Nothing to do yet. */
923} 923}
924 924
925/* 925/*
926 * Reset the whole thing. 926 * Reset the whole thing.
927 */ 927 */
928void 928void
929cas_stop(struct ifnet *ifp, int disable) 929cas_stop(struct ifnet *ifp, int disable)
930{ 930{
931 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc; 931 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
932 struct cas_sxd *sd; 932 struct cas_sxd *sd;
933 uint32_t i; 933 uint32_t i;
934 934
935 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev))); 935 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
936 936
937 callout_stop(&sc->sc_tick_ch); 937 callout_stop(&sc->sc_tick_ch);
938 938
939 /* 939 /*
940 * Mark the interface down and cancel the watchdog timer. 940 * Mark the interface down and cancel the watchdog timer.
941 */ 941 */
942 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 942 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
943 ifp->if_timer = 0; 943 ifp->if_timer = 0;
944 944
945 mii_down(&sc->sc_mii); 945 mii_down(&sc->sc_mii);
946 946
947 cas_reset_rx(sc); 947 cas_reset_rx(sc);
948 cas_reset_tx(sc); 948 cas_reset_tx(sc);
949 949
950 /* 950 /*
951 * Release any queued transmit buffers. 951 * Release any queued transmit buffers.
952 */ 952 */
953 for (i = 0; i < CAS_NTXDESC; i++) { 953 for (i = 0; i < CAS_NTXDESC; i++) {
954 sd = &sc->sc_txd[i]; 954 sd = &sc->sc_txd[i];
955 if (sd->sd_mbuf != NULL) { 955 if (sd->sd_mbuf != NULL) {
956 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0, 956 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
957 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 957 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
958 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map); 958 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
959 m_freem(sd->sd_mbuf); 959 m_freem(sd->sd_mbuf);
960 sd->sd_mbuf = NULL; 960 sd->sd_mbuf = NULL;
961 } 961 }
962 } 962 }
963 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0; 963 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
964 964
965 if (disable) 965 if (disable)
966 cas_rxdrain(sc); 966 cas_rxdrain(sc);
967} 967}
968 968
969 969
970/* 970/*
971 * Reset the receiver 971 * Reset the receiver
972 */ 972 */
973int 973int
974cas_reset_rx(struct cas_softc *sc) 974cas_reset_rx(struct cas_softc *sc)
975{ 975{
976 bus_space_tag_t t = sc->sc_memt; 976 bus_space_tag_t t = sc->sc_memt;
977 bus_space_handle_t h = sc->sc_memh; 977 bus_space_handle_t h = sc->sc_memh;
978 978
979 /* 979 /*
980 * Resetting while DMA is in progress can cause a bus hang, so we 980 * Resetting while DMA is in progress can cause a bus hang, so we
981 * disable DMA first. 981 * disable DMA first.
982 */ 982 */
983 cas_disable_rx(sc); 983 cas_disable_rx(sc);
984 bus_space_write_4(t, h, CAS_RX_CONFIG, 0); 984 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
985 /* Wait till it finishes */ 985 /* Wait till it finishes */
986 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0)) 986 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
987 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n"); 987 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
988 /* Wait 5ms extra. */ 988 /* Wait 5ms extra. */
989 delay(5000); 989 delay(5000);
990 990
991 /* Finally, reset the ERX */ 991 /* Finally, reset the ERX */
992 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX); 992 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
993 /* Wait till it finishes */ 993 /* Wait till it finishes */
994 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) { 994 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
995 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n"); 995 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
996 return (1); 996 return (1);
997 } 997 }
998 return (0); 998 return (0);
999} 999}
1000 1000
1001 1001
1002/* 1002/*
1003 * Reset the transmitter 1003 * Reset the transmitter
1004 */ 1004 */
1005int 1005int
1006cas_reset_tx(struct cas_softc *sc) 1006cas_reset_tx(struct cas_softc *sc)
1007{ 1007{
1008 bus_space_tag_t t = sc->sc_memt; 1008 bus_space_tag_t t = sc->sc_memt;
1009 bus_space_handle_t h = sc->sc_memh; 1009 bus_space_handle_t h = sc->sc_memh;
1010 1010
1011 /* 1011 /*
1012 * Resetting while DMA is in progress can cause a bus hang, so we 1012 * Resetting while DMA is in progress can cause a bus hang, so we
1013 * disable DMA first. 1013 * disable DMA first.
1014 */ 1014 */
1015 cas_disable_tx(sc); 1015 cas_disable_tx(sc);
1016 bus_space_write_4(t, h, CAS_TX_CONFIG, 0); 1016 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
1017 /* Wait till it finishes */ 1017 /* Wait till it finishes */
1018 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0)) 1018 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
1019 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n"); 1019 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
1020 /* Wait 5ms extra. */ 1020 /* Wait 5ms extra. */
1021 delay(5000); 1021 delay(5000);
1022 1022
1023 /* Finally, reset the ETX */ 1023 /* Finally, reset the ETX */
1024 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX); 1024 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
1025 /* Wait till it finishes */ 1025 /* Wait till it finishes */
1026 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) { 1026 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
1027 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n"); 1027 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
1028 return (1); 1028 return (1);
1029 } 1029 }
1030 return (0); 1030 return (0);
1031} 1031}
1032 1032
1033/* 1033/*
1034 * Disable receiver. 1034 * Disable receiver.
1035 */ 1035 */
1036int 1036int
1037cas_disable_rx(struct cas_softc *sc) 1037cas_disable_rx(struct cas_softc *sc)
1038{ 1038{
1039 bus_space_tag_t t = sc->sc_memt; 1039 bus_space_tag_t t = sc->sc_memt;
1040 bus_space_handle_t h = sc->sc_memh; 1040 bus_space_handle_t h = sc->sc_memh;
1041 uint32_t cfg; 1041 uint32_t cfg;
1042 1042
1043 /* Flip the enable bit */ 1043 /* Flip the enable bit */
1044 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG); 1044 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1045 cfg &= ~CAS_MAC_RX_ENABLE; 1045 cfg &= ~CAS_MAC_RX_ENABLE;
1046 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg); 1046 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
1047 1047
1048 /* Wait for it to finish */ 1048 /* Wait for it to finish */
1049 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0)); 1049 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
1050} 1050}
1051 1051
1052/* 1052/*
1053 * Disable transmitter. 1053 * Disable transmitter.
