Sun Apr 9 12:16:42 2023 UTC ()
kpause(9): Simplify assertion.  No functional change intended.


(riastradh)
diff -r1.353 -r1.354 src/sys/kern/kern_synch.c

cvs diff -r1.353 -r1.354 src/sys/kern/kern_synch.c (switch to unified diff)

--- src/sys/kern/kern_synch.c 2022/12/05 15:47:14 1.353
+++ src/sys/kern/kern_synch.c 2023/04/09 12:16:42 1.354
@@ -1,1225 +1,1225 @@ @@ -1,1225 +1,1225 @@
1/* $NetBSD: kern_synch.c,v 1.353 2022/12/05 15:47:14 martin Exp $ */ 1/* $NetBSD: kern_synch.c,v 1.354 2023/04/09 12:16:42 riastradh Exp $ */
2 2
3/*- 3/*-
4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020 4 * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
5 * The NetBSD Foundation, Inc. 5 * The NetBSD Foundation, Inc.
6 * All rights reserved. 6 * All rights reserved.
7 * 7 *
8 * This code is derived from software contributed to The NetBSD Foundation 8 * This code is derived from software contributed to The NetBSD Foundation
9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and 10 * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11 * Daniel Sieger. 11 * Daniel Sieger.
12 * 12 *
13 * Redistribution and use in source and binary forms, with or without 13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions 14 * modification, are permitted provided that the following conditions
15 * are met: 15 * are met:
16 * 1. Redistributions of source code must retain the above copyright 16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer. 17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright 18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the 19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution. 20 * documentation and/or other materials provided with the distribution.
21 * 21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE. 32 * POSSIBILITY OF SUCH DAMAGE.
33 */ 33 */
34 34
35/*- 35/*-
36 * Copyright (c) 1982, 1986, 1990, 1991, 1993 36 * Copyright (c) 1982, 1986, 1990, 1991, 1993
37 * The Regents of the University of California. All rights reserved. 37 * The Regents of the University of California. All rights reserved.
38 * (c) UNIX System Laboratories, Inc. 38 * (c) UNIX System Laboratories, Inc.
39 * All or some portions of this file are derived from material licensed 39 * All or some portions of this file are derived from material licensed
40 * to the University of California by American Telephone and Telegraph 40 * to the University of California by American Telephone and Telegraph
41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42 * the permission of UNIX System Laboratories, Inc. 42 * the permission of UNIX System Laboratories, Inc.
43 * 43 *
44 * Redistribution and use in source and binary forms, with or without 44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions 45 * modification, are permitted provided that the following conditions
46 * are met: 46 * are met:
47 * 1. Redistributions of source code must retain the above copyright 47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer. 48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright 49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the 50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution. 51 * documentation and/or other materials provided with the distribution.
52 * 3. Neither the name of the University nor the names of its contributors 52 * 3. Neither the name of the University nor the names of its contributors
53 * may be used to endorse or promote products derived from this software 53 * may be used to endorse or promote products derived from this software
54 * without specific prior written permission. 54 * without specific prior written permission.
55 * 55 *
56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * SUCH DAMAGE. 66 * SUCH DAMAGE.
67 * 67 *
68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 68 * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
69 */ 69 */
70 70
71#include <sys/cdefs.h> 71#include <sys/cdefs.h>
72__KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.353 2022/12/05 15:47:14 martin Exp $"); 72__KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.354 2023/04/09 12:16:42 riastradh Exp $");
73 73
74#include "opt_kstack.h" 74#include "opt_kstack.h"
75#include "opt_dtrace.h" 75#include "opt_dtrace.h"
76 76
77#define __MUTEX_PRIVATE 77#define __MUTEX_PRIVATE
78 78
79#include <sys/param.h> 79#include <sys/param.h>
80#include <sys/systm.h> 80#include <sys/systm.h>
81#include <sys/proc.h> 81#include <sys/proc.h>
82#include <sys/kernel.h> 82#include <sys/kernel.h>
83#include <sys/cpu.h> 83#include <sys/cpu.h>
84#include <sys/pserialize.h> 84#include <sys/pserialize.h>
85#include <sys/resource.h> 85#include <sys/resource.h>
86#include <sys/resourcevar.h> 86#include <sys/resourcevar.h>
87#include <sys/rwlock.h> 87#include <sys/rwlock.h>
88#include <sys/sched.h> 88#include <sys/sched.h>
89#include <sys/syscall_stats.h> 89#include <sys/syscall_stats.h>
90#include <sys/sleepq.h> 90#include <sys/sleepq.h>
91#include <sys/lockdebug.h> 91#include <sys/lockdebug.h>
92#include <sys/evcnt.h> 92#include <sys/evcnt.h>
93#include <sys/intr.h> 93#include <sys/intr.h>
94#include <sys/lwpctl.h> 94#include <sys/lwpctl.h>
95#include <sys/atomic.h> 95#include <sys/atomic.h>
96#include <sys/syslog.h> 96#include <sys/syslog.h>
97 97
98#include <uvm/uvm_extern.h> 98#include <uvm/uvm_extern.h>
99 99
100#include <dev/lockstat.h> 100#include <dev/lockstat.h>
101 101
102#include <sys/dtrace_bsd.h> 102#include <sys/dtrace_bsd.h>
103int dtrace_vtime_active=0; 103int dtrace_vtime_active=0;
104dtrace_vtime_switch_func_t dtrace_vtime_switch_func; 104dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
105 105
106static void sched_unsleep(struct lwp *, bool); 106static void sched_unsleep(struct lwp *, bool);
107static void sched_changepri(struct lwp *, pri_t); 107static void sched_changepri(struct lwp *, pri_t);
108static void sched_lendpri(struct lwp *, pri_t); 108static void sched_lendpri(struct lwp *, pri_t);
109 109
110syncobj_t sleep_syncobj = { 110syncobj_t sleep_syncobj = {
111 .sobj_flag = SOBJ_SLEEPQ_SORTED, 111 .sobj_flag = SOBJ_SLEEPQ_SORTED,
112 .sobj_unsleep = sleepq_unsleep, 112 .sobj_unsleep = sleepq_unsleep,
113 .sobj_changepri = sleepq_changepri, 113 .sobj_changepri = sleepq_changepri,
114 .sobj_lendpri = sleepq_lendpri, 114 .sobj_lendpri = sleepq_lendpri,
115 .sobj_owner = syncobj_noowner, 115 .sobj_owner = syncobj_noowner,
116}; 116};
117 117
118syncobj_t sched_syncobj = { 118syncobj_t sched_syncobj = {
