Sun Feb 13 18:29:16 2022 UTC ()
eqos(4): Nix trailing whitespace.  No functional change.


(riastradh)
diff -r1.4 -r1.5 src/sys/dev/ic/dwc_eqos.c

cvs diff -r1.4 -r1.5 src/sys/dev/ic/dwc_eqos.c (switch to unified diff)

--- src/sys/dev/ic/dwc_eqos.c 2022/02/13 18:29:00 1.4
+++ src/sys/dev/ic/dwc_eqos.c 2022/02/13 18:29:15 1.5
@@ -1,1303 +1,1303 @@ @@ -1,1303 +1,1303 @@
1/* $NetBSD: dwc_eqos.c,v 1.4 2022/02/13 18:29:00 riastradh Exp $ */ 1/* $NetBSD: dwc_eqos.c,v 1.5 2022/02/13 18:29:15 riastradh Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 2022 Jared McNeill <jmcneill@invisible.ca> 4 * Copyright (c) 2022 Jared McNeill <jmcneill@invisible.ca>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions 8 * modification, are permitted provided that the following conditions
9 * are met: 9 * are met:
10 * 1. Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer. 11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright 12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the 13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution. 14 * documentation and/or other materials provided with the distribution.
15 * 15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE. 26 * SUCH DAMAGE.
27 */ 27 */
28 28
29/* 29/*
30 * DesignWare Ethernet Quality-of-Service controller 30 * DesignWare Ethernet Quality-of-Service controller
31 */ 31 */
32 32
33#include "opt_net_mpsafe.h" 33#include "opt_net_mpsafe.h"
34 34
35#include <sys/cdefs.h> 35#include <sys/cdefs.h>
36__KERNEL_RCSID(0, "$NetBSD: dwc_eqos.c,v 1.4 2022/02/13 18:29:00 riastradh Exp $"); 36__KERNEL_RCSID(0, "$NetBSD: dwc_eqos.c,v 1.5 2022/02/13 18:29:15 riastradh Exp $");
37 37
38#include <sys/param.h> 38#include <sys/param.h>
39#include <sys/bus.h> 39#include <sys/bus.h>
40#include <sys/device.h> 40#include <sys/device.h>
41#include <sys/intr.h> 41#include <sys/intr.h>
42#include <sys/systm.h> 42#include <sys/systm.h>
43#include <sys/kernel.h> 43#include <sys/kernel.h>
44#include <sys/mutex.h> 44#include <sys/mutex.h>
45#include <sys/callout.h> 45#include <sys/callout.h>
46#include <sys/cprng.h> 46#include <sys/cprng.h>
47#include <sys/evcnt.h> 47#include <sys/evcnt.h>
48 48
49#include <sys/rndsource.h> 49#include <sys/rndsource.h>
50 50
51#include <net/if.h> 51#include <net/if.h>
52#include <net/if_dl.h> 52#include <net/if_dl.h>
53#include <net/if_ether.h> 53#include <net/if_ether.h>
54#include <net/if_media.h> 54#include <net/if_media.h>
55#include <net/bpf.h> 55#include <net/bpf.h>
56 56
57#include <dev/mii/miivar.h> 57#include <dev/mii/miivar.h>
58 58
59#include <dev/ic/dwc_eqos_reg.h> 59#include <dev/ic/dwc_eqos_reg.h>
60#include <dev/ic/dwc_eqos_var.h> 60#include <dev/ic/dwc_eqos_var.h>
61 61
62CTASSERT(MCLBYTES == 2048); 62CTASSERT(MCLBYTES == 2048);
63#ifdef EQOS_DEBUG 63#ifdef EQOS_DEBUG
64#define DPRINTF(...) printf(##__VA_ARGS__) 64#define DPRINTF(...) printf(##__VA_ARGS__)
65#else 65#else
66#define DPRINTF(...) ((void)0) 66#define DPRINTF(...) ((void)0)
67#endif 67#endif
68 68
69#ifdef NET_MPSAFE 69#ifdef NET_MPSAFE
70#define EQOS_MPSAFE 1 70#define EQOS_MPSAFE 1
71#define CALLOUT_FLAGS CALLOUT_MPSAFE 71#define CALLOUT_FLAGS CALLOUT_MPSAFE
72#else 72#else
73#define CALLOUT_FLAGS 0 73#define CALLOUT_FLAGS 0
74#endif 74#endif
75 75
76#define DESC_BOUNDARY (1ULL << 32) 76#define DESC_BOUNDARY (1ULL << 32)
77#define DESC_ALIGN sizeof(struct eqos_dma_desc) 77#define DESC_ALIGN sizeof(struct eqos_dma_desc)
78#define TX_DESC_COUNT EQOS_DMA_DESC_COUNT 78#define TX_DESC_COUNT EQOS_DMA_DESC_COUNT
79#define TX_DESC_SIZE (TX_DESC_COUNT * DESC_ALIGN) 79#define TX_DESC_SIZE (TX_DESC_COUNT * DESC_ALIGN)
80#define RX_DESC_COUNT EQOS_DMA_DESC_COUNT 80#define RX_DESC_COUNT EQOS_DMA_DESC_COUNT
81#define RX_DESC_SIZE (RX_DESC_COUNT * DESC_ALIGN) 81#define RX_DESC_SIZE (RX_DESC_COUNT * DESC_ALIGN)
82#define MII_BUSY_RETRY 1000 82#define MII_BUSY_RETRY 1000
83 83
84#define DESC_OFF(n) ((n) * sizeof(struct eqos_dma_desc)) 84#define DESC_OFF(n) ((n) * sizeof(struct eqos_dma_desc))
85#define TX_SKIP(n, o) (((n) + (o)) % TX_DESC_COUNT) 85#define TX_SKIP(n, o) (((n) + (o)) % TX_DESC_COUNT)
86#define TX_NEXT(n) TX_SKIP(n, 1) 86#define TX_NEXT(n) TX_SKIP(n, 1)
87#define RX_NEXT(n) (((n) + 1) % RX_DESC_COUNT) 87#define RX_NEXT(n) (((n) + 1) % RX_DESC_COUNT)
88 88
89#define TX_MAX_SEGS 128 89#define TX_MAX_SEGS 128
90 90
91#define EQOS_LOCK(sc) mutex_enter(&(sc)->sc_lock) 91#define EQOS_LOCK(sc) mutex_enter(&(sc)->sc_lock)
92#define EQOS_UNLOCK(sc) mutex_exit(&(sc)->sc_lock) 92#define EQOS_UNLOCK(sc) mutex_exit(&(sc)->sc_lock)
93#define EQOS_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_lock)) 93#define EQOS_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_lock))
94 94
95#define EQOS_TXLOCK(sc) mutex_enter(&(sc)->sc_txlock) 95#define EQOS_TXLOCK(sc) mutex_enter(&(sc)->sc_txlock)
96#define EQOS_TXUNLOCK(sc) mutex_exit(&(sc)->sc_txlock) 96#define EQOS_TXUNLOCK(sc) mutex_exit(&(sc)->sc_txlock)
97#define EQOS_ASSERT_TXLOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_txlock)) 97#define EQOS_ASSERT_TXLOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_txlock))
98 98
99#define EQOS_HW_FEATURE_ADDR64_32BIT(sc) \ 99#define EQOS_HW_FEATURE_ADDR64_32BIT(sc) \
100 (((sc)->sc_hw_feature[1] & GMAC_MAC_HW_FEATURE1_ADDR64_MASK) == \ 100 (((sc)->sc_hw_feature[1] & GMAC_MAC_HW_FEATURE1_ADDR64_MASK) == \
101 GMAC_MAC_HW_FEATURE1_ADDR64_32BIT) 101 GMAC_MAC_HW_FEATURE1_ADDR64_32BIT)
102 102
103 103
104#define RD4(sc, reg) \ 104#define RD4(sc, reg) \
105 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) 105 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
106#define WR4(sc, reg, val) \ 106#define WR4(sc, reg, val) \
107 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) 107 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
108 108
109#define STUB(...) \ 109#define STUB(...) \
110 printf("%s: TODO\n", __func__); \ 110 printf("%s: TODO\n", __func__); \
111 111
112static int 112static int
113eqos_mii_readreg(device_t dev, int phy, int reg, uint16_t *val) 113eqos_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
114{ 114{
115 struct eqos_softc *sc = device_private(dev); 115 struct eqos_softc *sc = device_private(dev);
116 uint32_t addr; 116 uint32_t addr;
117 int retry; 117 int retry;
118 118
119 addr = sc->sc_clock_range | 119 addr = sc->sc_clock_range |
120 (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) | 120 (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) |
121 (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) | 121 (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) |
122 GMAC_MAC_MDIO_ADDRESS_GOC_READ | 122 GMAC_MAC_MDIO_ADDRESS_GOC_READ |
123 GMAC_MAC_MDIO_ADDRESS_GB; 123 GMAC_MAC_MDIO_ADDRESS_GB;
124 WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr); 124 WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr);
125 125
126 delay(10000); 126 delay(10000);
127 127
128 for (retry = MII_BUSY_RETRY; retry > 0; retry--) { 128 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
129 addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS); 129 addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS);
130 if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) { 130 if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) {
131 *val = RD4(sc, GMAC_MAC_MDIO_DATA) & 0xFFFF; 131 *val = RD4(sc, GMAC_MAC_MDIO_DATA) & 0xFFFF;
132 break; 132 break;
133 } 133 }
134 delay(10); 134 delay(10);
135 } 135 }
136 if (retry == 0) { 136 if (retry == 0) {
137 device_printf(dev, "phy read timeout, phy=%d reg=%d\n", 137 device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
138 phy, reg); 138 phy, reg);
139 return ETIMEDOUT; 139 return ETIMEDOUT;
140 } 140 }
141 141
142 return 0; 142 return 0;
143} 143}
144 144
145static int 145static int
146eqos_mii_writereg(device_t dev, int phy, int reg, uint16_t val) 146eqos_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
147{ 147{
148 struct eqos_softc *sc = device_private(dev); 148 struct eqos_softc *sc = device_private(dev);
149 uint32_t addr; 149 uint32_t addr;
150 int retry; 150 int retry;
151 151
152 WR4(sc, GMAC_MAC_MDIO_DATA, val); 152 WR4(sc, GMAC_MAC_MDIO_DATA, val);
153 153
154 addr = sc->sc_clock_range | 154 addr = sc->sc_clock_range |
155 (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) | 155 (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) |
156 (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) | 156 (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) |
157 GMAC_MAC_MDIO_ADDRESS_GOC_WRITE | 157 GMAC_MAC_MDIO_ADDRESS_GOC_WRITE |
158 GMAC_MAC_MDIO_ADDRESS_GB; 158 GMAC_MAC_MDIO_ADDRESS_GB;
159 WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr); 159 WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr);
160 160
161 delay(10000); 161 delay(10000);
162 162
163 for (retry = MII_BUSY_RETRY; retry > 0; retry--) { 163 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
164 addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS); 164 addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS);