1054 */ 1054 */
1055int 1055int
1056cas_disable_tx(struct cas_softc *sc) 1056cas_disable_tx(struct cas_softc *sc)
1057{ 1057{
1058 bus_space_tag_t t = sc->sc_memt; 1058 bus_space_tag_t t = sc->sc_memt;
1059 bus_space_handle_t h = sc->sc_memh; 1059 bus_space_handle_t h = sc->sc_memh;
1060 uint32_t cfg; 1060 uint32_t cfg;
1061 1061
1062 /* Flip the enable bit */ 1062 /* Flip the enable bit */
1063 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG); 1063 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
1064 cfg &= ~CAS_MAC_TX_ENABLE; 1064 cfg &= ~CAS_MAC_TX_ENABLE;
1065 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg); 1065 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
1066 1066
1067 /* Wait for it to finish */ 1067 /* Wait for it to finish */
1068 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0)); 1068 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
1069} 1069}
1070 1070
1071/* 1071/*
1072 * Initialize interface. 1072 * Initialize interface.
1073 */ 1073 */
1074int 1074int
1075cas_meminit(struct cas_softc *sc) 1075cas_meminit(struct cas_softc *sc)
1076{ 1076{
1077 int i; 1077 int i;
1078 1078
1079 /* 1079 /*
1080 * Initialize the transmit descriptor ring. 1080 * Initialize the transmit descriptor ring.
1081 */ 1081 */
1082 for (i = 0; i < CAS_NTXDESC; i++) { 1082 for (i = 0; i < CAS_NTXDESC; i++) {
1083 sc->sc_txdescs[i].cd_flags = 0; 1083 sc->sc_txdescs[i].cd_flags = 0;
1084 sc->sc_txdescs[i].cd_addr = 0; 1084 sc->sc_txdescs[i].cd_addr = 0;
1085 } 1085 }
1086 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC, 1086 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
1087 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1087 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1088 1088
1089 /* 1089 /*
1090 * Initialize the receive descriptor and receive job 1090 * Initialize the receive descriptor and receive job
1091 * descriptor rings. 1091 * descriptor rings.
1092 */ 1092 */
1093 for (i = 0; i < CAS_NRXDESC; i++) 1093 for (i = 0; i < CAS_NRXDESC; i++)
1094 CAS_INIT_RXDESC(sc, i, i); 1094 CAS_INIT_RXDESC(sc, i, i);
1095 sc->sc_rxdptr = 0; 1095 sc->sc_rxdptr = 0;
1096 sc->sc_rxptr = 0; 1096 sc->sc_rxptr = 0;
1097 1097
1098 /* 1098 /*
1099 * Initialize the receive completion ring. 1099 * Initialize the receive completion ring.
1100 */ 1100 */
1101 for (i = 0; i < CAS_NRXCOMP; i++) { 1101 for (i = 0; i < CAS_NRXCOMP; i++) {
1102 sc->sc_rxcomps[i].cc_word[0] = 0; 1102 sc->sc_rxcomps[i].cc_word[0] = 0;
1103 sc->sc_rxcomps[i].cc_word[1] = 0; 1103 sc->sc_rxcomps[i].cc_word[1] = 0;
1104 sc->sc_rxcomps[i].cc_word[2] = 0; 1104 sc->sc_rxcomps[i].cc_word[2] = 0;
1105 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN); 1105 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1106 CAS_CDRXCSYNC(sc, i, 1106 CAS_CDRXCSYNC(sc, i,
1107 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1107 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1108 } 1108 }
1109 1109
1110 return (0); 1110 return (0);
1111} 1111}
1112 1112
1113int 1113int
1114cas_ringsize(int sz) 1114cas_ringsize(int sz)
1115{ 1115{
1116 switch (sz) { 1116 switch (sz) {
1117 case 32: 1117 case 32:
1118 return CAS_RING_SZ_32; 1118 return CAS_RING_SZ_32;
1119 case 64: 1119 case 64:
1120 return CAS_RING_SZ_64; 1120 return CAS_RING_SZ_64;
1121 case 128: 1121 case 128:
1122 return CAS_RING_SZ_128; 1122 return CAS_RING_SZ_128;
1123 case 256: 1123 case 256:
1124 return CAS_RING_SZ_256; 1124 return CAS_RING_SZ_256;
1125 case 512: 1125 case 512:
1126 return CAS_RING_SZ_512; 1126 return CAS_RING_SZ_512;
1127 case 1024: 1127 case 1024:
1128 return CAS_RING_SZ_1024; 1128 return CAS_RING_SZ_1024;
1129 case 2048: 1129 case 2048:
1130 return CAS_RING_SZ_2048; 1130 return CAS_RING_SZ_2048;
1131 case 4096: 1131 case 4096:
1132 return CAS_RING_SZ_4096; 1132 return CAS_RING_SZ_4096;
1133 case 8192: 1133 case 8192:
1134 return CAS_RING_SZ_8192; 1134 return CAS_RING_SZ_8192;
1135 default: 1135 default:
1136 aprint_error("cas: invalid Receive Descriptor ring size %d\n", 1136 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1137 sz); 1137 sz);
1138 return CAS_RING_SZ_32; 1138 return CAS_RING_SZ_32;
1139 } 1139 }
1140} 1140}
1141 1141
1142int 1142int
1143cas_cringsize(int sz) 1143cas_cringsize(int sz)
1144{ 1144{
1145 int i; 1145 int i;
1146 1146
1147 for (i = 0; i < 9; i++) 1147 for (i = 0; i < 9; i++)
1148 if (sz == (128 << i)) 1148 if (sz == (128 << i))
1149 return i; 1149 return i;
1150 1150
1151 aprint_error("cas: invalid completion ring size %d\n", sz); 1151 aprint_error("cas: invalid completion ring size %d\n", sz);
1152 return 128; 1152 return 128;
1153} 1153}
1154 1154
1155/* 1155/*
1156 * Initialization of interface; set up initialization block 1156 * Initialization of interface; set up initialization block
1157 * and transmit/receive descriptor rings. 1157 * and transmit/receive descriptor rings.