119 .sobj_flag = SOBJ_SLEEPQ_SORTED, 119 .sobj_flag = SOBJ_SLEEPQ_SORTED,
120 .sobj_unsleep = sched_unsleep, 120 .sobj_unsleep = sched_unsleep,
121 .sobj_changepri = sched_changepri, 121 .sobj_changepri = sched_changepri,
122 .sobj_lendpri = sched_lendpri, 122 .sobj_lendpri = sched_lendpri,
123 .sobj_owner = syncobj_noowner, 123 .sobj_owner = syncobj_noowner,
124}; 124};
125 125
126syncobj_t kpause_syncobj = { 126syncobj_t kpause_syncobj = {
127 .sobj_flag = SOBJ_SLEEPQ_NULL, 127 .sobj_flag = SOBJ_SLEEPQ_NULL,
128 .sobj_unsleep = sleepq_unsleep, 128 .sobj_unsleep = sleepq_unsleep,
129 .sobj_changepri = sleepq_changepri, 129 .sobj_changepri = sleepq_changepri,
130 .sobj_lendpri = sleepq_lendpri, 130 .sobj_lendpri = sleepq_lendpri,
131 .sobj_owner = syncobj_noowner, 131 .sobj_owner = syncobj_noowner,
132}; 132};
133 133
134/* "Lightning bolt": once a second sleep address. */ 134/* "Lightning bolt": once a second sleep address. */
135kcondvar_t lbolt __cacheline_aligned; 135kcondvar_t lbolt __cacheline_aligned;
136 136
137u_int sched_pstats_ticks __cacheline_aligned; 137u_int sched_pstats_ticks __cacheline_aligned;
138 138
139/* Preemption event counters. */ 139/* Preemption event counters. */
140static struct evcnt kpreempt_ev_crit __cacheline_aligned; 140static struct evcnt kpreempt_ev_crit __cacheline_aligned;
141static struct evcnt kpreempt_ev_klock __cacheline_aligned; 141static struct evcnt kpreempt_ev_klock __cacheline_aligned;
142static struct evcnt kpreempt_ev_immed __cacheline_aligned; 142static struct evcnt kpreempt_ev_immed __cacheline_aligned;
143 143
144void 144void
145synch_init(void) 145synch_init(void)
146{ 146{
147 147
148 cv_init(&lbolt, "lbolt"); 148 cv_init(&lbolt, "lbolt");
149 149
150 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL, 150 evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
151 "kpreempt", "defer: critical section"); 151 "kpreempt", "defer: critical section");
152 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL, 152 evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
153 "kpreempt", "defer: kernel_lock"); 153 "kpreempt", "defer: kernel_lock");
154 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL, 154 evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
155 "kpreempt", "immediate"); 155 "kpreempt", "immediate");
156} 156}
157 157
158/* 158/*
159 * OBSOLETE INTERFACE 159 * OBSOLETE INTERFACE
160 * 160 *
161 * General sleep call. Suspends the current LWP until a wakeup is 161 * General sleep call. Suspends the current LWP until a wakeup is
162 * performed on the specified identifier. The LWP will then be made 162 * performed on the specified identifier. The LWP will then be made
163 * runnable with the specified priority. Sleeps at most timo/hz seconds (0 163 * runnable with the specified priority. Sleeps at most timo/hz seconds (0
164 * means no timeout). If pri includes PCATCH flag, signals are checked 164 * means no timeout). If pri includes PCATCH flag, signals are checked
165 * before and after sleeping, else signals are not checked. Returns 0 if 165 * before and after sleeping, else signals are not checked. Returns 0 if
166 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 166 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
167 * signal needs to be delivered, ERESTART is returned if the current system 167 * signal needs to be delivered, ERESTART is returned if the current system
168 * call should be restarted if possible, and EINTR is returned if the system 168 * call should be restarted if possible, and EINTR is returned if the system
169 * call should be interrupted by the signal (return EINTR). 169 * call should be interrupted by the signal (return EINTR).
170 */ 170 */
171int 171int
172tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo) 172tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
173{ 173{
174 struct lwp *l = curlwp; 174 struct lwp *l = curlwp;
175 sleepq_t *sq; 175 sleepq_t *sq;
176 kmutex_t *mp; 176 kmutex_t *mp;
177 bool catch_p; 177 bool catch_p;
178 178
179 KASSERT((l->l_pflag & LP_INTR) == 0); 179 KASSERT((l->l_pflag & LP_INTR) == 0);
180 KASSERT(ident != &lbolt); 180 KASSERT(ident != &lbolt);
181 181
182 if (sleepq_dontsleep(l)) { 182 if (sleepq_dontsleep(l)) {
183 (void)sleepq_abort(NULL, 0); 183 (void)sleepq_abort(NULL, 0);
184 return 0; 184 return 0;
185 } 185 }
186 186
187 l->l_kpriority = true; 187 l->l_kpriority = true;
188 catch_p = priority & PCATCH; 188 catch_p = priority & PCATCH;
189 sq = sleeptab_lookup(&sleeptab, ident, &mp); 189 sq = sleeptab_lookup(&sleeptab, ident, &mp);
190 sleepq_enter(sq, l, mp); 190 sleepq_enter(sq, l, mp);
191 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p); 191 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
192 return sleepq_block(timo, catch_p, &sleep_syncobj); 192 return sleepq_block(timo, catch_p, &sleep_syncobj);
193} 193}
194 194
195int 195int
196mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, 196mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
197 kmutex_t *mtx) 197 kmutex_t *mtx)
198{ 198{
199 struct lwp *l = curlwp; 199 struct lwp *l = curlwp;
200 sleepq_t *sq; 200 sleepq_t *sq;
201 kmutex_t *mp; 201 kmutex_t *mp;
202 bool catch_p; 202 bool catch_p;
203 int error; 203 int error;
204 204
205 KASSERT((l->l_pflag & LP_INTR) == 0); 205 KASSERT((l->l_pflag & LP_INTR) == 0);
206 KASSERT(ident != &lbolt); 206 KASSERT(ident != &lbolt);
207 207
208 if (sleepq_dontsleep(l)) { 208 if (sleepq_dontsleep(l)) {
209 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0); 209 (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
210 return 0; 210 return 0;
211 } 211 }
212 212
213 l->l_kpriority = true; 213 l->l_kpriority = true;
214 catch_p = priority & PCATCH; 214 catch_p = priority & PCATCH;
215 sq = sleeptab_lookup(&sleeptab, ident, &mp); 215 sq = sleeptab_lookup(&sleeptab, ident, &mp);
216 sleepq_enter(sq, l, mp); 216 sleepq_enter(sq, l, mp);
217 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p); 217 sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
218 mutex_exit(mtx); 218 mutex_exit(mtx);
219 error = sleepq_block(timo, catch_p, &sleep_syncobj); 219 error = sleepq_block(timo, catch_p, &sleep_syncobj);
220 220
221 if ((priority & PNORELOCK) == 0) 221 if ((priority & PNORELOCK) == 0)
222 mutex_enter(mtx); 222 mutex_enter(mtx);
223 223
224 return error; 224 return error;
225} 225}
226 226
227/* 227/*
228 * General sleep call for situations where a wake-up is not expected. 228 * General sleep call for situations where a wake-up is not expected.