165 if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) { 165 if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) {
166 break; 166 break;
167 } 167 }
168 delay(10); 168 delay(10);
169 } 169 }
170 if (retry == 0) { 170 if (retry == 0) {
171 device_printf(dev, "phy write timeout, phy=%d reg=%d\n", 171 device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
172 phy, reg); 172 phy, reg);
173 return ETIMEDOUT; 173 return ETIMEDOUT;
174 } 174 }
175 175
176 return 0; 176 return 0;
177} 177}
178 178
179static void 179static void
180eqos_update_link(struct eqos_softc *sc) 180eqos_update_link(struct eqos_softc *sc)
181{ 181{
182 struct mii_data *mii = &sc->sc_mii; 182 struct mii_data *mii = &sc->sc_mii;
183 uint64_t baudrate; 183 uint64_t baudrate;
184 uint32_t conf; 184 uint32_t conf;
185 185
186 baudrate = ifmedia_baudrate(mii->mii_media_active); 186 baudrate = ifmedia_baudrate(mii->mii_media_active);
187 187
188 conf = RD4(sc, GMAC_MAC_CONFIGURATION); 188 conf = RD4(sc, GMAC_MAC_CONFIGURATION);
189 switch (baudrate) { 189 switch (baudrate) {
190 case IF_Mbps(10): 190 case IF_Mbps(10):
191 conf |= GMAC_MAC_CONFIGURATION_PS; 191 conf |= GMAC_MAC_CONFIGURATION_PS;
192 conf &= ~GMAC_MAC_CONFIGURATION_FES; 192 conf &= ~GMAC_MAC_CONFIGURATION_FES;
193 break; 193 break;
194 case IF_Mbps(100): 194 case IF_Mbps(100):
195 conf |= GMAC_MAC_CONFIGURATION_PS; 195 conf |= GMAC_MAC_CONFIGURATION_PS;
196 conf |= GMAC_MAC_CONFIGURATION_FES; 196 conf |= GMAC_MAC_CONFIGURATION_FES;
197 break; 197 break;
198 case IF_Gbps(1): 198 case IF_Gbps(1):
199 conf &= ~GMAC_MAC_CONFIGURATION_PS; 199 conf &= ~GMAC_MAC_CONFIGURATION_PS;
200 conf &= ~GMAC_MAC_CONFIGURATION_FES; 200 conf &= ~GMAC_MAC_CONFIGURATION_FES;
201 break; 201 break;
202 case IF_Mbps(2500ULL): 202 case IF_Mbps(2500ULL):
203 conf &= ~GMAC_MAC_CONFIGURATION_PS; 203 conf &= ~GMAC_MAC_CONFIGURATION_PS;
204 conf |= GMAC_MAC_CONFIGURATION_FES; 204 conf |= GMAC_MAC_CONFIGURATION_FES;
205 break; 205 break;
206 } 206 }
207 207
208 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 208 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
209 conf |= GMAC_MAC_CONFIGURATION_DM; 209 conf |= GMAC_MAC_CONFIGURATION_DM;
210 } else { 210 } else {
211 conf &= ~GMAC_MAC_CONFIGURATION_DM; 211 conf &= ~GMAC_MAC_CONFIGURATION_DM;
212 } 212 }
213 213
214 WR4(sc, GMAC_MAC_CONFIGURATION, conf); 214 WR4(sc, GMAC_MAC_CONFIGURATION, conf);
215} 215}
216 216
217static void 217static void
218eqos_mii_statchg(struct ifnet *ifp) 218eqos_mii_statchg(struct ifnet *ifp)
219{ 219{
220 struct eqos_softc * const sc = ifp->if_softc; 220 struct eqos_softc * const sc = ifp->if_softc;
221 221
222 eqos_update_link(sc); 222 eqos_update_link(sc);
223} 223}
224 224
225static void 225static void
226eqos_dma_sync(struct eqos_softc *sc, bus_dmamap_t map, 226eqos_dma_sync(struct eqos_softc *sc, bus_dmamap_t map,
227 u_int start, u_int end, u_int total, int flags) 227 u_int start, u_int end, u_int total, int flags)
228{ 228{
229 if (end > start) { 229 if (end > start) {
230 bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start), 230 bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start),
231 DESC_OFF(end) - DESC_OFF(start), flags); 231 DESC_OFF(end) - DESC_OFF(start), flags);
232 } else { 232 } else {
233 bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start), 233 bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start),
234 DESC_OFF(total) - DESC_OFF(start), flags); 234 DESC_OFF(total) - DESC_OFF(start), flags);
235 if (DESC_OFF(end) - DESC_OFF(0) > 0) { 235 if (DESC_OFF(end) - DESC_OFF(0) > 0) {
236 bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(0), 236 bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(0),
237 DESC_OFF(end) - DESC_OFF(0), flags); 237 DESC_OFF(end) - DESC_OFF(0), flags);
238 } 238 }
239 } 239 }
240} 240}
241 241
242static void 242static void
243eqos_setup_txdesc(struct eqos_softc *sc, int index, int flags, 243eqos_setup_txdesc(struct eqos_softc *sc, int index, int flags,
244 bus_addr_t paddr, u_int len, u_int total_len) 244 bus_addr_t paddr, u_int len, u_int total_len)
245{ 245{
246 uint32_t tdes2, tdes3; 246 uint32_t tdes2, tdes3;
247 247
248 if (paddr == 0 || len == 0) { 248 if (paddr == 0 || len == 0) {
249 KASSERT(flags == 0); 249 KASSERT(flags == 0);
250 tdes2 = 0; 250 tdes2 = 0;
251 tdes3 = 0; 251 tdes3 = 0;
252 --sc->sc_tx.queued; 252 --sc->sc_tx.queued;
253 } else { 253 } else {
254 tdes2 = (flags & EQOS_TDES3_LD) ? EQOS_TDES2_IOC : 0; 254 tdes2 = (flags & EQOS_TDES3_LD) ? EQOS_TDES2_IOC : 0;
255 tdes3 = flags; 255 tdes3 = flags;
256 ++sc->sc_tx.queued; 256 ++sc->sc_tx.queued;
257 } 257 }
258 258
259 KASSERT(!EQOS_HW_FEATURE_ADDR64_32BIT(sc) || (paddr >> 32) == 0); 259 KASSERT(!EQOS_HW_FEATURE_ADDR64_32BIT(sc) || (paddr >> 32) == 0);
260 260
261 sc->sc_tx.desc_ring[index].tdes0 = htole32((uint32_t)paddr); 261 sc->sc_tx.desc_ring[index].tdes0 = htole32((uint32_t)paddr);
262 sc->sc_tx.desc_ring[index].tdes1 = htole32((uint32_t)(paddr >> 32)); 262 sc->sc_tx.desc_ring[index].tdes1 = htole32((uint32_t)(paddr >> 32));
263 sc->sc_tx.desc_ring[index].tdes2 = htole32(tdes2 | len); 263 sc->sc_tx.desc_ring[index].tdes2 = htole32(tdes2 | len);
264 sc->sc_tx.desc_ring[index].tdes3 = htole32(tdes3 | total_len); 264 sc->sc_tx.desc_ring[index].tdes3 = htole32(tdes3 | total_len);
265} 265}
266 266
267static int 267static int
268eqos_setup_txbuf(struct eqos_softc *sc, int index, struct mbuf *m) 268eqos_setup_txbuf(struct eqos_softc *sc, int index, struct mbuf *m)
269{ 269{
270 bus_dma_segment_t *segs; 270 bus_dma_segment_t *segs;
271 int error, nsegs, cur, i; 271 int error, nsegs, cur, i;
272 uint32_t flags; 272 uint32_t flags;
273 bool nospace; 273 bool nospace;
274 274
275 /* at least one descriptor free ? */ 275 /* at least one descriptor free ? */
276 if (sc->sc_tx.queued >= TX_DESC_COUNT - 1) 276 if (sc->sc_tx.queued >= TX_DESC_COUNT - 1)
277 return -1; 277 return -1;
278 278
279 error = bus_dmamap_load_mbuf(sc->sc_dmat, 279 error = bus_dmamap_load_mbuf(sc->sc_dmat,
280 sc->sc_tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT); 280 sc->sc_tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
281 if (error == EFBIG) { 281 if (error == EFBIG) {
282 device_printf(sc->sc_dev, 282 device_printf(sc->sc_dev,
283 "TX packet needs too many DMA segments, dropping...\n"); 283 "TX packet needs too many DMA segments, dropping...\n");
284 return -2; 284 return -2;
285 } 285 }
286 if (error != 0) { 286 if (error != 0) {
287 device_printf(sc->sc_dev, 287 device_printf(sc->sc_dev,
288 "TX packet cannot be mapped, retried...\n"); 288 "TX packet cannot be mapped, retried...\n");
289 return 0; 289 return 0;
290 } 290 }
291 291
292 segs = sc->sc_tx.buf_map[index].map->dm_segs; 292 segs = sc->sc_tx.buf_map[index].map->dm_segs;
293 nsegs = sc->sc_tx.buf_map[index].map->dm_nsegs; 293 nsegs = sc->sc_tx.buf_map[index].map->dm_nsegs;
294 294
295 nospace = sc->sc_tx.queued >= TX_DESC_COUNT - nsegs; 295 nospace = sc->sc_tx.queued >= TX_DESC_COUNT - nsegs;
296 if (nospace) { 296 if (nospace) {
297 bus_dmamap_unload(sc->sc_dmat, 297 bus_dmamap_unload(sc->sc_dmat,
298 sc->sc_tx.buf_map[index].map); 298 sc->sc_tx.buf_map[index].map);
299 /* XXX coalesce and retry ? */ 299 /* XXX coalesce and retry ? */
300 return -1; 300 return -1;
301 } 301 }
302 302
303 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.buf_map[index].map, 303 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.buf_map[index].map,
304 0, sc->sc_tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);  304 0, sc->sc_tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
305 305
306 /* stored in same index as loaded map */ 306 /* stored in same index as loaded map */
307 sc->sc_tx.buf_map[index].mbuf = m; 307 sc->sc_tx.buf_map[index].mbuf = m;
308 308
309 flags = EQOS_TDES3_FD; 309 flags = EQOS_TDES3_FD;
310 310
311 for (cur = index, i = 0; i < nsegs; i++) { 311 for (cur = index, i = 0; i < nsegs; i++) {
312 if (i == nsegs - 1) 312 if (i == nsegs - 1)
313 flags |= EQOS_TDES3_LD; 313 flags |= EQOS_TDES3_LD;
314 314
315 eqos_setup_txdesc(sc, cur, flags, segs[i].ds_addr, 315 eqos_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
316 segs[i].ds_len, m->m_pkthdr.len); 316 segs[i].ds_len, m->m_pkthdr.len);
317 flags &= ~EQOS_TDES3_FD; 317 flags &= ~EQOS_TDES3_FD;
318 cur = TX_NEXT(cur); 318 cur = TX_NEXT(cur);
319 319
320 flags |= EQOS_TDES3_OWN; 320 flags |= EQOS_TDES3_OWN;
321 } 321 }
322 322
323 /* 323 /*
324 * Defer setting OWN bit on the first descriptor until all 324 * Defer setting OWN bit on the first descriptor until all
325 * descriptors have been updated. The hardware will not try to 325 * descriptors have been updated. The hardware will not try to
326 * process any descriptors past the first one still owned by 326 * process any descriptors past the first one still owned by
327 * software (i.e., with the OWN bit clear). 327 * software (i.e., with the OWN bit clear).