1158 */ 1158 */
1159int 1159int
1160cas_init(struct ifnet *ifp) 1160cas_init(struct ifnet *ifp)
1161{ 1161{
1162 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc; 1162 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1163 bus_space_tag_t t = sc->sc_memt; 1163 bus_space_tag_t t = sc->sc_memt;
1164 bus_space_handle_t h = sc->sc_memh; 1164 bus_space_handle_t h = sc->sc_memh;
1165 int s; 1165 int s;
1166 u_int max_frame_size; 1166 u_int max_frame_size;
1167 uint32_t v; 1167 uint32_t v;
1168 1168
1169 s = splnet(); 1169 s = splnet();
1170 1170
1171 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev))); 1171 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1172 /* 1172 /*
1173 * Initialization sequence. The numbered steps below correspond 1173 * Initialization sequence. The numbered steps below correspond
1174 * to the sequence outlined in section 6.3.5.1 in the Ethernet 1174 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1175 * Channel Engine manual (part of the PCIO manual). 1175 * Channel Engine manual (part of the PCIO manual).
1176 * See also the STP2002-STQ document from Sun Microsystems. 1176 * See also the STP2002-STQ document from Sun Microsystems.
1177 */ 1177 */
1178 1178
1179 /* step 1 & 2. Reset the Ethernet Channel */ 1179 /* step 1 & 2. Reset the Ethernet Channel */
1180 cas_stop(ifp, 0); 1180 cas_stop(ifp, 0);
1181 cas_reset(sc); 1181 cas_reset(sc);
1182 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev))); 1182 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1183 1183
1184 /* Re-initialize the MIF */ 1184 /* Re-initialize the MIF */
1185 cas_mifinit(sc); 1185 cas_mifinit(sc);
1186 1186
1187 /* step 3. Setup data structures in host memory */ 1187 /* step 3. Setup data structures in host memory */
1188 cas_meminit(sc); 1188 cas_meminit(sc);
1189 1189
1190 /* step 4. TX MAC registers & counters */ 1190 /* step 4. TX MAC registers & counters */
1191 cas_init_regs(sc); 1191 cas_init_regs(sc);
1192 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN; 1192 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1193 v = (max_frame_size) | (0x2000 << 16) /* Burst size */; 1193 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1194 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v); 1194 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1195 1195
1196 /* step 5. RX MAC registers & counters */ 1196 /* step 5. RX MAC registers & counters */
1197 cas_iff(sc); 1197 cas_iff(sc);
1198 1198
1199 /* step 6 & 7. Program Descriptor Ring Base Addresses */ 1199 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1200 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0); 1200 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1201 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI, 1201 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1202 BUS_ADDR_HI32(CAS_CDTXADDR(sc, 0))); 1202 BUS_ADDR_HI32(CAS_CDTXADDR(sc, 0)));
1203 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, 1203 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO,
1204 BUS_ADDR_LO32(CAS_CDTXADDR(sc, 0))); 1204 BUS_ADDR_LO32(CAS_CDTXADDR(sc, 0)));
1205 1205
1206 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0); 1206 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1207 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI, 1207 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1208 BUS_ADDR_HI32(CAS_CDRXADDR(sc, 0))); 1208 BUS_ADDR_HI32(CAS_CDRXADDR(sc, 0)));
1209 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, 1209 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO,
1210 BUS_ADDR_LO32(CAS_CDRXADDR(sc, 0))); 1210 BUS_ADDR_LO32(CAS_CDRXADDR(sc, 0)));
1211 1211
1212 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0); 1212 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1213 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI, 1213 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1214 BUS_ADDR_HI32(CAS_CDRXCADDR(sc, 0))); 1214 BUS_ADDR_HI32(CAS_CDRXCADDR(sc, 0)));
1215 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, 1215 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO,
1216 BUS_ADDR_LO32(CAS_CDRXCADDR(sc, 0))); 1216 BUS_ADDR_LO32(CAS_CDRXCADDR(sc, 0)));
1217 1217
1218 if (CAS_PLUS(sc)) { 1218 if (CAS_PLUS(sc)) {
1219 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0); 1219 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1220 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2, 1220 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1221 BUS_ADDR_HI32(CAS_CDRXADDR2(sc, 0))); 1221 BUS_ADDR_HI32(CAS_CDRXADDR2(sc, 0)));
1222 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2, 1222 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1223 BUS_ADDR_LO32(CAS_CDRXADDR2(sc, 0))); 1223 BUS_ADDR_LO32(CAS_CDRXADDR2(sc, 0)));
1224 } 1224 }
1225 1225
1226 /* step 8. Global Configuration & Interrupt Mask */ 1226 /* step 8. Global Configuration & Interrupt Mask */
1227 cas_estintr(sc, CAS_INTR_REG); 1227 cas_estintr(sc, CAS_INTR_REG);
1228 1228
1229 /* step 9. ETX Configuration: use mostly default values */ 1229 /* step 9. ETX Configuration: use mostly default values */
1230 1230
1231 /* Enable DMA */ 1231 /* Enable DMA */
1232 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10; 1232 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1233 bus_space_write_4(t, h, CAS_TX_CONFIG, 1233 bus_space_write_4(t, h, CAS_TX_CONFIG,
1234 v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29)); 1234 v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29));
1235 bus_space_write_4(t, h, CAS_TX_KICK, 0); 1235 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1236 1236
1237 /* step 10. ERX Configuration */ 1237 /* step 10. ERX Configuration */
1238 1238
1239 /* Encode Receive Descriptor ring size */ 1239 /* Encode Receive Descriptor ring size */
1240 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT; 1240 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1241 if (CAS_PLUS(sc)) 1241 if (CAS_PLUS(sc))
1242 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT; 1242 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1243 1243
1244 /* Encode Receive Completion ring size */ 1244 /* Encode Receive Completion ring size */
1245 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT; 1245 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1246 1246
1247 /* Enable DMA */ 1247 /* Enable DMA */
1248 bus_space_write_4(t, h, CAS_RX_CONFIG, 1248 bus_space_write_4(t, h, CAS_RX_CONFIG,
1249 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT) | CAS_RX_CONFIG_RXDMA_EN); 1249 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT) | CAS_RX_CONFIG_RXDMA_EN);
1250 1250
1251 /* 1251 /*
1252 * The following value is for an OFF Threshold of about 3/4 full 1252 * The following value is for an OFF Threshold of about 3/4 full
1253 * and an ON Threshold of 1/4 full. 1253 * and an ON Threshold of 1/4 full.