229 */ 229 */
230int 230int
231kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx) 231kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
232{ 232{
233 struct lwp *l = curlwp; 233 struct lwp *l = curlwp;
234 int error; 234 int error;
235 235
236 KASSERT(!(timo == 0 && intr == false)); 236 KASSERT(timo != 0 || intr);
237 237
238 if (sleepq_dontsleep(l)) 238 if (sleepq_dontsleep(l))
239 return sleepq_abort(NULL, 0); 239 return sleepq_abort(NULL, 0);
240 240
241 if (mtx != NULL) 241 if (mtx != NULL)
242 mutex_exit(mtx); 242 mutex_exit(mtx);
243 l->l_kpriority = true; 243 l->l_kpriority = true;
244 lwp_lock(l); 244 lwp_lock(l);
245 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks); 245 KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
246 sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr); 246 sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
247 error = sleepq_block(timo, intr, &kpause_syncobj); 247 error = sleepq_block(timo, intr, &kpause_syncobj);
248 if (mtx != NULL) 248 if (mtx != NULL)
249 mutex_enter(mtx); 249 mutex_enter(mtx);
250 250
251 return error; 251 return error;
252} 252}
253 253
254/* 254/*
255 * OBSOLETE INTERFACE 255 * OBSOLETE INTERFACE
256 * 256 *
257 * Make all LWPs sleeping on the specified identifier runnable. 257 * Make all LWPs sleeping on the specified identifier runnable.
258 */ 258 */
259void 259void
260wakeup(wchan_t ident) 260wakeup(wchan_t ident)
261{ 261{
262 sleepq_t *sq; 262 sleepq_t *sq;
263 kmutex_t *mp; 263 kmutex_t *mp;
264 264
265 if (__predict_false(cold)) 265 if (__predict_false(cold))
266 return; 266 return;
267 267
268 sq = sleeptab_lookup(&sleeptab, ident, &mp); 268 sq = sleeptab_lookup(&sleeptab, ident, &mp);
269 sleepq_wake(sq, ident, (u_int)-1, mp); 269 sleepq_wake(sq, ident, (u_int)-1, mp);
270} 270}
271 271
272/* 272/*
273 * General yield call. Puts the current LWP back on its run queue and 273 * General yield call. Puts the current LWP back on its run queue and
274 * performs a context switch. 274 * performs a context switch.
275 */ 275 */
276void 276void
277yield(void) 277yield(void)
278{ 278{
279 struct lwp *l = curlwp; 279 struct lwp *l = curlwp;
280 280
281 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 281 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
282 lwp_lock(l); 282 lwp_lock(l);
283 283
284 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 284 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
285 KASSERT(l->l_stat == LSONPROC); 285 KASSERT(l->l_stat == LSONPROC);
286 286
287 /* Voluntary - ditch kpriority boost. */ 287 /* Voluntary - ditch kpriority boost. */
288 l->l_kpriority = false; 288 l->l_kpriority = false;
289 spc_lock(l->l_cpu); 289 spc_lock(l->l_cpu);
290 mi_switch(l); 290 mi_switch(l);
291 KERNEL_LOCK(l->l_biglocks, l); 291 KERNEL_LOCK(l->l_biglocks, l);
292} 292}
293 293
294/* 294/*
295 * General preemption call. Puts the current LWP back on its run queue 295 * General preemption call. Puts the current LWP back on its run queue
296 * and performs an involuntary context switch. Different from yield() 296 * and performs an involuntary context switch. Different from yield()
297 * in that: 297 * in that:
298 * 298 *
299 * - It's counted differently (involuntary vs. voluntary). 299 * - It's counted differently (involuntary vs. voluntary).
300 * - Realtime threads go to the head of their runqueue vs. tail for yield(). 300 * - Realtime threads go to the head of their runqueue vs. tail for yield().
301 * - Priority boost is retained unless LWP has exceeded timeslice. 301 * - Priority boost is retained unless LWP has exceeded timeslice.
302 */ 302 */
303void 303void
304preempt(void) 304preempt(void)
305{ 305{
306 struct lwp *l = curlwp; 306 struct lwp *l = curlwp;
307 307
308 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 308 KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
309 lwp_lock(l); 309 lwp_lock(l);
310 310
311 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 311 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
312 KASSERT(l->l_stat == LSONPROC); 312 KASSERT(l->l_stat == LSONPROC);
313 313
314 spc_lock(l->l_cpu); 314 spc_lock(l->l_cpu);
315 /* Involuntary - keep kpriority boost unless a CPU hog. */ 315 /* Involuntary - keep kpriority boost unless a CPU hog. */
316 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) { 316 if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) {
317 l->l_kpriority = false; 317 l->l_kpriority = false;
318 } 318 }
319 l->l_pflag |= LP_PREEMPTING; 319 l->l_pflag |= LP_PREEMPTING;
320 mi_switch(l); 320 mi_switch(l);
321 KERNEL_LOCK(l->l_biglocks, l); 321 KERNEL_LOCK(l->l_biglocks, l);
322} 322}
323 323
324/* 324/*
325 * Return true if the current LWP should yield the processor. Intended to 325 * Return true if the current LWP should yield the processor. Intended to
326 * be used by long-running code in kernel. 326 * be used by long-running code in kernel.
327 */ 327 */
328inline bool 328inline bool
329preempt_needed(void) 329preempt_needed(void)
330{ 330{
331 lwp_t *l = curlwp; 331 lwp_t *l = curlwp;
332 int needed; 332 int needed;
333 333
334 KPREEMPT_DISABLE(l); 334 KPREEMPT_DISABLE(l);
335 needed = l->l_cpu->ci_want_resched; 335 needed = l->l_cpu->ci_want_resched;
336 KPREEMPT_ENABLE(l); 336 KPREEMPT_ENABLE(l);
337 337
338 return (needed != 0); 338 return (needed != 0);
339} 339}
340 340
341/* 341/*
342 * A breathing point for long running code in kernel. 342 * A breathing point for long running code in kernel.
343 */ 343 */
344void 344void
345preempt_point(void) 345preempt_point(void)
346{ 346{
347 347
348 if (__predict_false(preempt_needed())) { 348 if (__predict_false(preempt_needed())) {
349 preempt(); 349 preempt();
350 } 350 }
351} 351}
352 352
353/* 353/*
354 * Handle a request made by another agent to preempt the current LWP 354 * Handle a request made by another agent to preempt the current LWP
355 * in-kernel. Usually called when l_dopreempt may be non-zero. 355 * in-kernel. Usually called when l_dopreempt may be non-zero.
356 * 356 *
357 * Character addresses for lockstat only. 357 * Character addresses for lockstat only.
358 */ 358 */
359static char kpreempt_is_disabled; 359static char kpreempt_is_disabled;
360static char kernel_lock_held; 360static char kernel_lock_held;
361static char is_softint_lwp; 361static char is_softint_lwp;
362static char spl_is_raised; 362static char spl_is_raised;
363 363
364bool 364bool
365kpreempt(uintptr_t where) 365kpreempt(uintptr_t where)
366{ 366{
367 uintptr_t failed; 367 uintptr_t failed;
368 lwp_t *l; 368 lwp_t *l;
369 int s, dop, lsflag; 369 int s, dop, lsflag;
370 370
371 l = curlwp; 371 l = curlwp;
372 failed = 0; 372 failed = 0;
373 while ((dop = l->l_dopreempt) != 0) { 373 while ((dop = l->l_dopreempt) != 0) {
374 if (l->l_stat != LSONPROC) { 374 if (l->l_stat != LSONPROC) {
375 /* 375 /*
376 * About to block (or die), let it happen. 376 * About to block (or die), let it happen.