328 */ 328 */
329 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map, 329 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map,
330 DESC_OFF(index), offsetof(struct eqos_dma_desc, tdes3), 330 DESC_OFF(index), offsetof(struct eqos_dma_desc, tdes3),
331 BUS_DMASYNC_PREWRITE); 331 BUS_DMASYNC_PREWRITE);
332 sc->sc_tx.desc_ring[index].tdes3 |= htole32(EQOS_TDES3_OWN); 332 sc->sc_tx.desc_ring[index].tdes3 |= htole32(EQOS_TDES3_OWN);
333 333
334 return nsegs; 334 return nsegs;
335} 335}
336 336
337static void 337static void
338eqos_setup_rxdesc(struct eqos_softc *sc, int index, bus_addr_t paddr) 338eqos_setup_rxdesc(struct eqos_softc *sc, int index, bus_addr_t paddr)
339{ 339{
340 340
341 sc->sc_rx.desc_ring[index].tdes0 = htole32((uint32_t)paddr); 341 sc->sc_rx.desc_ring[index].tdes0 = htole32((uint32_t)paddr);
342 sc->sc_rx.desc_ring[index].tdes1 = htole32((uint32_t)(paddr >> 32)); 342 sc->sc_rx.desc_ring[index].tdes1 = htole32((uint32_t)(paddr >> 32));
343 sc->sc_rx.desc_ring[index].tdes2 = htole32(0); 343 sc->sc_rx.desc_ring[index].tdes2 = htole32(0);
344 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map, 344 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map,
345 DESC_OFF(index), offsetof(struct eqos_dma_desc, tdes3), 345 DESC_OFF(index), offsetof(struct eqos_dma_desc, tdes3),
346 BUS_DMASYNC_PREWRITE); 346 BUS_DMASYNC_PREWRITE);
347 sc->sc_rx.desc_ring[index].tdes3 = 347 sc->sc_rx.desc_ring[index].tdes3 =
348 htole32(EQOS_TDES3_OWN | EQOS_TDES3_IOC | EQOS_TDES3_BUF1V); 348 htole32(EQOS_TDES3_OWN | EQOS_TDES3_IOC | EQOS_TDES3_BUF1V);
349} 349}
350 350
351static int 351static int
352eqos_setup_rxbuf(struct eqos_softc *sc, int index, struct mbuf *m) 352eqos_setup_rxbuf(struct eqos_softc *sc, int index, struct mbuf *m)
353{ 353{
354 int error; 354 int error;
355 355
356 m_adj(m, ETHER_ALIGN); 356 m_adj(m, ETHER_ALIGN);
357 357
358 error = bus_dmamap_load_mbuf(sc->sc_dmat, 358 error = bus_dmamap_load_mbuf(sc->sc_dmat,
359 sc->sc_rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT); 359 sc->sc_rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT);
360 if (error != 0) 360 if (error != 0)
361 return error; 361 return error;
362 362
363 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map, 363 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map,
364 0, sc->sc_rx.buf_map[index].map->dm_mapsize, 364 0, sc->sc_rx.buf_map[index].map->dm_mapsize,
365 BUS_DMASYNC_PREREAD); 365 BUS_DMASYNC_PREREAD);
366 366
367 sc->sc_rx.buf_map[index].mbuf = m; 367 sc->sc_rx.buf_map[index].mbuf = m;
368 eqos_setup_rxdesc(sc, index, 368 eqos_setup_rxdesc(sc, index,
369 sc->sc_rx.buf_map[index].map->dm_segs[0].ds_addr); 369 sc->sc_rx.buf_map[index].map->dm_segs[0].ds_addr);
370 370
371 return 0; 371 return 0;
372} 372}
373 373
374static struct mbuf * 374static struct mbuf *
375eqos_alloc_mbufcl(struct eqos_softc *sc) 375eqos_alloc_mbufcl(struct eqos_softc *sc)
376{ 376{
377 struct mbuf *m; 377 struct mbuf *m;
378 378
379 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 379 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
380 if (m != NULL) 380 if (m != NULL)
381 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size; 381 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
382 382
383 return m; 383 return m;
384} 384}
385 385
386static void 386static void
387eqos_enable_intr(struct eqos_softc *sc) 387eqos_enable_intr(struct eqos_softc *sc)
388{ 388{
389 WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE, 389 WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE,
390 GMAC_DMA_CHAN0_INTR_ENABLE_NIE | 390 GMAC_DMA_CHAN0_INTR_ENABLE_NIE |
391 GMAC_DMA_CHAN0_INTR_ENABLE_AIE | 391 GMAC_DMA_CHAN0_INTR_ENABLE_AIE |
392 GMAC_DMA_CHAN0_INTR_ENABLE_FBE | 392 GMAC_DMA_CHAN0_INTR_ENABLE_FBE |
393 GMAC_DMA_CHAN0_INTR_ENABLE_RIE | 393 GMAC_DMA_CHAN0_INTR_ENABLE_RIE |
394 GMAC_DMA_CHAN0_INTR_ENABLE_TIE); 394 GMAC_DMA_CHAN0_INTR_ENABLE_TIE);
395} 395}
396 396
397static void 397static void
398eqos_disable_intr(struct eqos_softc *sc) 398eqos_disable_intr(struct eqos_softc *sc)
399{ 399{
400 WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE, 0); 400 WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE, 0);
401} 401}
402 402
403static void 403static void
404eqos_tick(void *softc) 404eqos_tick(void *softc)
405{ 405{
406 struct eqos_softc *sc = softc; 406 struct eqos_softc *sc = softc;
407 struct mii_data *mii = &sc->sc_mii; 407 struct mii_data *mii = &sc->sc_mii;
408#ifndef EQOS_MPSAFE 408#ifndef EQOS_MPSAFE
409 int s = splnet(); 409 int s = splnet();
410#endif 410#endif
411 411
412 EQOS_LOCK(sc); 412 EQOS_LOCK(sc);
413 mii_tick(mii); 413 mii_tick(mii);
414 callout_schedule(&sc->sc_stat_ch, hz); 414 callout_schedule(&sc->sc_stat_ch, hz);
415 EQOS_UNLOCK(sc); 415 EQOS_UNLOCK(sc);
416 416
417#ifndef EQOS_MPSAFE 417#ifndef EQOS_MPSAFE
418 splx(s); 418 splx(s);
419#endif 419#endif
420} 420}
421 421
422static uint32_t 422static uint32_t
423eqos_bitrev32(uint32_t x) 423eqos_bitrev32(uint32_t x)
424{ 424{
425 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1)); 425 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
426 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2)); 426 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
427 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4)); 427 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
428 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8)); 428 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
429 429
430 return (x >> 16) | (x << 16); 430 return (x >> 16) | (x << 16);
431} 431}
432 432
433static void 433static void
434eqos_setup_rxfilter(struct eqos_softc *sc) 434eqos_setup_rxfilter(struct eqos_softc *sc)
435{ 435{
436 struct ethercom *ec = &sc->sc_ec; 436 struct ethercom *ec = &sc->sc_ec;
437 struct ifnet *ifp = &ec->ec_if; 437 struct ifnet *ifp = &ec->ec_if;
438 uint32_t pfil, crc, hashreg, hashbit, hash[2]; 438 uint32_t pfil, crc, hashreg, hashbit, hash[2];
439 struct ether_multi *enm; 439 struct ether_multi *enm;
440 struct ether_multistep step; 440 struct ether_multistep step;
441 const uint8_t *eaddr; 441 const uint8_t *eaddr;
442 uint32_t val; 442 uint32_t val;
443 443
444 EQOS_ASSERT_LOCKED(sc); 444 EQOS_ASSERT_LOCKED(sc);
445 445
446 pfil = RD4(sc, GMAC_MAC_PACKET_FILTER); 446 pfil = RD4(sc, GMAC_MAC_PACKET_FILTER);
447 pfil &= ~(GMAC_MAC_PACKET_FILTER_PR | 447 pfil &= ~(GMAC_MAC_PACKET_FILTER_PR |
448 GMAC_MAC_PACKET_FILTER_PM | 448 GMAC_MAC_PACKET_FILTER_PM |
449 GMAC_MAC_PACKET_FILTER_HMC | 449 GMAC_MAC_PACKET_FILTER_HMC |
450 GMAC_MAC_PACKET_FILTER_PCF_MASK); 450 GMAC_MAC_PACKET_FILTER_PCF_MASK);
451 hash[0] = hash[1] = ~0U; 451 hash[0] = hash[1] = ~0U;
452 452
453 if ((ifp->if_flags & IFF_PROMISC) != 0) { 453 if ((ifp->if_flags & IFF_PROMISC) != 0) {
454 pfil |= GMAC_MAC_PACKET_FILTER_PR | 454 pfil |= GMAC_MAC_PACKET_FILTER_PR |
455 GMAC_MAC_PACKET_FILTER_PCF_ALL; 455 GMAC_MAC_PACKET_FILTER_PCF_ALL;
456 } else if ((ifp->if_flags & IFF_ALLMULTI) != 0) { 456 } else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
457 pfil |= GMAC_MAC_PACKET_FILTER_PM; 457 pfil |= GMAC_MAC_PACKET_FILTER_PM;
458 } else { 458 } else {
459 hash[0] = hash[1] = 0; 459 hash[0] = hash[1] = 0;
460 pfil |= GMAC_MAC_PACKET_FILTER_HMC; 460 pfil |= GMAC_MAC_PACKET_FILTER_HMC;
461 ETHER_LOCK(ec); 461 ETHER_LOCK(ec);
462 ETHER_FIRST_MULTI(step, ec, enm); 462 ETHER_FIRST_MULTI(step, ec, enm);
463 while (enm != NULL) { 463 while (enm != NULL) {
464 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 464 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
465 crc &= 0x7f; 465 crc &= 0x7f;
466 crc = eqos_bitrev32(~crc) >> 26; 466 crc = eqos_bitrev32(~crc) >> 26;
467 hashreg = (crc >> 5); 467 hashreg = (crc >> 5);
468 hashbit = (crc & 0x1f); 468 hashbit = (crc & 0x1f);
469 hash[hashreg] |= (1 << hashbit); 469 hash[hashreg] |= (1 << hashbit);
470 ETHER_NEXT_MULTI(step, enm); 470 ETHER_NEXT_MULTI(step, enm);
471 } 471 }
472 ETHER_UNLOCK(ec); 472 ETHER_UNLOCK(ec);
473 } 473 }
474 474
475 /* Write our unicast address */ 475 /* Write our unicast address */
476 eaddr = CLLADDR(ifp->if_sadl); 476 eaddr = CLLADDR(ifp->if_sadl);
477 val = eaddr[4] | (eaddr[5] << 8); 477 val = eaddr[4] | (eaddr[5] << 8);
478 WR4(sc, GMAC_MAC_ADDRESS0_HIGH, val); 478 WR4(sc, GMAC_MAC_ADDRESS0_HIGH, val);
479 val = eaddr[0] | (eaddr[1] << 8) | (eaddr[2] << 16) | 479 val = eaddr[0] | (eaddr[1] << 8) | (eaddr[2] << 16) |
480 (eaddr[3] << 24); 480 (eaddr[3] << 24);
481 WR4(sc, GMAC_MAC_ADDRESS0_LOW, val); 481 WR4(sc, GMAC_MAC_ADDRESS0_LOW, val);
482 482
483 /* Multicast hash filters */ 483 /* Multicast hash filters */
484 WR4(sc, GMAC_MAC_HASH_TABLE_REG0, hash[1]); 484 WR4(sc, GMAC_MAC_HASH_TABLE_REG0, hash[1]);
485 WR4(sc, GMAC_MAC_HASH_TABLE_REG1, hash[0]); 485 WR4(sc, GMAC_MAC_HASH_TABLE_REG1, hash[0]);
486 486
487 /* Packet filter config */ 487 /* Packet filter config */
488 WR4(sc, GMAC_MAC_PACKET_FILTER, pfil); 488 WR4(sc, GMAC_MAC_PACKET_FILTER, pfil);
489} 489}
490 490
491static int 491static int
492eqos_reset(struct eqos_softc *sc) 492eqos_reset(struct eqos_softc *sc)
493{ 493{
494 uint32_t val; 494 uint32_t val;
495 int retry; 495 int retry;
496 496
497 WR4(sc, GMAC_DMA_MODE, GMAC_DMA_MODE_SWR); 497 WR4(sc, GMAC_DMA_MODE, GMAC_DMA_MODE_SWR);
498 for (retry = 2000; retry > 0; retry--) { 498 for (retry = 2000; retry > 0; retry--) {
499 delay(1000); 499 delay(1000);
500 val = RD4(sc, GMAC_DMA_MODE); 500 val = RD4(sc, GMAC_DMA_MODE);
501 if ((val & GMAC_DMA_MODE_SWR) == 0) { 501 if ((val & GMAC_DMA_MODE_SWR) == 0) {
502 return 0; 502 return 0;