1254 */ 1254 */
1255 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH, 1255 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1256 (3 * sc->sc_rxfifosize / 256) | 1256 (3 * sc->sc_rxfifosize / 256) |
1257 ((sc->sc_rxfifosize / 256) << 12)); 1257 ((sc->sc_rxfifosize / 256) << 12));
1258 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6); 1258 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1259 1259
1260 /* step 11. Configure Media */ 1260 /* step 11. Configure Media */
1261 mii_ifmedia_change(&sc->sc_mii); 1261 mii_ifmedia_change(&sc->sc_mii);
1262 1262
1263 /* step 12. RX_MAC Configuration Register */ 1263 /* step 12. RX_MAC Configuration Register */
1264 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG); 1264 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1265 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC; 1265 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1266 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v); 1266 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1267 1267
1268 /* step 14. Issue Transmit Pending command */ 1268 /* step 14. Issue Transmit Pending command */
1269 1269
1270 /* step 15. Give the receiver a swift kick */ 1270 /* step 15. Give the receiver a swift kick */
1271 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4); 1271 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1272 if (CAS_PLUS(sc)) 1272 if (CAS_PLUS(sc))
1273 bus_space_write_4(t, h, CAS_RX_KICK2, 4); 1273 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1274 1274
1275 /* Start the one second timer. */ 1275 /* Start the one second timer. */
1276 callout_schedule(&sc->sc_tick_ch, hz); 1276 callout_schedule(&sc->sc_tick_ch, hz);
1277 1277
1278 ifp->if_flags |= IFF_RUNNING; 1278 ifp->if_flags |= IFF_RUNNING;
1279 ifp->if_flags &= ~IFF_OACTIVE; 1279 ifp->if_flags &= ~IFF_OACTIVE;
1280 ifp->if_timer = 0; 1280 ifp->if_timer = 0;
1281 splx(s); 1281 splx(s);
1282 1282
1283 return (0); 1283 return (0);
1284} 1284}
1285 1285
1286void 1286void
1287cas_init_regs(struct cas_softc *sc) 1287cas_init_regs(struct cas_softc *sc)
1288{ 1288{
1289 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1289 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1290 bus_space_tag_t t = sc->sc_memt; 1290 bus_space_tag_t t = sc->sc_memt;
1291 bus_space_handle_t h = sc->sc_memh; 1291 bus_space_handle_t h = sc->sc_memh;
1292 const u_char *laddr = CLLADDR(ifp->if_sadl); 1292 const u_char *laddr = CLLADDR(ifp->if_sadl);
1293 uint32_t v, r; 1293 uint32_t v, r;
1294 1294
1295 /* These regs are not cleared on reset */ 1295 /* These regs are not cleared on reset */
1296 sc->sc_inited = 0; 1296 sc->sc_inited = 0;
1297 if (!sc->sc_inited) { 1297 if (!sc->sc_inited) {
1298 /* Load recommended values */ 1298 /* Load recommended values */
1299 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00); 1299 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1300 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08); 1300 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1301 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04); 1301 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1302 1302
1303 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN); 1303 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1304 /* Max frame and max burst size */ 1304 /* Max frame and max burst size */
1305 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */; 1305 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1306 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v); 1306 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1307 1307
1308 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07); 1308 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1309 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04); 1309 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1310 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10); 1310 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1311 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088); 1311 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1312 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED, 1312 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1313 ((laddr[5]<<8)|laddr[4])&0x3ff); 1313 ((laddr[5]<<8)|laddr[4])&0x3ff);
1314 1314
1315 /* Secondary MAC addresses set to 0:0:0:0:0:0 */ 1315 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1316 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4) 1316 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1317 bus_space_write_4(t, h, r, 0); 1317 bus_space_write_4(t, h, r, 0);
1318 1318
1319 /* MAC control addr set to 0:1:c2:0:1:80 */ 1319 /* MAC control addr set to 0:1:c2:0:1:80 */
1320 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001); 1320 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1321 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200); 1321 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1322 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180); 1322 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1323 1323
1324 /* MAC filter addr set to 0:0:0:0:0:0 */ 1324 /* MAC filter addr set to 0:0:0:0:0:0 */
1325 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0); 1325 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1326 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0); 1326 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1327 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0); 1327 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1328 1328
1329 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0); 1329 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1330 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0); 1330 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1331 1331
1332 /* Hash table initialized to 0 */ 1332 /* Hash table initialized to 0 */
1333 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4) 1333 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1334 bus_space_write_4(t, h, r, 0); 1334 bus_space_write_4(t, h, r, 0);
1335 1335
1336 sc->sc_inited = 1; 1336 sc->sc_inited = 1;
1337 } 1337 }
1338 1338
1339 /* Counters need to be zeroed */ 1339 /* Counters need to be zeroed */
1340 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0); 1340 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1341 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0); 1341 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1342 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0); 1342 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1343 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0); 1343 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1344 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0); 1344 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1345 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0); 1345 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1346 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0); 1346 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1347 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0); 1347 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1348 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0); 1348 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1349 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0); 1349 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1350 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0); 1350 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1351 1351
1352 /* Un-pause stuff */ 1352 /* Un-pause stuff */
1353 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0); 1353 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1354 1354
1355 /* 1355 /*
1356 * Set the station address. 1356 * Set the station address.
1357 */ 1357 */
1358 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]); 1358 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1359 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]); 1359 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1360 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]); 1360 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1361} 1361}
1362 1362
1363/* 1363/*
1364 * Receive interrupt. 1364 * Receive interrupt.