377 * Doesn't really count as "preemption has 377 * Doesn't really count as "preemption has
378 * been blocked", since we're going to 378 * been blocked", since we're going to
379 * context switch. 379 * context switch.
380 */ 380 */
381 atomic_swap_uint(&l->l_dopreempt, 0); 381 atomic_swap_uint(&l->l_dopreempt, 0);
382 return true; 382 return true;
383 } 383 }
384 KASSERT((l->l_flag & LW_IDLE) == 0); 384 KASSERT((l->l_flag & LW_IDLE) == 0);
385 if (__predict_false(l->l_nopreempt != 0)) { 385 if (__predict_false(l->l_nopreempt != 0)) {
386 /* LWP holds preemption disabled, explicitly. */ 386 /* LWP holds preemption disabled, explicitly. */
387 if ((dop & DOPREEMPT_COUNTED) == 0) { 387 if ((dop & DOPREEMPT_COUNTED) == 0) {
388 kpreempt_ev_crit.ev_count++; 388 kpreempt_ev_crit.ev_count++;
389 } 389 }
390 failed = (uintptr_t)&kpreempt_is_disabled; 390 failed = (uintptr_t)&kpreempt_is_disabled;
391 break; 391 break;
392 } 392 }
393 if (__predict_false((l->l_pflag & LP_INTR) != 0)) { 393 if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
394 /* Can't preempt soft interrupts yet. */ 394 /* Can't preempt soft interrupts yet. */
395 atomic_swap_uint(&l->l_dopreempt, 0); 395 atomic_swap_uint(&l->l_dopreempt, 0);
396 failed = (uintptr_t)&is_softint_lwp; 396 failed = (uintptr_t)&is_softint_lwp;
397 break; 397 break;
398 } 398 }
399 s = splsched(); 399 s = splsched();
400 if (__predict_false(l->l_blcnt != 0 || 400 if (__predict_false(l->l_blcnt != 0 ||
401 curcpu()->ci_biglock_wanted != NULL)) { 401 curcpu()->ci_biglock_wanted != NULL)) {
402 /* Hold or want kernel_lock, code is not MT safe. */ 402 /* Hold or want kernel_lock, code is not MT safe. */
403 splx(s); 403 splx(s);
404 if ((dop & DOPREEMPT_COUNTED) == 0) { 404 if ((dop & DOPREEMPT_COUNTED) == 0) {
405 kpreempt_ev_klock.ev_count++; 405 kpreempt_ev_klock.ev_count++;
406 } 406 }
407 failed = (uintptr_t)&kernel_lock_held; 407 failed = (uintptr_t)&kernel_lock_held;
408 break; 408 break;
409 } 409 }
410 if (__predict_false(!cpu_kpreempt_enter(where, s))) { 410 if (__predict_false(!cpu_kpreempt_enter(where, s))) {
411 /* 411 /*
412 * It may be that the IPL is too high. 412 * It may be that the IPL is too high.
413 * kpreempt_enter() can schedule an 413 * kpreempt_enter() can schedule an
414 * interrupt to retry later. 414 * interrupt to retry later.
415 */ 415 */
416 splx(s); 416 splx(s);
417 failed = (uintptr_t)&spl_is_raised; 417 failed = (uintptr_t)&spl_is_raised;
418 break; 418 break;
419 } 419 }
420 /* Do it! */ 420 /* Do it! */
421 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) { 421 if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
422 kpreempt_ev_immed.ev_count++; 422 kpreempt_ev_immed.ev_count++;
423 } 423 }
424 lwp_lock(l); 424 lwp_lock(l);
425 /* Involuntary - keep kpriority boost. */ 425 /* Involuntary - keep kpriority boost. */
426 l->l_pflag |= LP_PREEMPTING; 426 l->l_pflag |= LP_PREEMPTING;
427 spc_lock(l->l_cpu); 427 spc_lock(l->l_cpu);
428 mi_switch(l); 428 mi_switch(l);
429 l->l_nopreempt++; 429 l->l_nopreempt++;
430 splx(s); 430 splx(s);
431 431
432 /* Take care of any MD cleanup. */ 432 /* Take care of any MD cleanup. */
433 cpu_kpreempt_exit(where); 433 cpu_kpreempt_exit(where);
434 l->l_nopreempt--; 434 l->l_nopreempt--;
435 } 435 }
436 436
437 if (__predict_true(!failed)) { 437 if (__predict_true(!failed)) {
438 return false; 438 return false;
439 } 439 }
440 440
441 /* Record preemption failure for reporting via lockstat. */ 441 /* Record preemption failure for reporting via lockstat. */
442 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED); 442 atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
443 lsflag = 0; 443 lsflag = 0;
444 LOCKSTAT_ENTER(lsflag); 444 LOCKSTAT_ENTER(lsflag);
445 if (__predict_false(lsflag)) { 445 if (__predict_false(lsflag)) {
446 if (where == 0) { 446 if (where == 0) {
447 where = (uintptr_t)__builtin_return_address(0); 447 where = (uintptr_t)__builtin_return_address(0);
448 } 448 }
449 /* Preemption is on, might recurse, so make it atomic. */ 449 /* Preemption is on, might recurse, so make it atomic. */
450 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL, 450 if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
451 (void *)where) == NULL) { 451 (void *)where) == NULL) {
452 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime); 452 LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
453 l->l_pfaillock = failed; 453 l->l_pfaillock = failed;
454 } 454 }
455 } 455 }
456 LOCKSTAT_EXIT(lsflag); 456 LOCKSTAT_EXIT(lsflag);
457 return true; 457 return true;
458} 458}
459 459
460/* 460/*
461 * Return true if preemption is explicitly disabled. 461 * Return true if preemption is explicitly disabled.
462 */ 462 */
463bool 463bool
464kpreempt_disabled(void) 464kpreempt_disabled(void)
465{ 465{
466 const lwp_t *l = curlwp; 466 const lwp_t *l = curlwp;
467 467
468 return l->l_nopreempt != 0 || l->l_stat == LSZOMB || 468 return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
469 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 || 469 (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
470 cpu_kpreempt_disabled(); 470 cpu_kpreempt_disabled();
471} 471}
472 472
473/* 473/*
474 * Disable kernel preemption. 474 * Disable kernel preemption.
475 */ 475 */
476void 476void
477kpreempt_disable(void) 477kpreempt_disable(void)
478{ 478{
479 479
480 KPREEMPT_DISABLE(curlwp); 480 KPREEMPT_DISABLE(curlwp);
481} 481}
482 482
483/* 483/*
484 * Reenable kernel preemption. 484 * Reenable kernel preemption.
485 */ 485 */
486void 486void
487kpreempt_enable(void) 487kpreempt_enable(void)
488{ 488{
489 489
490 KPREEMPT_ENABLE(curlwp); 490 KPREEMPT_ENABLE(curlwp);
491} 491}
492 492
493/* 493/*
494 * Compute the amount of time during which the current lwp was running. 494 * Compute the amount of time during which the current lwp was running.
495 * 495 *
496 * - update l_rtime unless it's an idle lwp. 496 * - update l_rtime unless it's an idle lwp.