503 } 503 }
504 } 504 }
505 505
506 device_printf(sc->sc_dev, "reset timeout!\n"); 506 device_printf(sc->sc_dev, "reset timeout!\n");
507 return ETIMEDOUT; 507 return ETIMEDOUT;
508} 508}
509 509
510static void 510static void
511eqos_init_rings(struct eqos_softc *sc, int qid) 511eqos_init_rings(struct eqos_softc *sc, int qid)
512{ 512{
513 sc->sc_tx.queued = 0; 513 sc->sc_tx.queued = 0;
514 514
515 WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR_HI, 515 WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR_HI,
516 (uint32_t)(sc->sc_tx.desc_ring_paddr >> 32)); 516 (uint32_t)(sc->sc_tx.desc_ring_paddr >> 32));
517 WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR, 517 WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR,
518 (uint32_t)sc->sc_tx.desc_ring_paddr); 518 (uint32_t)sc->sc_tx.desc_ring_paddr);
519 WR4(sc, GMAC_DMA_CHAN0_TX_RING_LEN, TX_DESC_COUNT - 1); 519 WR4(sc, GMAC_DMA_CHAN0_TX_RING_LEN, TX_DESC_COUNT - 1);
520 520
521 WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR_HI, 521 WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR_HI,
522 (uint32_t)(sc->sc_rx.desc_ring_paddr >> 32)); 522 (uint32_t)(sc->sc_rx.desc_ring_paddr >> 32));
523 WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR, 523 WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR,
524 (uint32_t)sc->sc_rx.desc_ring_paddr); 524 (uint32_t)sc->sc_rx.desc_ring_paddr);
525 WR4(sc, GMAC_DMA_CHAN0_RX_RING_LEN, RX_DESC_COUNT - 1); 525 WR4(sc, GMAC_DMA_CHAN0_RX_RING_LEN, RX_DESC_COUNT - 1);
526 WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR, 526 WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR,
527 (uint32_t)sc->sc_rx.desc_ring_paddr + 527 (uint32_t)sc->sc_rx.desc_ring_paddr +
528 DESC_OFF((sc->sc_rx.cur - 1) % RX_DESC_COUNT)); 528 DESC_OFF((sc->sc_rx.cur - 1) % RX_DESC_COUNT));
529} 529}
530 530
531static int 531static int
532eqos_init_locked(struct eqos_softc *sc) 532eqos_init_locked(struct eqos_softc *sc)
533{ 533{
534 struct ifnet *ifp = &sc->sc_ec.ec_if; 534 struct ifnet *ifp = &sc->sc_ec.ec_if;
535 struct mii_data *mii = &sc->sc_mii; 535 struct mii_data *mii = &sc->sc_mii;
536 uint32_t val; 536 uint32_t val;
537 537
538 EQOS_ASSERT_LOCKED(sc); 538 EQOS_ASSERT_LOCKED(sc);
539 EQOS_ASSERT_TXLOCKED(sc); 539 EQOS_ASSERT_TXLOCKED(sc);
540 540
541 if ((ifp->if_flags & IFF_RUNNING) != 0) 541 if ((ifp->if_flags & IFF_RUNNING) != 0)
542 return 0; 542 return 0;
543 543
544 /* Setup TX/RX rings */ 544 /* Setup TX/RX rings */
545 eqos_init_rings(sc, 0); 545 eqos_init_rings(sc, 0);
546 546
547 /* Setup RX filter */ 547 /* Setup RX filter */
548 eqos_setup_rxfilter(sc); 548 eqos_setup_rxfilter(sc);
549 549
550 WR4(sc, GMAC_MAC_1US_TIC_COUNTER, (sc->sc_csr_clock / 1000000) - 1); 550 WR4(sc, GMAC_MAC_1US_TIC_COUNTER, (sc->sc_csr_clock / 1000000) - 1);
551 551
552 /* Enable transmit and receive DMA */ 552 /* Enable transmit and receive DMA */
553 val = RD4(sc, GMAC_DMA_CHAN0_CONTROL); 553 val = RD4(sc, GMAC_DMA_CHAN0_CONTROL);
554 val &= ~GMAC_DMA_CHAN0_CONTROL_DSL_MASK; 554 val &= ~GMAC_DMA_CHAN0_CONTROL_DSL_MASK;
555 val |= ((DESC_ALIGN - 16) / 8) << GMAC_DMA_CHAN0_CONTROL_DSL_SHIFT; 555 val |= ((DESC_ALIGN - 16) / 8) << GMAC_DMA_CHAN0_CONTROL_DSL_SHIFT;
556 val |= GMAC_DMA_CHAN0_CONTROL_PBLX8; 556 val |= GMAC_DMA_CHAN0_CONTROL_PBLX8;
557 WR4(sc, GMAC_DMA_CHAN0_CONTROL, val); 557 WR4(sc, GMAC_DMA_CHAN0_CONTROL, val);
558 val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL); 558 val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL);
559 val |= GMAC_DMA_CHAN0_TX_CONTROL_OSP; 559 val |= GMAC_DMA_CHAN0_TX_CONTROL_OSP;
560 val |= GMAC_DMA_CHAN0_TX_CONTROL_START; 560 val |= GMAC_DMA_CHAN0_TX_CONTROL_START;
561 WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val); 561 WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val);
562 val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL); 562 val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL);
563 val &= ~GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_MASK; 563 val &= ~GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_MASK;
564 val |= (MCLBYTES << GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_SHIFT); 564 val |= (MCLBYTES << GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_SHIFT);
565 val |= GMAC_DMA_CHAN0_RX_CONTROL_START; 565 val |= GMAC_DMA_CHAN0_RX_CONTROL_START;
566 WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val); 566 WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val);
567 567
568 /* Configure operation modes */ 568 /* Configure operation modes */
569 WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, 569 WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE,
570 GMAC_MTL_TXQ0_OPERATION_MODE_TSF | 570 GMAC_MTL_TXQ0_OPERATION_MODE_TSF |
571 GMAC_MTL_TXQ0_OPERATION_MODE_TXQEN_EN); 571 GMAC_MTL_TXQ0_OPERATION_MODE_TXQEN_EN);
572 WR4(sc, GMAC_MTL_RXQ0_OPERATION_MODE, 572 WR4(sc, GMAC_MTL_RXQ0_OPERATION_MODE,
573 GMAC_MTL_RXQ0_OPERATION_MODE_RSF | 573 GMAC_MTL_RXQ0_OPERATION_MODE_RSF |
574 GMAC_MTL_RXQ0_OPERATION_MODE_FEP | 574 GMAC_MTL_RXQ0_OPERATION_MODE_FEP |
575 GMAC_MTL_RXQ0_OPERATION_MODE_FUP); 575 GMAC_MTL_RXQ0_OPERATION_MODE_FUP);
576 576
577 /* Enable flow control */ 577 /* Enable flow control */
578 val = RD4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL); 578 val = RD4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL);
579 val |= 0xFFFFU << GMAC_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT; 579 val |= 0xFFFFU << GMAC_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT;
580 val |= GMAC_MAC_Q0_TX_FLOW_CTRL_TFE; 580 val |= GMAC_MAC_Q0_TX_FLOW_CTRL_TFE;
581 WR4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL, val); 581 WR4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL, val);
582 val = RD4(sc, GMAC_MAC_RX_FLOW_CTRL); 582 val = RD4(sc, GMAC_MAC_RX_FLOW_CTRL);
583 val |= GMAC_MAC_RX_FLOW_CTRL_RFE; 583 val |= GMAC_MAC_RX_FLOW_CTRL_RFE;
584 WR4(sc, GMAC_MAC_RX_FLOW_CTRL, val); 584 WR4(sc, GMAC_MAC_RX_FLOW_CTRL, val);
585 585
586 /* Enable transmitter and receiver */ 586 /* Enable transmitter and receiver */
587 val = RD4(sc, GMAC_MAC_CONFIGURATION); 587 val = RD4(sc, GMAC_MAC_CONFIGURATION);
588 val |= GMAC_MAC_CONFIGURATION_BE; 588 val |= GMAC_MAC_CONFIGURATION_BE;
589 val |= GMAC_MAC_CONFIGURATION_JD; 589 val |= GMAC_MAC_CONFIGURATION_JD;
590 val |= GMAC_MAC_CONFIGURATION_JE; 590 val |= GMAC_MAC_CONFIGURATION_JE;
591 val |= GMAC_MAC_CONFIGURATION_DCRS; 591 val |= GMAC_MAC_CONFIGURATION_DCRS;
592 val |= GMAC_MAC_CONFIGURATION_TE; 592 val |= GMAC_MAC_CONFIGURATION_TE;
593 val |= GMAC_MAC_CONFIGURATION_RE; 593 val |= GMAC_MAC_CONFIGURATION_RE;
594 WR4(sc, GMAC_MAC_CONFIGURATION, val); 594 WR4(sc, GMAC_MAC_CONFIGURATION, val);
595 595
596 /* Enable interrupts */ 596 /* Enable interrupts */
597 eqos_enable_intr(sc); 597 eqos_enable_intr(sc);
598 598
599 ifp->if_flags |= IFF_RUNNING; 599 ifp->if_flags |= IFF_RUNNING;
600 ifp->if_flags &= ~IFF_OACTIVE; 600 ifp->if_flags &= ~IFF_OACTIVE;
601 601
602 mii_mediachg(mii); 602 mii_mediachg(mii);
603 callout_schedule(&sc->sc_stat_ch, hz); 603 callout_schedule(&sc->sc_stat_ch, hz);
604 604
605 return 0; 605 return 0;
606} 606}
607 607
608static int 608static int
609eqos_init(struct ifnet *ifp) 609eqos_init(struct ifnet *ifp)
610{ 610{
611 struct eqos_softc *sc = ifp->if_softc; 611 struct eqos_softc *sc = ifp->if_softc;
612 int error; 612 int error;
613 613
614 EQOS_LOCK(sc); 614 EQOS_LOCK(sc);
615 EQOS_TXLOCK(sc); 615 EQOS_TXLOCK(sc);
616 error = eqos_init_locked(sc); 616 error = eqos_init_locked(sc);
617 EQOS_TXUNLOCK(sc); 617 EQOS_TXUNLOCK(sc);
618 EQOS_UNLOCK(sc); 618 EQOS_UNLOCK(sc);
619 619
620 return error; 620 return error;
621} 621}
622 622
623static void 623static void
624eqos_stop_locked(struct eqos_softc *sc, int disable) 624eqos_stop_locked(struct eqos_softc *sc, int disable)
625{ 625{
626 struct ifnet *ifp = &sc->sc_ec.ec_if; 626 struct ifnet *ifp = &sc->sc_ec.ec_if;
627 uint32_t val; 627 uint32_t val;
628 int retry; 628 int retry;
629 629
630 EQOS_ASSERT_LOCKED(sc); 630 EQOS_ASSERT_LOCKED(sc);
631 631
632 callout_stop(&sc->sc_stat_ch); 632 callout_stop(&sc->sc_stat_ch);
633 633
634 mii_down(&sc->sc_mii); 634 mii_down(&sc->sc_mii);
635 635
636 /* Disable receiver */ 636 /* Disable receiver */
637 val = RD4(sc, GMAC_MAC_CONFIGURATION); 637 val = RD4(sc, GMAC_MAC_CONFIGURATION);
638 val &= ~GMAC_MAC_CONFIGURATION_RE; 638 val &= ~GMAC_MAC_CONFIGURATION_RE;
639 WR4(sc, GMAC_MAC_CONFIGURATION, val); 639 WR4(sc, GMAC_MAC_CONFIGURATION, val);
640 640
641 /* Stop receive DMA */ 641 /* Stop receive DMA */
642 val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL); 642 val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL);
643 val &= ~GMAC_DMA_CHAN0_RX_CONTROL_START; 643 val &= ~GMAC_DMA_CHAN0_RX_CONTROL_START;
644 WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val); 644 WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val);
645 645
646 /* Stop transmit DMA */ 646 /* Stop transmit DMA */
647 val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL); 647 val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL);
648 val &= ~GMAC_DMA_CHAN0_TX_CONTROL_START; 648 val &= ~GMAC_DMA_CHAN0_TX_CONTROL_START;
649 WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val); 649 WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val);
650 650
651 if (disable) { 651 if (disable) {
652 /* Flush data in the TX FIFO */ 652 /* Flush data in the TX FIFO */
653 val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE); 653 val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE);