1365 */ 1365 */
1366int 1366int
1367cas_rint(struct cas_softc *sc) 1367cas_rint(struct cas_softc *sc)
1368{ 1368{
1369 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1369 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1370 bus_space_tag_t t = sc->sc_memt; 1370 bus_space_tag_t t = sc->sc_memt;
1371 bus_space_handle_t h = sc->sc_memh; 1371 bus_space_handle_t h = sc->sc_memh;
1372 struct cas_rxsoft *rxs; 1372 struct cas_rxsoft *rxs;
1373 struct mbuf *m; 1373 struct mbuf *m;
1374 uint64_t word[4]; 1374 uint64_t word[4];
1375 int len, off, idx; 1375 int len, off, idx;
1376 int i, skip; 1376 int i, skip;
1377 void *cp; 1377 void *cp;
1378 1378
1379 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) { 1379 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1380 CAS_CDRXCSYNC(sc, i, 1380 CAS_CDRXCSYNC(sc, i,
1381 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1381 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1382 1382
1383 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]); 1383 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1384 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]); 1384 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1385 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]); 1385 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1386 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]); 1386 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1387 1387
1388 /* Stop if the hardware still owns the descriptor. */ 1388 /* Stop if the hardware still owns the descriptor. */
1389 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN) 1389 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1390 break; 1390 break;
1391 1391
1392 len = CAS_RC1_HDR_LEN(word[1]); 1392 len = CAS_RC1_HDR_LEN(word[1]);
1393 if (len > 0) { 1393 if (len > 0) {
1394 off = CAS_RC1_HDR_OFF(word[1]); 1394 off = CAS_RC1_HDR_OFF(word[1]);
1395 idx = CAS_RC1_HDR_IDX(word[1]); 1395 idx = CAS_RC1_HDR_IDX(word[1]);
1396 rxs = &sc->sc_rxsoft[idx]; 1396 rxs = &sc->sc_rxsoft[idx];
1397 1397
1398 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n", 1398 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1399 idx, off, len)); 1399 idx, off, len));
1400 1400
1401 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 1401 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1402 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1402 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1403 1403
1404 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN; 1404 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1405 m = m_devget(cp, len, 0, ifp); 1405 m = m_devget(cp, len, 0, ifp);
1406 1406
1407 if (word[0] & CAS_RC0_RELEASE_HDR) 1407 if (word[0] & CAS_RC0_RELEASE_HDR)
1408 cas_add_rxbuf(sc, idx); 1408 cas_add_rxbuf(sc, idx);
1409 1409
1410 if (m != NULL) { 1410 if (m != NULL) {
1411 1411
1412 /* 1412 /*
1413 * Pass this up to any BPF listeners, but only 1413 * Pass this up to any BPF listeners, but only
1414 * pass it up the stack if its for us. 1414 * pass it up the stack if its for us.
1415 */ 1415 */
1416 m->m_pkthdr.csum_flags = 0; 1416 m->m_pkthdr.csum_flags = 0;
1417 if_percpuq_enqueue(ifp->if_percpuq, m); 1417 if_percpuq_enqueue(ifp->if_percpuq, m);
1418 } else 1418 } else
1419 if_statinc(ifp, if_ierrors); 1419 if_statinc(ifp, if_ierrors);
1420 } 1420 }
1421 1421
1422 len = CAS_RC0_DATA_LEN(word[0]); 1422 len = CAS_RC0_DATA_LEN(word[0]);
1423 if (len > 0) { 1423 if (len > 0) {
1424 off = CAS_RC0_DATA_OFF(word[0]); 1424 off = CAS_RC0_DATA_OFF(word[0]);
1425 idx = CAS_RC0_DATA_IDX(word[0]); 1425 idx = CAS_RC0_DATA_IDX(word[0]);
1426 rxs = &sc->sc_rxsoft[idx]; 1426 rxs = &sc->sc_rxsoft[idx];
1427 1427
1428 DPRINTF(sc, ("data at idx %d, off %d, len %d\n", 1428 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1429 idx, off, len)); 1429 idx, off, len));
1430 1430
1431 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 1431 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1432 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1432 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1433 1433
1434 /* XXX We should not be copying the packet here. */ 1434 /* XXX We should not be copying the packet here. */
1435 cp = rxs->rxs_kva + off + ETHER_ALIGN; 1435 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1436 m = m_devget(cp, len, 0, ifp); 1436 m = m_devget(cp, len, 0, ifp);
1437 1437
1438 if (word[0] & CAS_RC0_RELEASE_DATA) 1438 if (word[0] & CAS_RC0_RELEASE_DATA)
1439 cas_add_rxbuf(sc, idx); 1439 cas_add_rxbuf(sc, idx);
1440 1440
1441 if (m != NULL) { 1441 if (m != NULL) {
1442 /* 1442 /*
1443 * Pass this up to any BPF listeners, but only 1443 * Pass this up to any BPF listeners, but only
1444 * pass it up the stack if its for us. 1444 * pass it up the stack if its for us.
1445 */ 1445 */
1446 m->m_pkthdr.csum_flags = 0; 1446 m->m_pkthdr.csum_flags = 0;
1447 if_percpuq_enqueue(ifp->if_percpuq, m); 1447 if_percpuq_enqueue(ifp->if_percpuq, m);
1448 } else 1448 } else
1449 if_statinc(ifp, if_ierrors); 1449 if_statinc(ifp, if_ierrors);
1450 } 1450 }
1451 1451
1452 if (word[0] & CAS_RC0_SPLIT) 1452 if (word[0] & CAS_RC0_SPLIT)
1453 aprint_error_dev(sc->sc_dev, "split packet\n"); 1453 aprint_error_dev(sc->sc_dev, "split packet\n");
1454 1454
1455 skip = CAS_RC0_SKIP(word[0]); 1455 skip = CAS_RC0_SKIP(word[0]);
1456 } 1456 }
1457 1457
1458 while (sc->sc_rxptr != i) { 1458 while (sc->sc_rxptr != i) {
1459 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0; 1459 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1460 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0; 1460 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1461 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0; 1461 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1462 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] = 1462 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1463 CAS_DMA_WRITE(CAS_RC3_OWN); 1463 CAS_DMA_WRITE(CAS_RC3_OWN);
1464 CAS_CDRXCSYNC(sc, sc->sc_rxptr, 1464 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1465 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1465 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1466 1466
1467 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr); 1467 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1468 } 1468 }
1469 1469
1470 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr); 1470 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1471 1471
1472 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n", 1472 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1473 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION))); 1473 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1474 1474
1475 return (1); 1475 return (1);
1476} 1476}
1477 1477
1478/* 1478/*
1479 * cas_add_rxbuf: 1479 * cas_add_rxbuf:
1480 * 1480 *
1481 * Add a receive buffer to the indicated descriptor. 1481 * Add a receive buffer to the indicated descriptor.