497 */ 497 */
498 498
499void 499void
500updatertime(lwp_t *l, const struct bintime *now) 500updatertime(lwp_t *l, const struct bintime *now)
501{ 501{
502 502
503 if (__predict_false(l->l_flag & LW_IDLE)) 503 if (__predict_false(l->l_flag & LW_IDLE))
504 return; 504 return;
505 505
506 /* rtime += now - stime */ 506 /* rtime += now - stime */
507 bintime_add(&l->l_rtime, now); 507 bintime_add(&l->l_rtime, now);
508 bintime_sub(&l->l_rtime, &l->l_stime); 508 bintime_sub(&l->l_rtime, &l->l_stime);
509} 509}
510 510
511/* 511/*
512 * Select next LWP from the current CPU to run.. 512 * Select next LWP from the current CPU to run..
513 */ 513 */
514static inline lwp_t * 514static inline lwp_t *
515nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc) 515nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
516{ 516{
517 lwp_t *newl; 517 lwp_t *newl;
518 518
519 /* 519 /*
520 * Let sched_nextlwp() select the LWP to run the CPU next. 520 * Let sched_nextlwp() select the LWP to run the CPU next.
521 * If no LWP is runnable, select the idle LWP. 521 * If no LWP is runnable, select the idle LWP.
522 *  522 *
523 * On arrival here LWPs on a run queue are locked by spc_mutex which 523 * On arrival here LWPs on a run queue are locked by spc_mutex which
524 * is currently held. Idle LWPs are always locked by spc_lwplock, 524 * is currently held. Idle LWPs are always locked by spc_lwplock,
525 * which may or may not be held here. On exit from this code block, 525 * which may or may not be held here. On exit from this code block,
526 * in all cases newl is locked by spc_lwplock. 526 * in all cases newl is locked by spc_lwplock.
527 */ 527 */
528 newl = sched_nextlwp(); 528 newl = sched_nextlwp();
529 if (newl != NULL) { 529 if (newl != NULL) {
530 sched_dequeue(newl); 530 sched_dequeue(newl);
531 KASSERT(lwp_locked(newl, spc->spc_mutex)); 531 KASSERT(lwp_locked(newl, spc->spc_mutex));
532 KASSERT(newl->l_cpu == ci); 532 KASSERT(newl->l_cpu == ci);
533 newl->l_stat = LSONPROC; 533 newl->l_stat = LSONPROC;
534 newl->l_pflag |= LP_RUNNING; 534 newl->l_pflag |= LP_RUNNING;
535 spc->spc_curpriority = lwp_eprio(newl); 535 spc->spc_curpriority = lwp_eprio(newl);
536 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE); 536 spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
537 lwp_setlock(newl, spc->spc_lwplock); 537 lwp_setlock(newl, spc->spc_lwplock);
538 } else { 538 } else {
539 /* 539 /*
540 * The idle LWP does not get set to LSONPROC, because 540 * The idle LWP does not get set to LSONPROC, because
541 * otherwise it screws up the output from top(1) etc. 541 * otherwise it screws up the output from top(1) etc.
542 */ 542 */
543 newl = ci->ci_data.cpu_idlelwp; 543 newl = ci->ci_data.cpu_idlelwp;
544 newl->l_pflag |= LP_RUNNING; 544 newl->l_pflag |= LP_RUNNING;
545 spc->spc_curpriority = PRI_IDLE; 545 spc->spc_curpriority = PRI_IDLE;
546 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) | 546 spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
547 SPCF_IDLE; 547 SPCF_IDLE;
548 } 548 }
549 549
550 /* 550 /*
551 * Only clear want_resched if there are no pending (slow) software 551 * Only clear want_resched if there are no pending (slow) software
552 * interrupts. We can do this without an atomic, because no new 552 * interrupts. We can do this without an atomic, because no new
553 * LWPs can appear in the queue due to our hold on spc_mutex, and 553 * LWPs can appear in the queue due to our hold on spc_mutex, and
554 * the update to ci_want_resched will become globally visible before 554 * the update to ci_want_resched will become globally visible before
555 * the release of spc_mutex becomes globally visible. 555 * the release of spc_mutex becomes globally visible.
556 */ 556 */
557 if (ci->ci_data.cpu_softints == 0) 557 if (ci->ci_data.cpu_softints == 0)
558 ci->ci_want_resched = 0; 558 ci->ci_want_resched = 0;
559 559
560 return newl; 560 return newl;
561} 561}
562 562
563/* 563/*
564 * The machine independent parts of context switch. 564 * The machine independent parts of context switch.
565 * 565 *
566 * NOTE: l->l_cpu is not changed in this routine, because an LWP never 566 * NOTE: l->l_cpu is not changed in this routine, because an LWP never
567 * changes its own l_cpu (that would screw up curcpu on many ports and could 567 * changes its own l_cpu (that would screw up curcpu on many ports and could
568 * cause all kinds of other evil stuff). l_cpu is always changed by some 568 * cause all kinds of other evil stuff). l_cpu is always changed by some
569 * other actor, when it's known the LWP is not running (the LP_RUNNING flag 569 * other actor, when it's known the LWP is not running (the LP_RUNNING flag
570 * is checked under lock). 570 * is checked under lock).
571 */ 571 */
572void 572void
573mi_switch(lwp_t *l) 573mi_switch(lwp_t *l)
574{ 574{
575 struct cpu_info *ci; 575 struct cpu_info *ci;
576 struct schedstate_percpu *spc; 576 struct schedstate_percpu *spc;
577 struct lwp *newl; 577 struct lwp *newl;
578 kmutex_t *lock; 578 kmutex_t *lock;
579 int oldspl; 579 int oldspl;
580 struct bintime bt; 580 struct bintime bt;
581 bool returning; 581 bool returning;
582 582
583 KASSERT(lwp_locked(l, NULL)); 583 KASSERT(lwp_locked(l, NULL));
584 KASSERT(kpreempt_disabled()); 584 KASSERT(kpreempt_disabled());
585 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex)); 585 KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
586 KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked"); 586 KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
587 587
588 kstack_check_magic(l); 588 kstack_check_magic(l);
589 589
590 binuptime(&bt); 590 binuptime(&bt);
591 591
592 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp); 592 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
593 KASSERT((l->l_pflag & LP_RUNNING) != 0); 593 KASSERT((l->l_pflag & LP_RUNNING) != 0);
594 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN); 594 KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
595 ci = curcpu(); 595 ci = curcpu();
596 spc = &ci->ci_schedstate; 596 spc = &ci->ci_schedstate;
597 returning = false; 597 returning = false;
598 newl = NULL; 598 newl = NULL;
599 599
600 /* 600 /*
601 * If we have been asked to switch to a specific LWP, then there 601 * If we have been asked to switch to a specific LWP, then there
602 * is no need to inspect the run queues. If a soft interrupt is 602 * is no need to inspect the run queues. If a soft interrupt is
603 * blocking, then return to the interrupted thread without adjusting 603 * blocking, then return to the interrupted thread without adjusting
604 * VM context or its start time: neither have been changed in order 604 * VM context or its start time: neither have been changed in order
605 * to take the interrupt. 605 * to take the interrupt.