654 val |= GMAC_MTL_TXQ0_OPERATION_MODE_FTQ; 654 val |= GMAC_MTL_TXQ0_OPERATION_MODE_FTQ;
655 WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, val); 655 WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, val);
656 /* Wait for flush to complete */ 656 /* Wait for flush to complete */
657 for (retry = 10000; retry > 0; retry--) { 657 for (retry = 10000; retry > 0; retry--) {
658 val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE); 658 val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE);
659 if ((val & GMAC_MTL_TXQ0_OPERATION_MODE_FTQ) == 0) { 659 if ((val & GMAC_MTL_TXQ0_OPERATION_MODE_FTQ) == 0) {
660 break; 660 break;
661 } 661 }
662 delay(1); 662 delay(1);
663 } 663 }
664 if (retry == 0) { 664 if (retry == 0) {
665 device_printf(sc->sc_dev, 665 device_printf(sc->sc_dev,
666 "timeout flushing TX queue\n"); 666 "timeout flushing TX queue\n");
667 } 667 }
668 } 668 }
669 669
670 /* Disable transmitter */ 670 /* Disable transmitter */
671 val = RD4(sc, GMAC_MAC_CONFIGURATION); 671 val = RD4(sc, GMAC_MAC_CONFIGURATION);
672 val &= ~GMAC_MAC_CONFIGURATION_TE; 672 val &= ~GMAC_MAC_CONFIGURATION_TE;
673 WR4(sc, GMAC_MAC_CONFIGURATION, val); 673 WR4(sc, GMAC_MAC_CONFIGURATION, val);
674 674
675 /* Disable interrupts */ 675 /* Disable interrupts */
676 eqos_disable_intr(sc); 676 eqos_disable_intr(sc);
677 677
678 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 678 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
679} 679}
680 680
681static void 681static void
682eqos_stop(struct ifnet *ifp, int disable) 682eqos_stop(struct ifnet *ifp, int disable)
683{ 683{
684 struct eqos_softc * const sc = ifp->if_softc; 684 struct eqos_softc * const sc = ifp->if_softc;
685 685
686 EQOS_LOCK(sc); 686 EQOS_LOCK(sc);
687 eqos_stop_locked(sc, disable); 687 eqos_stop_locked(sc, disable);
688 EQOS_UNLOCK(sc); 688 EQOS_UNLOCK(sc);
689} 689}
690 690
691static void 691static void
692eqos_rxintr(struct eqos_softc *sc, int qid) 692eqos_rxintr(struct eqos_softc *sc, int qid)
693{ 693{
694 struct ifnet *ifp = &sc->sc_ec.ec_if; 694 struct ifnet *ifp = &sc->sc_ec.ec_if;
695 int error, index, len, pkts = 0; 695 int error, index, len, pkts = 0;
696 struct mbuf *m, *m0; 696 struct mbuf *m, *m0;
697 uint32_t tdes3; 697 uint32_t tdes3;
698 698
699 for (index = sc->sc_rx.cur; ; index = RX_NEXT(index)) { 699 for (index = sc->sc_rx.cur; ; index = RX_NEXT(index)) {
700 eqos_dma_sync(sc, sc->sc_rx.desc_map, 700 eqos_dma_sync(sc, sc->sc_rx.desc_map,
701 index, index + 1, RX_DESC_COUNT, 701 index, index + 1, RX_DESC_COUNT,
702 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 702 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
703 703
704 tdes3 = le32toh(sc->sc_rx.desc_ring[index].tdes3); 704 tdes3 = le32toh(sc->sc_rx.desc_ring[index].tdes3);
705 if ((tdes3 & EQOS_TDES3_OWN) != 0) { 705 if ((tdes3 & EQOS_TDES3_OWN) != 0) {
706 break; 706 break;
707 } 707 }
708 708
709 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map, 709 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map,
710 0, sc->sc_rx.buf_map[index].map->dm_mapsize, 710 0, sc->sc_rx.buf_map[index].map->dm_mapsize,
711 BUS_DMASYNC_POSTREAD); 711 BUS_DMASYNC_POSTREAD);
712 bus_dmamap_unload(sc->sc_dmat, 712 bus_dmamap_unload(sc->sc_dmat,
713 sc->sc_rx.buf_map[index].map); 713 sc->sc_rx.buf_map[index].map);
714 714
715 len = tdes3 & EQOS_TDES3_LENGTH_MASK; 715 len = tdes3 & EQOS_TDES3_LENGTH_MASK;
716 if (len != 0) { 716 if (len != 0) {
717 m = sc->sc_rx.buf_map[index].mbuf; 717 m = sc->sc_rx.buf_map[index].mbuf;
718 m_set_rcvif(m, ifp); 718 m_set_rcvif(m, ifp);
719 m->m_flags |= M_HASFCS; 719 m->m_flags |= M_HASFCS;
720 m->m_pkthdr.len = len; 720 m->m_pkthdr.len = len;
721 m->m_len = len; 721 m->m_len = len;
722 m->m_nextpkt = NULL; 722 m->m_nextpkt = NULL;
723 723
724 if_percpuq_enqueue(ifp->if_percpuq, m); 724 if_percpuq_enqueue(ifp->if_percpuq, m);
725 ++pkts; 725 ++pkts;
726 } 726 }
727 727
728 if ((m0 = eqos_alloc_mbufcl(sc)) != NULL) { 728 if ((m0 = eqos_alloc_mbufcl(sc)) != NULL) {
729 error = eqos_setup_rxbuf(sc, index, m0); 729 error = eqos_setup_rxbuf(sc, index, m0);
730 if (error != 0) { 730 if (error != 0) {
731 /* XXX hole in RX ring */ 731 /* XXX hole in RX ring */
732 } 732 }
733 } else { 733 } else {
734 if_statinc(ifp, if_ierrors); 734 if_statinc(ifp, if_ierrors);
735 } 735 }
736 eqos_dma_sync(sc, sc->sc_rx.desc_map, 736 eqos_dma_sync(sc, sc->sc_rx.desc_map,
737 index, index + 1, RX_DESC_COUNT, 737 index, index + 1, RX_DESC_COUNT,
738 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 738 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
739 739
740 WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR, 740 WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR,
741 (uint32_t)sc->sc_rx.desc_ring_paddr + 741 (uint32_t)sc->sc_rx.desc_ring_paddr +
742 DESC_OFF(sc->sc_rx.cur)); 742 DESC_OFF(sc->sc_rx.cur));
743 } 743 }
744 744
745 sc->sc_rx.cur = index; 745 sc->sc_rx.cur = index;
746 746
747 if (pkts != 0) { 747 if (pkts != 0) {
748 rnd_add_uint32(&sc->sc_rndsource, pkts); 748 rnd_add_uint32(&sc->sc_rndsource, pkts);
749 } 749 }
750} 750}
751 751
752static void 752static void
753eqos_txintr(struct eqos_softc *sc, int qid) 753eqos_txintr(struct eqos_softc *sc, int qid)
754{ 754{
755 struct ifnet *ifp = &sc->sc_ec.ec_if; 755 struct ifnet *ifp = &sc->sc_ec.ec_if;
756 struct eqos_bufmap *bmap; 756 struct eqos_bufmap *bmap;
757 struct eqos_dma_desc *desc; 757 struct eqos_dma_desc *desc;
758 uint32_t tdes3; 758 uint32_t tdes3;
759 int i, pkts = 0; 759 int i, pkts = 0;
760 760
761 EQOS_ASSERT_LOCKED(sc); 761 EQOS_ASSERT_LOCKED(sc);
762 762
763 for (i = sc->sc_tx.next; sc->sc_tx.queued > 0; i = TX_NEXT(i)) { 763 for (i = sc->sc_tx.next; sc->sc_tx.queued > 0; i = TX_NEXT(i)) {
764 KASSERT(sc->sc_tx.queued > 0); 764 KASSERT(sc->sc_tx.queued > 0);
765 KASSERT(sc->sc_tx.queued <= TX_DESC_COUNT); 765 KASSERT(sc->sc_tx.queued <= TX_DESC_COUNT);
766 eqos_dma_sync(sc, sc->sc_tx.desc_map, 766 eqos_dma_sync(sc, sc->sc_tx.desc_map,
767 i, i + 1, TX_DESC_COUNT, 767 i, i + 1, TX_DESC_COUNT,
768 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 768 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
769 desc = &sc->sc_tx.desc_ring[i]; 769 desc = &sc->sc_tx.desc_ring[i];
770 tdes3 = le32toh(desc->tdes3); 770 tdes3 = le32toh(desc->tdes3);
771 if ((tdes3 & EQOS_TDES3_OWN) != 0) { 771 if ((tdes3 & EQOS_TDES3_OWN) != 0) {
772 break; 772 break;
773 } 773 }
774 bmap = &sc->sc_tx.buf_map[i]; 774 bmap = &sc->sc_tx.buf_map[i];
775 if (bmap->mbuf != NULL) { 775 if (bmap->mbuf != NULL) {
776 bus_dmamap_sync(sc->sc_dmat, bmap->map, 776 bus_dmamap_sync(sc->sc_dmat, bmap->map,
777 0, bmap->map->dm_mapsize, 777 0, bmap->map->dm_mapsize,
778 BUS_DMASYNC_POSTWRITE); 778 BUS_DMASYNC_POSTWRITE);
779 bus_dmamap_unload(sc->sc_dmat, bmap->map); 779 bus_dmamap_unload(sc->sc_dmat, bmap->map);
780 m_freem(bmap->mbuf); 780 m_freem(bmap->mbuf);
781 bmap->mbuf = NULL; 781 bmap->mbuf = NULL;
782 ++pkts; 782 ++pkts;
783 } 783 }
784 784
785 eqos_setup_txdesc(sc, i, 0, 0, 0, 0); 785 eqos_setup_txdesc(sc, i, 0, 0, 0, 0);
786 eqos_dma_sync(sc, sc->sc_tx.desc_map, 786 eqos_dma_sync(sc, sc->sc_tx.desc_map,
787 i, i + 1, TX_DESC_COUNT, 787 i, i + 1, TX_DESC_COUNT,
788 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 788 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
789 789
790 ifp->if_flags &= ~IFF_OACTIVE; 790 ifp->if_flags &= ~IFF_OACTIVE;
791 791
792 /* Last descriptor in a packet contains DMA status */ 792 /* Last descriptor in a packet contains DMA status */
793 if ((tdes3 & EQOS_TDES3_LD) != 0) { 793 if ((tdes3 & EQOS_TDES3_LD) != 0) {
794 if ((tdes3 & EQOS_TDES3_DE) != 0) { 794 if ((tdes3 & EQOS_TDES3_DE) != 0) {
795 device_printf(sc->sc_dev, 795 device_printf(sc->sc_dev,
796 "TX [%u] desc error: 0x%08x\n", 796 "TX [%u] desc error: 0x%08x\n",
797 i, tdes3); 797 i, tdes3);
798 if_statinc(ifp, if_oerrors); 798 if_statinc(ifp, if_oerrors);
799 } else if ((tdes3 & EQOS_TDES3_ES) != 0) { 799 } else if ((tdes3 & EQOS_TDES3_ES) != 0) {
800 device_printf(sc->sc_dev, 800 device_printf(sc->sc_dev,
801 "TX [%u] tx error: 0x%08x\n", 801 "TX [%u] tx error: 0x%08x\n",
802 i, tdes3); 802 i, tdes3);
803 if_statinc(ifp, if_oerrors); 803 if_statinc(ifp, if_oerrors);
804 } else { 804 } else {
805 if_statinc(ifp, if_opackets); 805 if_statinc(ifp, if_opackets);
806 } 806 }
807 } 807 }
808 808
809 } 809 }
810 810
811 sc->sc_tx.next = i; 811 sc->sc_tx.next = i;
812 812
813 if (pkts != 0) { 813 if (pkts != 0) {
814 rnd_add_uint32(&sc->sc_rndsource, pkts); 814 rnd_add_uint32(&sc->sc_rndsource, pkts);
815 } 815 }
816} 816}
817 817
818static void 818static void
819eqos_start_locked(struct eqos_softc *sc) 819eqos_start_locked(struct eqos_softc *sc)
820{ 820{
821 struct ifnet *ifp = &sc->sc_ec.ec_if; 821 struct ifnet *ifp = &sc->sc_ec.ec_if;
822 struct mbuf *m; 822 struct mbuf *m;
823 int cnt, nsegs, start; 823 int cnt, nsegs, start;
824 824
825 EQOS_ASSERT_TXLOCKED(sc); 825 EQOS_ASSERT_TXLOCKED(sc);
826 826
827 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 827 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
828 return; 828 return;
829 829
830 for (cnt = 0, start = sc->sc_tx.cur; ; cnt++) { 830 for (cnt = 0, start = sc->sc_tx.cur; ; cnt++) {
831 if (sc->sc_tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) { 831 if (sc->sc_tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
832 ifp->if_flags |= IFF_OACTIVE; 832 ifp->if_flags |= IFF_OACTIVE;
833 break; 833 break;
834 } 834 }
835 835
836 IFQ_POLL(&ifp->if_snd, m); 836 IFQ_POLL(&ifp->if_snd, m);