1482 */ 1482 */
1483int 1483int
1484cas_add_rxbuf(struct cas_softc *sc, int idx) 1484cas_add_rxbuf(struct cas_softc *sc, int idx)
1485{ 1485{
1486 bus_space_tag_t t = sc->sc_memt; 1486 bus_space_tag_t t = sc->sc_memt;
1487 bus_space_handle_t h = sc->sc_memh; 1487 bus_space_handle_t h = sc->sc_memh;
1488 1488
1489 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx); 1489 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1490 1490
1491 if ((sc->sc_rxdptr % 4) == 0) 1491 if ((sc->sc_rxdptr % 4) == 0)
1492 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr); 1492 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1493 1493
1494 if (++sc->sc_rxdptr == CAS_NRXDESC) 1494 if (++sc->sc_rxdptr == CAS_NRXDESC)
1495 sc->sc_rxdptr = 0; 1495 sc->sc_rxdptr = 0;
1496 1496
1497 return (0); 1497 return (0);
1498} 1498}
1499 1499
1500int 1500int
1501cas_eint(struct cas_softc *sc, u_int status) 1501cas_eint(struct cas_softc *sc, u_int status)
1502{ 1502{
1503 char bits[128]; 1503 char bits[128];
1504 if ((status & CAS_INTR_MIF) != 0) { 1504 if ((status & CAS_INTR_MIF) != 0) {
1505 DPRINTF(sc, ("%s: link status changed\n", 1505 DPRINTF(sc, ("%s: link status changed\n",
1506 device_xname(sc->sc_dev))); 1506 device_xname(sc->sc_dev)));
1507 return (1); 1507 return (1);
1508 } 1508 }
1509 1509
1510 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status); 1510 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1511 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits); 1511 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1512 return (1); 1512 return (1);
1513} 1513}
1514 1514
1515int 1515int
1516cas_pint(struct cas_softc *sc) 1516cas_pint(struct cas_softc *sc)
1517{ 1517{
1518 bus_space_tag_t t = sc->sc_memt; 1518 bus_space_tag_t t = sc->sc_memt;
1519 bus_space_handle_t seb = sc->sc_memh; 1519 bus_space_handle_t seb = sc->sc_memh;
1520 uint32_t status; 1520 uint32_t status;
1521 1521
1522 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS); 1522 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1523 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS); 1523 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1524#ifdef CAS_DEBUG 1524#ifdef CAS_DEBUG
1525 if (status) 1525 if (status)
1526 printf("%s: link status changed\n", device_xname(sc->sc_dev)); 1526 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1527#endif 1527#endif
1528 return (1); 1528 return (1);
1529} 1529}
1530 1530
1531int 1531int
1532cas_intr(void *v) 1532cas_intr(void *v)
1533{ 1533{
1534 struct cas_softc *sc = (struct cas_softc *)v; 1534 struct cas_softc *sc = (struct cas_softc *)v;
1535 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1535 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1536 bus_space_tag_t t = sc->sc_memt; 1536 bus_space_tag_t t = sc->sc_memt;
1537 bus_space_handle_t seb = sc->sc_memh; 1537 bus_space_handle_t seb = sc->sc_memh;
1538 uint32_t status; 1538 uint32_t status;
1539 int r = 0; 1539 int r = 0;
1540#ifdef CAS_DEBUG 1540#ifdef CAS_DEBUG
1541 char bits[128]; 1541 char bits[128];
1542#endif 1542#endif
1543 1543
1544 sc->sc_ev_intr.ev_count++; 1544 sc->sc_ev_intr.ev_count++;
1545 1545
1546 status = bus_space_read_4(t, seb, CAS_STATUS); 1546 status = bus_space_read_4(t, seb, CAS_STATUS);
1547#ifdef CAS_DEBUG 1547#ifdef CAS_DEBUG
1548 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status); 1548 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1549#endif 1549#endif
1550 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n", 1550 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1551 device_xname(sc->sc_dev), (status>>19), bits)); 1551 device_xname(sc->sc_dev), (status>>19), bits));
1552 1552
1553 if ((status & CAS_INTR_PCS) != 0) 1553 if ((status & CAS_INTR_PCS) != 0)
1554 r |= cas_pint(sc); 1554 r |= cas_pint(sc);
1555 1555
1556 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR | 1556 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1557 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0) 1557 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1558 r |= cas_eint(sc, status); 1558 r |= cas_eint(sc, status);
1559 1559
1560 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0) 1560 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1561 r |= cas_tint(sc, status); 1561 r |= cas_tint(sc, status);
1562 1562
1563 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0) 1563 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1564 r |= cas_rint(sc); 1564 r |= cas_rint(sc);
1565 1565
1566 /* We should eventually do more than just print out error stats. */ 1566 /* We should eventually do more than just print out error stats. */
1567 if (status & CAS_INTR_TX_MAC) { 1567 if (status & CAS_INTR_TX_MAC) {
1568 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS); 1568 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1569#ifdef CAS_DEBUG 1569#ifdef CAS_DEBUG
1570 if (txstat & ~CAS_MAC_TX_XMIT_DONE) 1570 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1571 printf("%s: MAC tx fault, status %x\n", 1571 printf("%s: MAC tx fault, status %x\n",
1572 device_xname(sc->sc_dev), txstat); 1572 device_xname(sc->sc_dev), txstat);
1573#endif 1573#endif
1574 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG)) 1574 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1575 cas_init(ifp); 1575 cas_init(ifp);
1576 } 1576 }
1577 if (status & CAS_INTR_RX_MAC) { 1577 if (status & CAS_INTR_RX_MAC) {
1578 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS); 1578 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1579#ifdef CAS_DEBUG 1579#ifdef CAS_DEBUG
1580 if (rxstat & ~CAS_MAC_RX_DONE) 1580 if (rxstat & ~CAS_MAC_RX_DONE)
1581 printf("%s: MAC rx fault, status %x\n", 1581 printf("%s: MAC rx fault, status %x\n",
1582 device_xname(sc->sc_dev), rxstat); 1582 device_xname(sc->sc_dev), rxstat);
1583#endif 1583#endif
1584 /* 1584 /*
1585 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often 1585 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1586 * due to a silicon bug so handle them silently. 1586 * due to a silicon bug so handle them silently.