606 */ 606 */
607 if (l->l_switchto != NULL) { 607 if (l->l_switchto != NULL) {
608 if ((l->l_pflag & LP_INTR) != 0) { 608 if ((l->l_pflag & LP_INTR) != 0) {
609 returning = true; 609 returning = true;
610 softint_block(l); 610 softint_block(l);
611 if ((l->l_pflag & LP_TIMEINTR) != 0) 611 if ((l->l_pflag & LP_TIMEINTR) != 0)
612 updatertime(l, &bt); 612 updatertime(l, &bt);
613 } 613 }
614 newl = l->l_switchto; 614 newl = l->l_switchto;
615 l->l_switchto = NULL; 615 l->l_switchto = NULL;
616 } 616 }
617#ifndef __HAVE_FAST_SOFTINTS 617#ifndef __HAVE_FAST_SOFTINTS
618 else if (ci->ci_data.cpu_softints != 0) { 618 else if (ci->ci_data.cpu_softints != 0) {
619 /* There are pending soft interrupts, so pick one. */ 619 /* There are pending soft interrupts, so pick one. */
620 newl = softint_picklwp(); 620 newl = softint_picklwp();
621 newl->l_stat = LSONPROC; 621 newl->l_stat = LSONPROC;
622 newl->l_pflag |= LP_RUNNING; 622 newl->l_pflag |= LP_RUNNING;
623 } 623 }
624#endif /* !__HAVE_FAST_SOFTINTS */ 624#endif /* !__HAVE_FAST_SOFTINTS */
625 625
626 /* 626 /*
627 * If on the CPU and we have gotten this far, then we must yield. 627 * If on the CPU and we have gotten this far, then we must yield.
628 */ 628 */
629 if (l->l_stat == LSONPROC && l != newl) { 629 if (l->l_stat == LSONPROC && l != newl) {
630 KASSERT(lwp_locked(l, spc->spc_lwplock)); 630 KASSERT(lwp_locked(l, spc->spc_lwplock));
631 KASSERT((l->l_flag & LW_IDLE) == 0); 631 KASSERT((l->l_flag & LW_IDLE) == 0);
632 l->l_stat = LSRUN; 632 l->l_stat = LSRUN;
633 lwp_setlock(l, spc->spc_mutex); 633 lwp_setlock(l, spc->spc_mutex);
634 sched_enqueue(l); 634 sched_enqueue(l);
635 sched_preempted(l); 635 sched_preempted(l);
636 636
637 /* 637 /*
638 * Handle migration. Note that "migrating LWP" may 638 * Handle migration. Note that "migrating LWP" may
639 * be reset here, if interrupt/preemption happens 639 * be reset here, if interrupt/preemption happens
640 * early in idle LWP. 640 * early in idle LWP.
641 */ 641 */
642 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) { 642 if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
643 KASSERT((l->l_pflag & LP_INTR) == 0); 643 KASSERT((l->l_pflag & LP_INTR) == 0);
644 spc->spc_migrating = l; 644 spc->spc_migrating = l;
645 } 645 }
646 } 646 }
647 647
648 /* Pick new LWP to run. */ 648 /* Pick new LWP to run. */
649 if (newl == NULL) { 649 if (newl == NULL) {
650 newl = nextlwp(ci, spc); 650 newl = nextlwp(ci, spc);
651 } 651 }
652 652
653 /* Items that must be updated with the CPU locked. */ 653 /* Items that must be updated with the CPU locked. */
654 if (!returning) { 654 if (!returning) {
655 /* Count time spent in current system call */ 655 /* Count time spent in current system call */
656 SYSCALL_TIME_SLEEP(l); 656 SYSCALL_TIME_SLEEP(l);
657 657
658 updatertime(l, &bt); 658 updatertime(l, &bt);
659 659
660 /* Update the new LWP's start time. */ 660 /* Update the new LWP's start time. */
661 newl->l_stime = bt; 661 newl->l_stime = bt;
662 662
663 /* 663 /*
664 * ci_curlwp changes when a fast soft interrupt occurs. 664 * ci_curlwp changes when a fast soft interrupt occurs.
665 * We use ci_onproc to keep track of which kernel or 665 * We use ci_onproc to keep track of which kernel or
666 * user thread is running 'underneath' the software 666 * user thread is running 'underneath' the software
667 * interrupt. This is important for time accounting, 667 * interrupt. This is important for time accounting,
668 * itimers and forcing user threads to preempt (aston). 668 * itimers and forcing user threads to preempt (aston).
669 */ 669 */
670 ci->ci_onproc = newl; 670 ci->ci_onproc = newl;
671 } 671 }
672 672
673 /* 673 /*
674 * Preemption related tasks. Must be done holding spc_mutex. Clear 674 * Preemption related tasks. Must be done holding spc_mutex. Clear
675 * l_dopreempt without an atomic - it's only ever set non-zero by 675 * l_dopreempt without an atomic - it's only ever set non-zero by
676 * sched_resched_cpu() which also holds spc_mutex, and only ever 676 * sched_resched_cpu() which also holds spc_mutex, and only ever
677 * cleared by the LWP itself (us) with atomics when not under lock. 677 * cleared by the LWP itself (us) with atomics when not under lock.
678 */ 678 */
679 l->l_dopreempt = 0; 679 l->l_dopreempt = 0;
680 if (__predict_false(l->l_pfailaddr != 0)) { 680 if (__predict_false(l->l_pfailaddr != 0)) {
681 LOCKSTAT_FLAG(lsflag); 681 LOCKSTAT_FLAG(lsflag);
682 LOCKSTAT_ENTER(lsflag); 682 LOCKSTAT_ENTER(lsflag);
683 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime); 683 LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
684 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN, 684 LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
685 1, l->l_pfailtime, l->l_pfailaddr); 685 1, l->l_pfailtime, l->l_pfailaddr);
686 LOCKSTAT_EXIT(lsflag); 686 LOCKSTAT_EXIT(lsflag);
687 l->l_pfailtime = 0; 687 l->l_pfailtime = 0;
688 l->l_pfaillock = 0; 688 l->l_pfaillock = 0;
689 l->l_pfailaddr = 0; 689 l->l_pfailaddr = 0;
690 } 690 }
691 691
692 if (l != newl) { 692 if (l != newl) {
693 struct lwp *prevlwp; 693 struct lwp *prevlwp;
694 694
695 /* Release all locks, but leave the current LWP locked */ 695 /* Release all locks, but leave the current LWP locked */
696 if (l->l_mutex == spc->spc_mutex) { 696 if (l->l_mutex == spc->spc_mutex) {
697 /* 697 /*
698 * Drop spc_lwplock, if the current LWP has been moved 698 * Drop spc_lwplock, if the current LWP has been moved
699 * to the run queue (it is now locked by spc_mutex). 699 * to the run queue (it is now locked by spc_mutex).
700 */ 700 */
701 mutex_spin_exit(spc->spc_lwplock); 701 mutex_spin_exit(spc->spc_lwplock);
702 } else { 702 } else {
703 /* 703 /*
704 * Otherwise, drop the spc_mutex, we are done with the 704 * Otherwise, drop the spc_mutex, we are done with the
705 * run queues. 705 * run queues.