837 if (m == NULL) { 837 if (m == NULL) {
838 break; 838 break;
839 } 839 }
840 840
841 nsegs = eqos_setup_txbuf(sc, sc->sc_tx.cur, m); 841 nsegs = eqos_setup_txbuf(sc, sc->sc_tx.cur, m);
842 if (nsegs <= 0) { 842 if (nsegs <= 0) {
843 if (nsegs == -1) { 843 if (nsegs == -1) {
844 ifp->if_flags |= IFF_OACTIVE; 844 ifp->if_flags |= IFF_OACTIVE;
845 } else if (nsegs == -2) { 845 } else if (nsegs == -2) {
846 IFQ_DEQUEUE(&ifp->if_snd, m); 846 IFQ_DEQUEUE(&ifp->if_snd, m);
847 m_freem(m); 847 m_freem(m);
848 } 848 }
849 break; 849 break;
850 } 850 }
851 851
852 IFQ_DEQUEUE(&ifp->if_snd, m); 852 IFQ_DEQUEUE(&ifp->if_snd, m);
853 bpf_mtap(ifp, m, BPF_D_OUT); 853 bpf_mtap(ifp, m, BPF_D_OUT);
854 854
855 sc->sc_tx.cur = TX_SKIP(sc->sc_tx.cur, nsegs); 855 sc->sc_tx.cur = TX_SKIP(sc->sc_tx.cur, nsegs);
856 } 856 }
857 857
858 if (cnt != 0) { 858 if (cnt != 0) {
859 eqos_dma_sync(sc, sc->sc_tx.desc_map, 859 eqos_dma_sync(sc, sc->sc_tx.desc_map,
860 start, sc->sc_tx.cur, TX_DESC_COUNT, 860 start, sc->sc_tx.cur, TX_DESC_COUNT,
861 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 861 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
862 862
863 /* Start and run TX DMA */ 863 /* Start and run TX DMA */
864 WR4(sc, GMAC_DMA_CHAN0_TX_END_ADDR, 864 WR4(sc, GMAC_DMA_CHAN0_TX_END_ADDR,
865 (uint32_t)sc->sc_tx.desc_ring_paddr + 865 (uint32_t)sc->sc_tx.desc_ring_paddr +
866 DESC_OFF(sc->sc_tx.cur)); 866 DESC_OFF(sc->sc_tx.cur));
867 } 867 }
868} 868}
869 869
870static void 870static void
871eqos_start(struct ifnet *ifp) 871eqos_start(struct ifnet *ifp)
872{ 872{
873 struct eqos_softc *sc = ifp->if_softc; 873 struct eqos_softc *sc = ifp->if_softc;
874 874
875 EQOS_TXLOCK(sc); 875 EQOS_TXLOCK(sc);
876 eqos_start_locked(sc); 876 eqos_start_locked(sc);
877 EQOS_TXUNLOCK(sc); 877 EQOS_TXUNLOCK(sc);
878} 878}
879 879
880static void 880static void
881eqos_intr_mtl(struct eqos_softc *sc, uint32_t mtl_status) 881eqos_intr_mtl(struct eqos_softc *sc, uint32_t mtl_status)
882{ 882{
883 uint32_t debug_data __unused = 0, ictrl = 0; 883 uint32_t debug_data __unused = 0, ictrl = 0;
884 884
885 if (mtl_status == 0) 885 if (mtl_status == 0)
886 return; 886 return;
887 887
888 /* Drain the errors reported by MTL_INTERRUPT_STATUS */ 888 /* Drain the errors reported by MTL_INTERRUPT_STATUS */
889 sc->sc_ev_mtl.ev_count++; 889 sc->sc_ev_mtl.ev_count++;
890 890
891 if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_DBGIS) != 0) { 891 if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_DBGIS) != 0) {
892 debug_data = RD4(sc, GMAC_MTL_FIFO_DEBUG_DATA); 892 debug_data = RD4(sc, GMAC_MTL_FIFO_DEBUG_DATA);
893 sc->sc_ev_mtl_debugdata.ev_count++; 893 sc->sc_ev_mtl_debugdata.ev_count++;
894 } 894 }
895 if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_Q0IS) != 0) { 895 if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_Q0IS) != 0) {
896 uint32_t new_status = 0; 896 uint32_t new_status = 0;
897 897
898 ictrl = RD4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS); 898 ictrl = RD4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS);
899 if ((ictrl & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS) != 0) { 899 if ((ictrl & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS) != 0) {
900 new_status |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS; 900 new_status |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS;
901 sc->sc_ev_mtl_rxovfis.ev_count++; 901 sc->sc_ev_mtl_rxovfis.ev_count++;
902 } 902 }
903 if ((ictrl & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS) != 0) { 903 if ((ictrl & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS) != 0) {
904 new_status |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS; 904 new_status |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS;
905 sc->sc_ev_mtl_txovfis.ev_count++; 905 sc->sc_ev_mtl_txovfis.ev_count++;
906 } 906 }
907 if (new_status) { 907 if (new_status) {
908 new_status |= (ictrl & 908 new_status |= (ictrl &
909 (GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOIE| 909 (GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOIE|
910 GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUIE)); 910 GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUIE));
911 WR4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS, new_status); 911 WR4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS, new_status);
912 } 912 }
913 } 913 }
914#ifdef DEBUG_LOUD 914#ifdef DEBUG_LOUD
915 device_printf(sc->sc_dev, 915 device_printf(sc->sc_dev,
916 "GMAC_MTL_INTERRUPT_STATUS = 0x%08X, " 916 "GMAC_MTL_INTERRUPT_STATUS = 0x%08X, "
917 "GMAC_MTL_FIFO_DEBUG_DATA = 0x%08X, " 917 "GMAC_MTL_FIFO_DEBUG_DATA = 0x%08X, "
918 "GMAC_MTL_INTERRUPT_STATUS_Q0IS = 0x%08X\n", 918 "GMAC_MTL_INTERRUPT_STATUS_Q0IS = 0x%08X\n",
919 mtl_status, debug_data, ictrl); 919 mtl_status, debug_data, ictrl);
920#endif 920#endif
921} 921}
922 922
923int 923int
924eqos_intr(void *arg) 924eqos_intr(void *arg)
925{ 925{
926 struct eqos_softc *sc = arg; 926 struct eqos_softc *sc = arg;
927 struct ifnet *ifp = &sc->sc_ec.ec_if; 927 struct ifnet *ifp = &sc->sc_ec.ec_if;
928 uint32_t mac_status, mtl_status, dma_status, rx_tx_status; 928 uint32_t mac_status, mtl_status, dma_status, rx_tx_status;
929 929
930 sc->sc_ev_intr.ev_count++; 930 sc->sc_ev_intr.ev_count++;
931 931
932 mac_status = RD4(sc, GMAC_MAC_INTERRUPT_STATUS); 932 mac_status = RD4(sc, GMAC_MAC_INTERRUPT_STATUS);
933 mac_status &= RD4(sc, GMAC_MAC_INTERRUPT_ENABLE); 933 mac_status &= RD4(sc, GMAC_MAC_INTERRUPT_ENABLE);
934 934
935 if (mac_status) { 935 if (mac_status) {
936 sc->sc_ev_mac.ev_count++; 936 sc->sc_ev_mac.ev_count++;
937#ifdef DEBUG_LOUD 937#ifdef DEBUG_LOUD
938 device_printf(sc->sc_dev, 938 device_printf(sc->sc_dev,
939 "GMAC_MAC_INTERRUPT_STATUS = 0x%08X\n", mac_status); 939 "GMAC_MAC_INTERRUPT_STATUS = 0x%08X\n", mac_status);
940#endif 940#endif
941 } 941 }
942 942
943 mtl_status = RD4(sc, GMAC_MTL_INTERRUPT_STATUS); 943 mtl_status = RD4(sc, GMAC_MTL_INTERRUPT_STATUS);
944 eqos_intr_mtl(sc, mtl_status); 944 eqos_intr_mtl(sc, mtl_status);
945 945
946 dma_status = RD4(sc, GMAC_DMA_CHAN0_STATUS); 946 dma_status = RD4(sc, GMAC_DMA_CHAN0_STATUS);
947 dma_status &= RD4(sc, GMAC_DMA_CHAN0_INTR_ENABLE); 947 dma_status &= RD4(sc, GMAC_DMA_CHAN0_INTR_ENABLE);
948 if (dma_status) { 948 if (dma_status) {
949 WR4(sc, GMAC_DMA_CHAN0_STATUS, dma_status); 949 WR4(sc, GMAC_DMA_CHAN0_STATUS, dma_status);
950 } 950 }
951 951
952 EQOS_LOCK(sc); 952 EQOS_LOCK(sc);
953 if ((dma_status & GMAC_DMA_CHAN0_STATUS_RI) != 0) { 953 if ((dma_status & GMAC_DMA_CHAN0_STATUS_RI) != 0) {
954 eqos_rxintr(sc, 0); 954 eqos_rxintr(sc, 0);
955 sc->sc_ev_rxintr.ev_count++; 955 sc->sc_ev_rxintr.ev_count++;
956 } 956 }
957 957
958 if ((dma_status & GMAC_DMA_CHAN0_STATUS_TI) != 0) { 958 if ((dma_status & GMAC_DMA_CHAN0_STATUS_TI) != 0) {
959 eqos_txintr(sc, 0); 959 eqos_txintr(sc, 0);
960 if_schedule_deferred_start(ifp); 960 if_schedule_deferred_start(ifp);
961 sc->sc_ev_txintr.ev_count++; 961 sc->sc_ev_txintr.ev_count++;
962 } 962 }
963 EQOS_UNLOCK(sc); 963 EQOS_UNLOCK(sc);
964 964
965#ifdef DEBUG_LOUD 965#ifdef DEBUG_LOUD
966 if ((mac_status | mtl_status | dma_status) == 0) { 966 if ((mac_status | mtl_status | dma_status) == 0) {
967 device_printf(sc->sc_dev, "spurious interrupt?!\n"); 967 device_printf(sc->sc_dev, "spurious interrupt?!\n");
968 } 968 }
969#endif 969#endif
970 970
971 rx_tx_status = RD4(sc, GMAC_MAC_RX_TX_STATUS); 971 rx_tx_status = RD4(sc, GMAC_MAC_RX_TX_STATUS);
972 if (rx_tx_status) { 972 if (rx_tx_status) {
973 sc->sc_ev_status.ev_count++; 973 sc->sc_ev_status.ev_count++;
974 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_RWT) != 0) 974 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_RWT) != 0)
975 sc->sc_ev_rwt.ev_count++; 975 sc->sc_ev_rwt.ev_count++;
976 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXCOL) != 0) 976 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXCOL) != 0)
977 sc->sc_ev_excol.ev_count++; 977 sc->sc_ev_excol.ev_count++;
978 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCOL) != 0) 978 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCOL) != 0)
979 sc->sc_ev_lcol.ev_count++; 979 sc->sc_ev_lcol.ev_count++;
980 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXDEF) != 0) 980 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXDEF) != 0)
981 sc->sc_ev_exdef.ev_count++; 981 sc->sc_ev_exdef.ev_count++;
982 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCARR) != 0) 982 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCARR) != 0)
983 sc->sc_ev_lcarr.ev_count++; 983 sc->sc_ev_lcarr.ev_count++;
984 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_NCARR) != 0) 984 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_NCARR) != 0)
985 sc->sc_ev_ncarr.ev_count++; 985 sc->sc_ev_ncarr.ev_count++;
986 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_TJT) != 0) 986 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_TJT) != 0)
987 sc->sc_ev_tjt.ev_count++; 987 sc->sc_ev_tjt.ev_count++;
988#ifdef DEBUG_LOUD 988#ifdef DEBUG_LOUD
989 device_printf(sc->sc_dev, "GMAC_MAC_RX_TX_STATUS = 0x%08x\n", 989 device_printf(sc->sc_dev, "GMAC_MAC_RX_TX_STATUS = 0x%08x\n",
990 rx_tx_status); 990 rx_tx_status);
991#endif 991#endif
992 } 992 }
993 993
994 return 1; 994 return 1;
995} 995}
996 996
997static int 997static int
998eqos_ioctl(struct ifnet *ifp, u_long cmd, void *data) 998eqos_ioctl(struct ifnet *ifp, u_long cmd, void *data)
999{ 999{
1000 struct eqos_softc *sc = ifp->if_softc; 1000 struct eqos_softc *sc = ifp->if_softc;
1001 int error, s; 1001 int error, s;