1587 */ 1587 */
1588 if (rxstat & CAS_MAC_RX_OVERFLOW) { 1588 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1589 if_statinc(ifp, if_ierrors); 1589 if_statinc(ifp, if_ierrors);
1590 cas_init(ifp); 1590 cas_init(ifp);
1591 } 1591 }
1592#ifdef CAS_DEBUG 1592#ifdef CAS_DEBUG
1593 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT)) 1593 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1594 printf("%s: MAC rx fault, status %x\n", 1594 printf("%s: MAC rx fault, status %x\n",
1595 device_xname(sc->sc_dev), rxstat); 1595 device_xname(sc->sc_dev), rxstat);
1596#endif 1596#endif
1597 } 1597 }
1598 rnd_add_uint32(&sc->rnd_source, status); 1598 rnd_add_uint32(&sc->rnd_source, status);
1599 return (r); 1599 return (r);
1600} 1600}
1601 1601
1602 1602
1603void 1603void
1604cas_watchdog(struct ifnet *ifp) 1604cas_watchdog(struct ifnet *ifp)
1605{ 1605{
1606 struct cas_softc *sc = ifp->if_softc; 1606 struct cas_softc *sc = ifp->if_softc;
1607 1607
1608 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x " 1608 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1609 "CAS_MAC_RX_CONFIG %x\n", 1609 "CAS_MAC_RX_CONFIG %x\n",
1610 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG), 1610 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1611 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS), 1611 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1612 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG))); 1612 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1613 1613
1614 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev)); 1614 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1615 if_statinc(ifp, if_oerrors); 1615 if_statinc(ifp, if_oerrors);
1616 1616
1617 /* Try to get more packets going. */ 1617 /* Try to get more packets going. */
1618 cas_init(ifp); 1618 cas_init(ifp);
1619} 1619}
1620 1620
1621/* 1621/*
1622 * Initialize the MII Management Interface 1622 * Initialize the MII Management Interface
1623 */ 1623 */
1624void 1624void
1625cas_mifinit(struct cas_softc *sc) 1625cas_mifinit(struct cas_softc *sc)
1626{ 1626{
1627 bus_space_tag_t t = sc->sc_memt; 1627 bus_space_tag_t t = sc->sc_memt;
1628 bus_space_handle_t mif = sc->sc_memh; 1628 bus_space_handle_t mif = sc->sc_memh;
1629 1629
1630 /* Configure the MIF in frame mode */ 1630 /* Configure the MIF in frame mode */
1631 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG); 1631 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1632 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA; 1632 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1633 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config); 1633 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1634} 1634}
1635 1635
1636/* 1636/*
1637 * MII interface 1637 * MII interface
1638 * 1638 *
1639 * The Cassini MII interface supports at least three different operating modes: 1639 * The Cassini MII interface supports at least three different operating modes:
1640 * 1640 *
1641 * Bitbang mode is implemented using data, clock and output enable registers. 1641 * Bitbang mode is implemented using data, clock and output enable registers.
1642 * 1642 *
1643 * Frame mode is implemented by loading a complete frame into the frame 1643 * Frame mode is implemented by loading a complete frame into the frame
1644 * register and polling the valid bit for completion. 1644 * register and polling the valid bit for completion.
1645 * 1645 *
1646 * Polling mode uses the frame register but completion is indicated by 1646 * Polling mode uses the frame register but completion is indicated by
1647 * an interrupt. 1647 * an interrupt.
1648 * 1648 *
1649 */ 1649 */
1650int 1650int
1651cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 1651cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1652{ 1652{
1653 struct cas_softc *sc = device_private(self); 1653 struct cas_softc *sc = device_private(self);
1654 bus_space_tag_t t = sc->sc_memt; 1654 bus_space_tag_t t = sc->sc_memt;
1655 bus_space_handle_t mif = sc->sc_memh; 1655 bus_space_handle_t mif = sc->sc_memh;
1656 int n; 1656 int n;
1657 uint32_t v; 1657 uint32_t v;
1658 1658
1659#ifdef CAS_DEBUG 1659#ifdef CAS_DEBUG
1660 if (sc->sc_debug) 1660 if (sc->sc_debug)
1661 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg); 1661 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1662#endif 1662#endif
1663 1663
1664 /* Construct the frame command */ 1664 /* Construct the frame command */
1665 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) | 1665 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1666 CAS_MIF_FRAME_READ; 1666 CAS_MIF_FRAME_READ;
1667 1667
1668 bus_space_write_4(t, mif, CAS_MIF_FRAME, v); 1668 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1669 for (n = 0; n < 100; n++) { 1669 for (n = 0; n < 100; n++) {
1670 DELAY(1); 1670 DELAY(1);
1671 v = bus_space_read_4(t, mif, CAS_MIF_FRAME); 1671 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1672 if (v & CAS_MIF_FRAME_TA0) { 1672 if (v & CAS_MIF_FRAME_TA0) {
1673 *val = v & CAS_MIF_FRAME_DATA; 1673 *val = v & CAS_MIF_FRAME_DATA;
1674 return 0; 1674 return 0;
1675 } 1675 }
1676 } 1676 }
1677 1677
1678 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev)); 1678 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1679 return ETIMEDOUT; 1679 return ETIMEDOUT;
1680} 1680}
1681 1681
1682int 1682int
1683cas_mii_writereg(device_t self, int phy, int reg, uint16_t val) 1683cas_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1684{ 1684{
1685 struct cas_softc *sc = device_private(self); 1685 struct cas_softc *sc = device_private(self);