706 */ 706 */
707 mutex_spin_exit(spc->spc_mutex); 707 mutex_spin_exit(spc->spc_mutex);
708 } 708 }
709 709
710 /* We're down to only one lock, so do debug checks. */ 710 /* We're down to only one lock, so do debug checks. */
711 LOCKDEBUG_BARRIER(l->l_mutex, 1); 711 LOCKDEBUG_BARRIER(l->l_mutex, 1);
712 712
713 /* Count the context switch. */ 713 /* Count the context switch. */
714 CPU_COUNT(CPU_COUNT_NSWTCH, 1); 714 CPU_COUNT(CPU_COUNT_NSWTCH, 1);
715 l->l_ncsw++; 715 l->l_ncsw++;
716 if ((l->l_pflag & LP_PREEMPTING) != 0) { 716 if ((l->l_pflag & LP_PREEMPTING) != 0) {
717 l->l_nivcsw++; 717 l->l_nivcsw++;
718 l->l_pflag &= ~LP_PREEMPTING; 718 l->l_pflag &= ~LP_PREEMPTING;
719 } 719 }
720 720
721 /* 721 /*
722 * Increase the count of spin-mutexes before the release 722 * Increase the count of spin-mutexes before the release
723 * of the last lock - we must remain at IPL_SCHED after 723 * of the last lock - we must remain at IPL_SCHED after
724 * releasing the lock. 724 * releasing the lock.
725 */ 725 */
726 KASSERTMSG(ci->ci_mtx_count == -1, 726 KASSERTMSG(ci->ci_mtx_count == -1,
727 "%s: cpu%u: ci_mtx_count (%d) != -1 " 727 "%s: cpu%u: ci_mtx_count (%d) != -1 "
728 "(block with spin-mutex held)", 728 "(block with spin-mutex held)",
729 __func__, cpu_index(ci), ci->ci_mtx_count); 729 __func__, cpu_index(ci), ci->ci_mtx_count);
730 oldspl = MUTEX_SPIN_OLDSPL(ci); 730 oldspl = MUTEX_SPIN_OLDSPL(ci);
731 ci->ci_mtx_count = -2; 731 ci->ci_mtx_count = -2;
732 732
733 /* Update status for lwpctl, if present. */ 733 /* Update status for lwpctl, if present. */
734 if (l->l_lwpctl != NULL) { 734 if (l->l_lwpctl != NULL) {
735 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ? 735 l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
736 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE); 736 LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
737 } 737 }
738 738
739 /* 739 /*
740 * If curlwp is a soft interrupt LWP, there's nobody on the 740 * If curlwp is a soft interrupt LWP, there's nobody on the
741 * other side to unlock - we're returning into an assembly 741 * other side to unlock - we're returning into an assembly
742 * trampoline. Unlock now. This is safe because this is a 742 * trampoline. Unlock now. This is safe because this is a
743 * kernel LWP and is bound to current CPU: the worst anyone 743 * kernel LWP and is bound to current CPU: the worst anyone
744 * else will do to it, is to put it back onto this CPU's run 744 * else will do to it, is to put it back onto this CPU's run
745 * queue (and the CPU is busy here right now!). 745 * queue (and the CPU is busy here right now!).
746 */ 746 */
747 if (returning) { 747 if (returning) {
748 /* Keep IPL_SCHED after this; MD code will fix up. */ 748 /* Keep IPL_SCHED after this; MD code will fix up. */
749 l->l_pflag &= ~LP_RUNNING; 749 l->l_pflag &= ~LP_RUNNING;
750 lwp_unlock(l); 750 lwp_unlock(l);
751 } else { 751 } else {
752 /* A normal LWP: save old VM context. */ 752 /* A normal LWP: save old VM context. */
753 pmap_deactivate(l); 753 pmap_deactivate(l);
754 } 754 }
755 755
756 /* 756 /*
757 * If DTrace has set the active vtime enum to anything 757 * If DTrace has set the active vtime enum to anything
758 * other than INACTIVE (0), then it should have set the 758 * other than INACTIVE (0), then it should have set the
759 * function to call. 759 * function to call.
760 */ 760 */
761 if (__predict_false(dtrace_vtime_active)) { 761 if (__predict_false(dtrace_vtime_active)) {
762 (*dtrace_vtime_switch_func)(newl); 762 (*dtrace_vtime_switch_func)(newl);
763 } 763 }
764 764
765 /* 765 /*
766 * We must ensure not to come here from inside a read section. 766 * We must ensure not to come here from inside a read section.
767 */ 767 */
768 KASSERT(pserialize_not_in_read_section()); 768 KASSERT(pserialize_not_in_read_section());
769 769
770 /* Switch to the new LWP.. */ 770 /* Switch to the new LWP.. */
771#ifdef MULTIPROCESSOR 771#ifdef MULTIPROCESSOR
772 KASSERT(curlwp == ci->ci_curlwp); 772 KASSERT(curlwp == ci->ci_curlwp);
773#endif 773#endif
774 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp); 774 KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
775 prevlwp = cpu_switchto(l, newl, returning); 775 prevlwp = cpu_switchto(l, newl, returning);
776 ci = curcpu(); 776 ci = curcpu();
777#ifdef MULTIPROCESSOR 777#ifdef MULTIPROCESSOR
778 KASSERT(curlwp == ci->ci_curlwp); 778 KASSERT(curlwp == ci->ci_curlwp);
779#endif 779#endif
780 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p", 780 KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
781 l, curlwp, prevlwp); 781 l, curlwp, prevlwp);
782 KASSERT(prevlwp != NULL); 782 KASSERT(prevlwp != NULL);
783 KASSERT(l->l_cpu == ci); 783 KASSERT(l->l_cpu == ci);
784 KASSERT(ci->ci_mtx_count == -2); 784 KASSERT(ci->ci_mtx_count == -2);
785 785
786 /* 786 /*
787 * Immediately mark the previous LWP as no longer running 787 * Immediately mark the previous LWP as no longer running
788 * and unlock (to keep lock wait times short as possible). 788 * and unlock (to keep lock wait times short as possible).
789 * We'll still be at IPL_SCHED afterwards. If a zombie, 789 * We'll still be at IPL_SCHED afterwards. If a zombie,
790 * don't touch after clearing LP_RUNNING as it could be 790 * don't touch after clearing LP_RUNNING as it could be
791 * reaped by another CPU. Issue a memory barrier to ensure 791 * reaped by another CPU. Issue a memory barrier to ensure
792 * this. 792 * this.
793 * 793 *
794 * atomic_store_release matches atomic_load_acquire in 794 * atomic_store_release matches atomic_load_acquire in
795 * lwp_free. 795 * lwp_free.
796 */ 796 */
797 KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0); 797 KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
798 lock = prevlwp->l_mutex; 798 lock = prevlwp->l_mutex;
799 if (__predict_false(prevlwp->l_stat == LSZOMB)) { 799 if (__predict_false(prevlwp->l_stat == LSZOMB)) {
800 atomic_store_release(&prevlwp->l_pflag, 800 atomic_store_release(&prevlwp->l_pflag,
801 prevlwp->l_pflag & ~LP_RUNNING); 801 prevlwp->l_pflag & ~LP_RUNNING);
802 } else { 802 } else {
803 prevlwp->l_pflag &= ~LP_RUNNING; 803 prevlwp->l_pflag &= ~LP_RUNNING;
804 } 804 }
805 mutex_spin_exit(lock); 805 mutex_spin_exit(lock);
806 806
807 /* 807 /*
808 * Switched away - we have new curlwp. 808 * Switched away - we have new curlwp.