1002 1002
1003#ifndef EQOS_MPSAFE 1003#ifndef EQOS_MPSAFE
1004 s = splnet(); 1004 s = splnet();
1005#endif 1005#endif
1006 1006
1007 switch (cmd) { 1007 switch (cmd) {
1008 default: 1008 default:
1009#ifdef EQOS_MPSAFE 1009#ifdef EQOS_MPSAFE
1010 s = splnet(); 1010 s = splnet();
1011#endif 1011#endif
1012 error = ether_ioctl(ifp, cmd, data); 1012 error = ether_ioctl(ifp, cmd, data);
1013#ifdef EQOS_MPSAFE 1013#ifdef EQOS_MPSAFE
1014 splx(s); 1014 splx(s);
1015#endif 1015#endif
1016 if (error != ENETRESET) 1016 if (error != ENETRESET)
1017 break; 1017 break;
1018 1018
1019 error = 0; 1019 error = 0;
1020 1020
1021 if (cmd == SIOCSIFCAP) 1021 if (cmd == SIOCSIFCAP)
1022 error = (*ifp->if_init)(ifp); 1022 error = (*ifp->if_init)(ifp);
1023 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 1023 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1024 ; 1024 ;
1025 else if ((ifp->if_flags & IFF_RUNNING) != 0) { 1025 else if ((ifp->if_flags & IFF_RUNNING) != 0) {
1026 EQOS_LOCK(sc); 1026 EQOS_LOCK(sc);
1027 eqos_setup_rxfilter(sc); 1027 eqos_setup_rxfilter(sc);
1028 EQOS_UNLOCK(sc); 1028 EQOS_UNLOCK(sc);
1029 } 1029 }
1030 break; 1030 break;
1031 } 1031 }
1032 1032
1033#ifndef EQOS_MPSAFE 1033#ifndef EQOS_MPSAFE
1034 splx(s); 1034 splx(s);
1035#endif 1035#endif
1036 1036
1037 return error; 1037 return error;
1038} 1038}
1039 1039
1040static void 1040static void
1041eqos_get_eaddr(struct eqos_softc *sc, uint8_t *eaddr) 1041eqos_get_eaddr(struct eqos_softc *sc, uint8_t *eaddr)
1042{ 1042{
1043 prop_dictionary_t prop = device_properties(sc->sc_dev); 1043 prop_dictionary_t prop = device_properties(sc->sc_dev);
1044 uint32_t maclo, machi; 1044 uint32_t maclo, machi;
1045 prop_data_t eaprop; 1045 prop_data_t eaprop;
1046 1046
1047 eaprop = prop_dictionary_get(prop, "mac-address"); 1047 eaprop = prop_dictionary_get(prop, "mac-address");
1048 if (eaprop != NULL) { 1048 if (eaprop != NULL) {
1049 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA); 1049 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
1050 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN); 1050 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
1051 memcpy(eaddr, prop_data_value(eaprop), 1051 memcpy(eaddr, prop_data_value(eaprop),
1052 ETHER_ADDR_LEN); 1052 ETHER_ADDR_LEN);
1053 return; 1053 return;
1054 } 1054 }
1055 1055
1056 maclo = htobe32(RD4(sc, GMAC_MAC_ADDRESS0_LOW)); 1056 maclo = htobe32(RD4(sc, GMAC_MAC_ADDRESS0_LOW));
1057 machi = htobe16(RD4(sc, GMAC_MAC_ADDRESS0_HIGH) & 0xFFFF); 1057 machi = htobe16(RD4(sc, GMAC_MAC_ADDRESS0_HIGH) & 0xFFFF);
1058 1058
1059 if (maclo == 0xFFFFFFFF && machi == 0xFFFF) { 1059 if (maclo == 0xFFFFFFFF && machi == 0xFFFF) {
1060 /* Create one */ 1060 /* Create one */
1061 maclo = 0x00f2 | (cprng_strong32() & 0xffff0000); 1061 maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1062 machi = cprng_strong32() & 0xffff; 1062 machi = cprng_strong32() & 0xffff;
1063 } 1063 }
1064 1064
1065 eaddr[0] = maclo & 0xff; 1065 eaddr[0] = maclo & 0xff;
1066 eaddr[1] = (maclo >> 8) & 0xff; 1066 eaddr[1] = (maclo >> 8) & 0xff;
1067 eaddr[2] = (maclo >> 16) & 0xff; 1067 eaddr[2] = (maclo >> 16) & 0xff;
1068 eaddr[3] = (maclo >> 24) & 0xff; 1068 eaddr[3] = (maclo >> 24) & 0xff;
1069 eaddr[4] = machi & 0xff; 1069 eaddr[4] = machi & 0xff;
1070 eaddr[5] = (machi >> 8) & 0xff; 1070 eaddr[5] = (machi >> 8) & 0xff;
1071} 1071}
1072 1072
1073static void 1073static void
1074eqos_axi_configure(struct eqos_softc *sc) 1074eqos_axi_configure(struct eqos_softc *sc)
1075{ 1075{
1076 prop_dictionary_t prop = device_properties(sc->sc_dev); 1076 prop_dictionary_t prop = device_properties(sc->sc_dev);
1077 uint32_t val; 1077 uint32_t val;
1078 u_int uival; 1078 u_int uival;
1079 bool bval; 1079 bool bval;
1080 1080
1081 val = RD4(sc, GMAC_DMA_SYSBUS_MODE); 1081 val = RD4(sc, GMAC_DMA_SYSBUS_MODE);
1082 if (prop_dictionary_get_bool(prop, "snps,mixed-burst", &bval) && bval) { 1082 if (prop_dictionary_get_bool(prop, "snps,mixed-burst", &bval) && bval) {
1083 val |= GMAC_DMA_SYSBUS_MODE_MB; 1083 val |= GMAC_DMA_SYSBUS_MODE_MB;
1084 } 1084 }
1085 if (prop_dictionary_get_bool(prop, "snps,fixed-burst", &bval) && bval) { 1085 if (prop_dictionary_get_bool(prop, "snps,fixed-burst", &bval) && bval) {
1086 val |= GMAC_DMA_SYSBUS_MODE_FB; 1086 val |= GMAC_DMA_SYSBUS_MODE_FB;
1087 } 1087 }
1088 if (prop_dictionary_get_uint(prop, "snps,wr_osr_lmt", &uival)) { 1088 if (prop_dictionary_get_uint(prop, "snps,wr_osr_lmt", &uival)) {
1089 val &= ~GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_MASK; 1089 val &= ~GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_MASK;
1090 val |= uival << GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_SHIFT; 1090 val |= uival << GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_SHIFT;
1091 } 1091 }
1092 if (prop_dictionary_get_uint(prop, "snps,rd_osr_lmt", &uival)) { 1092 if (prop_dictionary_get_uint(prop, "snps,rd_osr_lmt", &uival)) {
1093 val &= ~GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_MASK; 1093 val &= ~GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_MASK;
1094 val |= uival << GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT; 1094 val |= uival << GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT;
1095 } 1095 }
1096 1096
1097 if (!EQOS_HW_FEATURE_ADDR64_32BIT(sc)) { 1097 if (!EQOS_HW_FEATURE_ADDR64_32BIT(sc)) {
1098 val |= GMAC_DMA_SYSBUS_MODE_EAME; 1098 val |= GMAC_DMA_SYSBUS_MODE_EAME;
1099 } 1099 }
1100 1100
1101 /* XXX */ 1101 /* XXX */
1102 val |= GMAC_DMA_SYSBUS_MODE_BLEN16; 1102 val |= GMAC_DMA_SYSBUS_MODE_BLEN16;
1103 val |= GMAC_DMA_SYSBUS_MODE_BLEN8; 1103 val |= GMAC_DMA_SYSBUS_MODE_BLEN8;
1104 val |= GMAC_DMA_SYSBUS_MODE_BLEN4; 1104 val |= GMAC_DMA_SYSBUS_MODE_BLEN4;
1105 1105
1106 WR4(sc, GMAC_DMA_SYSBUS_MODE, val); 1106 WR4(sc, GMAC_DMA_SYSBUS_MODE, val);
1107} 1107}
1108 1108
1109static int 1109static int
1110eqos_setup_dma(struct eqos_softc *sc, int qid) 1110eqos_setup_dma(struct eqos_softc *sc, int qid)
1111{ 1111{
1112 struct mbuf *m; 1112 struct mbuf *m;
1113 int error, nsegs, i; 1113 int error, nsegs, i;
1114 1114
1115 /* Setup TX ring */ 1115 /* Setup TX ring */
1116 error = bus_dmamap_create(sc->sc_dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE, 1116 error = bus_dmamap_create(sc->sc_dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE,
1117 DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_tx.desc_map); 1117 DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_tx.desc_map);
1118 if (error) { 1118 if (error) {
1119 return error; 1119 return error;
1120 } 1120 }
1121 error = bus_dmamem_alloc(sc->sc_dmat, TX_DESC_SIZE, DESC_ALIGN, 1121 error = bus_dmamem_alloc(sc->sc_dmat, TX_DESC_SIZE, DESC_ALIGN,
1122 DESC_BOUNDARY, &sc->sc_tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK); 1122 DESC_BOUNDARY, &sc->sc_tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1123 if (error) { 1123 if (error) {
1124 return error; 1124 return error;
1125 } 1125 }
1126 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_tx.desc_dmaseg, nsegs, 1126 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_tx.desc_dmaseg, nsegs,
1127 TX_DESC_SIZE, (void *)&sc->sc_tx.desc_ring, BUS_DMA_WAITOK); 1127 TX_DESC_SIZE, (void *)&sc->sc_tx.desc_ring, BUS_DMA_WAITOK);
1128 if (error) { 1128 if (error) {
1129 return error; 1129 return error;
1130 } 1130 }
1131 error = bus_dmamap_load(sc->sc_dmat, sc->sc_tx.desc_map, 1131 error = bus_dmamap_load(sc->sc_dmat, sc->sc_tx.desc_map,
1132 sc->sc_tx.desc_ring, TX_DESC_SIZE, NULL, BUS_DMA_WAITOK); 1132 sc->sc_tx.desc_ring, TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1133 if (error) { 1133 if (error) {
1134 return error; 1134 return error;
1135 } 1135 }
1136 sc->sc_tx.desc_ring_paddr = sc->sc_tx.desc_map->dm_segs[0].ds_addr; 1136 sc->sc_tx.desc_ring_paddr = sc->sc_tx.desc_map->dm_segs[0].ds_addr;
1137 1137
1138 memset(sc->sc_tx.desc_ring, 0, TX_DESC_SIZE); 1138 memset(sc->sc_tx.desc_ring, 0, TX_DESC_SIZE);
1139 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map, 0, TX_DESC_SIZE, 1139 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map, 0, TX_DESC_SIZE,
1140 BUS_DMASYNC_PREWRITE); 1140 BUS_DMASYNC_PREWRITE);
1141 1141
1142 sc->sc_tx.queued = TX_DESC_COUNT; 1142 sc->sc_tx.queued = TX_DESC_COUNT;
1143 for (i = 0; i < TX_DESC_COUNT; i++) { 1143 for (i = 0; i < TX_DESC_COUNT; i++) {
1144 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1144 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1145 TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK, 1145 TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1146 &sc->sc_tx.buf_map[i].map); 1146 &sc->sc_tx.buf_map[i].map);
1147 if (error != 0) { 1147 if (error != 0) {
1148 device_printf(sc->sc_dev, 1148 device_printf(sc->sc_dev,
1149 "cannot create TX buffer map\n"); 1149 "cannot create TX buffer map\n");
1150 return error; 1150 return error;
1151 } 1151 }
1152 eqos_setup_txdesc(sc, i, 0, 0, 0, 0); 1152 eqos_setup_txdesc(sc, i, 0, 0, 0, 0);
1153 } 1153 }
1154 1154
1155 /* Setup RX ring */ 1155 /* Setup RX ring */
1156 error = bus_dmamap_create(sc->sc_dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE, 1156 error = bus_dmamap_create(sc->sc_dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE,
1157 DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_rx.desc_map); 1157 DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_rx.desc_map);
1158 if (error) { 1158 if (error) {
1159 return error; 1159 return error;
1160 } 1160 }