1686 bus_space_tag_t t = sc->sc_memt; 1686 bus_space_tag_t t = sc->sc_memt;
1687 bus_space_handle_t mif = sc->sc_memh; 1687 bus_space_handle_t mif = sc->sc_memh;
1688 int n; 1688 int n;
1689 uint32_t v; 1689 uint32_t v;
1690 1690
1691#ifdef CAS_DEBUG 1691#ifdef CAS_DEBUG
1692 if (sc->sc_debug) 1692 if (sc->sc_debug)
1693 printf("cas_mii_writereg: phy %d reg %d val %x\n", 1693 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1694 phy, reg, val); 1694 phy, reg, val);
1695#endif 1695#endif
1696 1696
1697 /* Construct the frame command */ 1697 /* Construct the frame command */
1698 v = CAS_MIF_FRAME_WRITE | 1698 v = CAS_MIF_FRAME_WRITE |
1699 (phy << CAS_MIF_PHY_SHIFT) | 1699 (phy << CAS_MIF_PHY_SHIFT) |
1700 (reg << CAS_MIF_REG_SHIFT) | 1700 (reg << CAS_MIF_REG_SHIFT) |
1701 (val & CAS_MIF_FRAME_DATA); 1701 (val & CAS_MIF_FRAME_DATA);
1702 1702
1703 bus_space_write_4(t, mif, CAS_MIF_FRAME, v); 1703 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1704 for (n = 0; n < 100; n++) { 1704 for (n = 0; n < 100; n++) {
1705 DELAY(1); 1705 DELAY(1);
1706 v = bus_space_read_4(t, mif, CAS_MIF_FRAME); 1706 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1707 if (v & CAS_MIF_FRAME_TA0) 1707 if (v & CAS_MIF_FRAME_TA0)
1708 return 0; 1708 return 0;
1709 } 1709 }
1710 1710
1711 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev)); 1711 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1712 return ETIMEDOUT; 1712 return ETIMEDOUT;
1713} 1713}
1714 1714
1715void 1715void
1716cas_mii_statchg(struct ifnet *ifp) 1716cas_mii_statchg(struct ifnet *ifp)
1717{ 1717{
1718 struct cas_softc *sc = ifp->if_softc; 1718 struct cas_softc *sc = ifp->if_softc;
1719#ifdef CAS_DEBUG 1719#ifdef CAS_DEBUG
1720 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media); 1720 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1721#endif 1721#endif
1722 bus_space_tag_t t = sc->sc_memt; 1722 bus_space_tag_t t = sc->sc_memt;
1723 bus_space_handle_t mac = sc->sc_memh; 1723 bus_space_handle_t mac = sc->sc_memh;
1724 uint32_t v; 1724 uint32_t v;
1725 1725
1726#ifdef CAS_DEBUG 1726#ifdef CAS_DEBUG
1727 if (sc->sc_debug) 1727 if (sc->sc_debug)
1728 printf("cas_mii_statchg: status change: phy = %d\n", 1728 printf("cas_mii_statchg: status change: phy = %d\n",
1729 sc->sc_phys[instance]); 1729 sc->sc_phys[instance]);
1730#endif 1730#endif
1731 1731
1732 /* Set tx full duplex options */ 1732 /* Set tx full duplex options */
1733 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0); 1733 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1734 delay(10000); /* reg must be cleared and delay before changing. */ 1734 delay(10000); /* reg must be cleared and delay before changing. */
1735 v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT | 1735 v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT |
1736 CAS_MAC_TX_ENABLE; 1736 CAS_MAC_TX_ENABLE;
1737 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) { 1737 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1738 v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS; 1738 v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS;
1739 } 1739 }
1740 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v); 1740 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1741 1741
1742 /* XIF Configuration */ 1742 /* XIF Configuration */
1743 v = CAS_MAC_XIF_TX_MII_ENA; 1743 v = CAS_MAC_XIF_TX_MII_ENA;
1744 v |= CAS_MAC_XIF_LINK_LED; 1744 v |= CAS_MAC_XIF_LINK_LED;
1745 1745
1746 /* MII needs echo disable if half duplex. */ 1746 /* MII needs echo disable if half duplex. */
1747 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) 1747 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1748 /* turn on full duplex LED */ 1748 /* turn on full duplex LED */
1749 v |= CAS_MAC_XIF_FDPLX_LED; 1749 v |= CAS_MAC_XIF_FDPLX_LED;
1750 else 1750 else
1751 /* half duplex -- disable echo */ 1751 /* half duplex -- disable echo */
1752 v |= CAS_MAC_XIF_ECHO_DISABL; 1752 v |= CAS_MAC_XIF_ECHO_DISABL;
1753 1753
1754 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) { 1754 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1755 case IFM_1000_T: /* Gigabit using GMII interface */ 1755 case IFM_1000_T: /* Gigabit using GMII interface */
1756 case IFM_1000_SX: 1756 case IFM_1000_SX:
1757 v |= CAS_MAC_XIF_GMII_MODE; 1757 v |= CAS_MAC_XIF_GMII_MODE;
1758 break; 1758 break;
1759 default: 1759 default:
1760 v &= ~CAS_MAC_XIF_GMII_MODE; 1760 v &= ~CAS_MAC_XIF_GMII_MODE;
1761 } 1761 }
1762 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v); 1762 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1763} 1763}
1764 1764
1765int 1765int
1766cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val) 1766cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val)
1767{ 1767{
1768 struct cas_softc *sc = device_private(self); 1768 struct cas_softc *sc = device_private(self);
1769 bus_space_tag_t t = sc->sc_memt; 1769 bus_space_tag_t t = sc->sc_memt;
1770 bus_space_handle_t pcs = sc->sc_memh; 1770 bus_space_handle_t pcs = sc->sc_memh;
1771 1771
1772#ifdef CAS_DEBUG 1772#ifdef CAS_DEBUG
1773 if (sc->sc_debug) 1773 if (sc->sc_debug)
1774 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg); 1774 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1775#endif 1775#endif
1776 1776
1777 if (phy != CAS_PHYAD_EXTERNAL) 1777 if (phy != CAS_PHYAD_EXTERNAL)
1778 return -1; 1778 return -1;
1779 1779
1780 switch (reg) { 1780 switch (reg) {
1781 case MII_BMCR: 1781 case MII_BMCR:
1782 reg = CAS_MII_CONTROL; 1782 reg = CAS_MII_CONTROL;
1783 break; 1783 break;
1784 case MII_BMSR: 1784 case MII_BMSR:
1785 reg = CAS_MII_STATUS; 1785 reg = CAS_MII_STATUS;
1786 break; 1786 break;