1161 error = bus_dmamem_alloc(sc->sc_dmat, RX_DESC_SIZE, DESC_ALIGN, 1161 error = bus_dmamem_alloc(sc->sc_dmat, RX_DESC_SIZE, DESC_ALIGN,
1162 DESC_BOUNDARY, &sc->sc_rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK); 1162 DESC_BOUNDARY, &sc->sc_rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1163 if (error) { 1163 if (error) {
1164 return error; 1164 return error;
1165 } 1165 }
1166 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_rx.desc_dmaseg, nsegs, 1166 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_rx.desc_dmaseg, nsegs,
1167 RX_DESC_SIZE, (void *)&sc->sc_rx.desc_ring, BUS_DMA_WAITOK); 1167 RX_DESC_SIZE, (void *)&sc->sc_rx.desc_ring, BUS_DMA_WAITOK);
1168 if (error) { 1168 if (error) {
1169 return error; 1169 return error;
1170 } 1170 }
1171 error = bus_dmamap_load(sc->sc_dmat, sc->sc_rx.desc_map, 1171 error = bus_dmamap_load(sc->sc_dmat, sc->sc_rx.desc_map,
1172 sc->sc_rx.desc_ring, RX_DESC_SIZE, NULL, BUS_DMA_WAITOK); 1172 sc->sc_rx.desc_ring, RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1173 if (error) { 1173 if (error) {
1174 return error; 1174 return error;
1175 } 1175 }
1176 sc->sc_rx.desc_ring_paddr = sc->sc_rx.desc_map->dm_segs[0].ds_addr; 1176 sc->sc_rx.desc_ring_paddr = sc->sc_rx.desc_map->dm_segs[0].ds_addr;
1177 1177
1178 memset(sc->sc_rx.desc_ring, 0, RX_DESC_SIZE); 1178 memset(sc->sc_rx.desc_ring, 0, RX_DESC_SIZE);
1179 1179
1180 for (i = 0; i < RX_DESC_COUNT; i++) { 1180 for (i = 0; i < RX_DESC_COUNT; i++) {
1181 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1181 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1182 RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK, 1182 RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1183 &sc->sc_rx.buf_map[i].map); 1183 &sc->sc_rx.buf_map[i].map);
1184 if (error != 0) { 1184 if (error != 0) {
1185 device_printf(sc->sc_dev, 1185 device_printf(sc->sc_dev,
1186 "cannot create RX buffer map\n"); 1186 "cannot create RX buffer map\n");
1187 return error; 1187 return error;
1188 } 1188 }
1189 if ((m = eqos_alloc_mbufcl(sc)) == NULL) { 1189 if ((m = eqos_alloc_mbufcl(sc)) == NULL) {
1190 device_printf(sc->sc_dev, "cannot allocate RX mbuf\n"); 1190 device_printf(sc->sc_dev, "cannot allocate RX mbuf\n");
1191 return ENOMEM; 1191 return ENOMEM;
1192 } 1192 }
1193 error = eqos_setup_rxbuf(sc, i, m); 1193 error = eqos_setup_rxbuf(sc, i, m);
1194 if (error != 0) { 1194 if (error != 0) {
1195 device_printf(sc->sc_dev, "cannot create RX buffer\n"); 1195 device_printf(sc->sc_dev, "cannot create RX buffer\n");
1196 return error; 1196 return error;
1197 } 1197 }
1198 } 1198 }
1199 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map, 1199 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map,
1200 0, sc->sc_rx.desc_map->dm_mapsize, 1200 0, sc->sc_rx.desc_map->dm_mapsize,
1201 BUS_DMASYNC_PREWRITE); 1201 BUS_DMASYNC_PREWRITE);
1202 1202
1203 aprint_debug_dev(sc->sc_dev, "TX ring @ 0x%lX, RX ring @ 0x%lX\n", 1203 aprint_debug_dev(sc->sc_dev, "TX ring @ 0x%lX, RX ring @ 0x%lX\n",
1204 sc->sc_tx.desc_ring_paddr, sc->sc_rx.desc_ring_paddr); 1204 sc->sc_tx.desc_ring_paddr, sc->sc_rx.desc_ring_paddr);
1205 1205
1206 return 0; 1206 return 0;
1207} 1207}
1208 1208
1209int 1209int
1210eqos_attach(struct eqos_softc *sc) 1210eqos_attach(struct eqos_softc *sc)
1211{ 1211{
1212 struct mii_data *mii = &sc->sc_mii; 1212 struct mii_data *mii = &sc->sc_mii;
1213 struct ifnet *ifp = &sc->sc_ec.ec_if; 1213 struct ifnet *ifp = &sc->sc_ec.ec_if;
1214 uint8_t eaddr[ETHER_ADDR_LEN]; 1214 uint8_t eaddr[ETHER_ADDR_LEN];
1215 u_int userver, snpsver; 1215 u_int userver, snpsver;
1216 int mii_flags = 0; 1216 int mii_flags = 0;
1217 int error; 1217 int error;
1218 int n; 1218 int n;
1219 1219
1220 const uint32_t ver = RD4(sc, GMAC_MAC_VERSION); 1220 const uint32_t ver = RD4(sc, GMAC_MAC_VERSION);
1221 userver = (ver & GMAC_MAC_VERSION_USERVER_MASK) >> 1221 userver = (ver & GMAC_MAC_VERSION_USERVER_MASK) >>
1222 GMAC_MAC_VERSION_USERVER_SHIFT; 1222 GMAC_MAC_VERSION_USERVER_SHIFT;
1223 snpsver = ver & GMAC_MAC_VERSION_SNPSVER_MASK; 1223 snpsver = ver & GMAC_MAC_VERSION_SNPSVER_MASK;
1224 1224
1225 if (snpsver != 0x51) { 1225 if (snpsver != 0x51) {
1226 aprint_error(": EQOS version 0x%02xx not supported\n", 1226 aprint_error(": EQOS version 0x%02xx not supported\n",
1227 snpsver); 1227 snpsver);
1228 return ENXIO; 1228 return ENXIO;
1229 } 1229 }
1230 1230
1231 if (sc->sc_csr_clock < 20000000) { 1231 if (sc->sc_csr_clock < 20000000) {
1232 aprint_error(": CSR clock too low\n"); 1232 aprint_error(": CSR clock too low\n");
1233 return EINVAL; 1233 return EINVAL;
1234 } else if (sc->sc_csr_clock < 35000000) { 1234 } else if (sc->sc_csr_clock < 35000000) {
1235 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_20_35; 1235 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_20_35;
1236 } else if (sc->sc_csr_clock < 60000000) { 1236 } else if (sc->sc_csr_clock < 60000000) {
1237 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_35_60; 1237 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_35_60;
1238 } else if (sc->sc_csr_clock < 100000000) { 1238 } else if (sc->sc_csr_clock < 100000000) {
1239 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_60_100; 1239 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_60_100;
1240 } else if (sc->sc_csr_clock < 150000000) { 1240 } else if (sc->sc_csr_clock < 150000000) {
1241 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_100_150; 1241 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_100_150;
1242 } else if (sc->sc_csr_clock < 250000000) { 1242 } else if (sc->sc_csr_clock < 250000000) {
1243 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_150_250; 1243 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_150_250;
1244 } else if (sc->sc_csr_clock < 300000000) { 1244 } else if (sc->sc_csr_clock < 300000000) {
1245 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_300_500; 1245 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_300_500;
1246 } else if (sc->sc_csr_clock < 800000000) { 1246 } else if (sc->sc_csr_clock < 800000000) {
1247 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_500_800; 1247 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_500_800;
1248 } else { 1248 } else {
1249 aprint_error(": CSR clock too high\n"); 1249 aprint_error(": CSR clock too high\n");
1250 return EINVAL; 1250 return EINVAL;
1251 } 1251 }
1252 1252
1253 for (n = 0; n < 4; n++) { 1253 for (n = 0; n < 4; n++) {
1254 sc->sc_hw_feature[n] = RD4(sc, GMAC_MAC_HW_FEATURE(n)); 1254 sc->sc_hw_feature[n] = RD4(sc, GMAC_MAC_HW_FEATURE(n));
1255 } 1255 }
1256 1256
1257 aprint_naive("\n"); 1257 aprint_naive("\n");
1258 aprint_normal(": DesignWare EQOS ver 0x%02x (0x%02x)\n", 1258 aprint_normal(": DesignWare EQOS ver 0x%02x (0x%02x)\n",
1259 snpsver, userver); 1259 snpsver, userver);
1260 aprint_verbose_dev(sc->sc_dev, "hw features %08x %08x %08x %08x\n", 1260 aprint_verbose_dev(sc->sc_dev, "hw features %08x %08x %08x %08x\n",
1261 sc->sc_hw_feature[0], sc->sc_hw_feature[1], 1261 sc->sc_hw_feature[0], sc->sc_hw_feature[1],
1262 sc->sc_hw_feature[2], sc->sc_hw_feature[3]); 1262 sc->sc_hw_feature[2], sc->sc_hw_feature[3]);
1263 1263
1264 if (EQOS_HW_FEATURE_ADDR64_32BIT(sc)) { 1264 if (EQOS_HW_FEATURE_ADDR64_32BIT(sc)) {
1265 bus_dma_tag_t ntag; 1265 bus_dma_tag_t ntag;
1266 1266
1267 error = bus_dmatag_subregion(sc->sc_dmat, 0, UINT32_MAX, 1267 error = bus_dmatag_subregion(sc->sc_dmat, 0, UINT32_MAX,
1268 &ntag, 0); 1268 &ntag, 0);
1269 if (error) { 1269 if (error) {
1270 aprint_error_dev(sc->sc_dev, 1270 aprint_error_dev(sc->sc_dev,
1271 "failed to restrict DMA: %d\n", error); 1271 "failed to restrict DMA: %d\n", error);
1272 return error; 1272 return error;
1273 } 1273 }
1274 aprint_verbose_dev(sc->sc_dev, "using 32-bit DMA\n"); 1274 aprint_verbose_dev(sc->sc_dev, "using 32-bit DMA\n");
1275 sc->sc_dmat = ntag; 1275 sc->sc_dmat = ntag;
1276 } 1276 }
1277 1277
1278 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET); 1278 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
1279 mutex_init(&sc->sc_txlock, MUTEX_DEFAULT, IPL_NET); 1279 mutex_init(&sc->sc_txlock, MUTEX_DEFAULT, IPL_NET);
1280 callout_init(&sc->sc_stat_ch, CALLOUT_FLAGS); 1280 callout_init(&sc->sc_stat_ch, CALLOUT_FLAGS);
1281 callout_setfunc(&sc->sc_stat_ch, eqos_tick, sc); 1281 callout_setfunc(&sc->sc_stat_ch, eqos_tick, sc);
1282 1282
1283 eqos_get_eaddr(sc, eaddr); 1283 eqos_get_eaddr(sc, eaddr);
1284 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", ether_sprintf(eaddr)); 1284 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", ether_sprintf(eaddr));
1285 1285
1286 /* Soft reset EMAC core */ 1286 /* Soft reset EMAC core */
1287 error = eqos_reset(sc); 1287 error = eqos_reset(sc);
1288 if (error != 0) { 1288 if (error != 0) {
1289 return error; 1289 return error;
1290 } 1290 }
1291 1291
1292 /* Configure AXI Bus mode parameters */ 1292 /* Configure AXI Bus mode parameters */
1293 eqos_axi_configure(sc); 1293 eqos_axi_configure(sc);
1294 1294
1295 /* Setup DMA descriptors */ 1295 /* Setup DMA descriptors */
1296 if (eqos_setup_dma(sc, 0) != 0) { 1296 if (eqos_setup_dma(sc, 0) != 0) {
1297 aprint_error_dev(sc->sc_dev, "failed to setup DMA descriptors\n"); 1297 aprint_error_dev(sc->sc_dev, "failed to setup DMA descriptors\n");
1298 return EINVAL; 1298 return EINVAL;
1299 } 1299 }
1300 1300
1301 /* Setup ethernet interface */ 1301 /* Setup ethernet interface */
1302 ifp->if_softc = sc; 1302 ifp->if_softc = sc;
1303 snprintf(ifp->if_xname, IFNAMSIZ, "%s", device_xname(sc->sc_dev)); 1303 snprintf(ifp->if_xname, IFNAMSIZ, "%s", device_xname(sc->sc_dev));