809 * Restore VM context and IPL. 809 * Restore VM context and IPL.
810 */ 810 */
811 pmap_activate(l); 811 pmap_activate(l);
812 pcu_switchpoint(l); 812 pcu_switchpoint(l);
813 813
814 /* Update status for lwpctl, if present. */ 814 /* Update status for lwpctl, if present. */
815 if (l->l_lwpctl != NULL) { 815 if (l->l_lwpctl != NULL) {
816 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci); 816 l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
817 l->l_lwpctl->lc_pctr++; 817 l->l_lwpctl->lc_pctr++;
818 } 818 }
819 819
820 /* 820 /*
821 * Normalize the spin mutex count and restore the previous 821 * Normalize the spin mutex count and restore the previous
822 * SPL. Note that, unless the caller disabled preemption, 822 * SPL. Note that, unless the caller disabled preemption,
823 * we can be preempted at any time after this splx(). 823 * we can be preempted at any time after this splx().
824 */ 824 */
825 KASSERT(l->l_cpu == ci); 825 KASSERT(l->l_cpu == ci);
826 KASSERT(ci->ci_mtx_count == -1); 826 KASSERT(ci->ci_mtx_count == -1);
827 ci->ci_mtx_count = 0; 827 ci->ci_mtx_count = 0;
828 splx(oldspl); 828 splx(oldspl);
829 } else { 829 } else {
830 /* Nothing to do - just unlock and return. */ 830 /* Nothing to do - just unlock and return. */
831 mutex_spin_exit(spc->spc_mutex); 831 mutex_spin_exit(spc->spc_mutex);
832 l->l_pflag &= ~LP_PREEMPTING; 832 l->l_pflag &= ~LP_PREEMPTING;
833 lwp_unlock(l); 833 lwp_unlock(l);
834 } 834 }
835 835
836 KASSERT(l == curlwp); 836 KASSERT(l == curlwp);
837 KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);  837 KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
838 838
839 SYSCALL_TIME_WAKEUP(l); 839 SYSCALL_TIME_WAKEUP(l);
840 LOCKDEBUG_BARRIER(NULL, 1); 840 LOCKDEBUG_BARRIER(NULL, 1);
841} 841}
842 842
843/* 843/*
844 * setrunnable: change LWP state to be runnable, placing it on the run queue. 844 * setrunnable: change LWP state to be runnable, placing it on the run queue.
845 * 845 *
846 * Call with the process and LWP locked. Will return with the LWP unlocked. 846 * Call with the process and LWP locked. Will return with the LWP unlocked.
847 */ 847 */
848void 848void
849setrunnable(struct lwp *l) 849setrunnable(struct lwp *l)
850{ 850{
851 struct proc *p = l->l_proc; 851 struct proc *p = l->l_proc;
852 struct cpu_info *ci; 852 struct cpu_info *ci;
853 kmutex_t *oldlock; 853 kmutex_t *oldlock;
854 854
855 KASSERT((l->l_flag & LW_IDLE) == 0); 855 KASSERT((l->l_flag & LW_IDLE) == 0);
856 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0); 856 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
857 KASSERT(mutex_owned(p->p_lock)); 857 KASSERT(mutex_owned(p->p_lock));
858 KASSERT(lwp_locked(l, NULL)); 858 KASSERT(lwp_locked(l, NULL));
859 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex); 859 KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
860 860
861 switch (l->l_stat) { 861 switch (l->l_stat) {
862 case LSSTOP: 862 case LSSTOP:
863 /* 863 /*
864 * If we're being traced (possibly because someone attached us 864 * If we're being traced (possibly because someone attached us
865 * while we were stopped), check for a signal from the debugger. 865 * while we were stopped), check for a signal from the debugger.
866 */ 866 */
867 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0) 867 if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
868 signotify(l); 868 signotify(l);
869 p->p_nrlwps++; 869 p->p_nrlwps++;
870 break; 870 break;
871 case LSSUSPENDED: 871 case LSSUSPENDED:
872 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 872 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
873 l->l_flag &= ~LW_WSUSPEND; 873 l->l_flag &= ~LW_WSUSPEND;
874 p->p_nrlwps++; 874 p->p_nrlwps++;
875 cv_broadcast(&p->p_lwpcv); 875 cv_broadcast(&p->p_lwpcv);
876 break; 876 break;
877 case LSSLEEP: 877 case LSSLEEP:
878 KASSERT(l->l_wchan != NULL); 878 KASSERT(l->l_wchan != NULL);
879 break; 879 break;
880 case LSIDL: 880 case LSIDL:
881 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); 881 KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
882 break; 882 break;
883 default: 883 default:
884 panic("setrunnable: lwp %p state was %d", l, l->l_stat); 884 panic("setrunnable: lwp %p state was %d", l, l->l_stat);
885 } 885 }
886 886
887 /* 887 /*
888 * If the LWP was sleeping, start it again. 888 * If the LWP was sleeping, start it again.
889 */ 889 */
890 if (l->l_wchan != NULL) { 890 if (l->l_wchan != NULL) {
891 l->l_stat = LSSLEEP; 891 l->l_stat = LSSLEEP;
892 /* lwp_unsleep() will release the lock. */ 892 /* lwp_unsleep() will release the lock. */
893 lwp_unsleep(l, true); 893 lwp_unsleep(l, true);
894 return; 894 return;
895 } 895 }
896 896
897 /* 897 /*
898 * If the LWP is still on the CPU, mark it as LSONPROC. It may be 898 * If the LWP is still on the CPU, mark it as LSONPROC. It may be
899 * about to call mi_switch(), in which case it will yield. 899 * about to call mi_switch(), in which case it will yield.
900 */ 900 */
901 if ((l->l_pflag & LP_RUNNING) != 0) { 901 if ((l->l_pflag & LP_RUNNING) != 0) {
902 l->l_stat = LSONPROC; 902 l->l_stat = LSONPROC;
903 l->l_slptime = 0; 903 l->l_slptime = 0;
904 lwp_unlock(l); 904 lwp_unlock(l);
905 return; 905 return;
906 } 906 }
907 907
908 /* 908 /*
909 * Look for a CPU to run. 909 * Look for a CPU to run.
910 * Set the LWP runnable. 910 * Set the LWP runnable.
911 */ 911 */
912 ci = sched_takecpu(l); 912 ci = sched_takecpu(l);
913 l->l_cpu = ci; 913 l->l_cpu = ci;
914 spc_lock(ci); 914 spc_lock(ci);
915 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex); 915 oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
916 sched_setrunnable(l); 916 sched_setrunnable(l);
917 l->l_stat = LSRUN; 917 l->l_stat = LSRUN;
918 l->l_slptime = 0; 918 l->l_slptime = 0;
919 sched_enqueue(l); 919 sched_enqueue(l);
920 sched_resched_lwp(l, true); 920 sched_resched_lwp(l, true);
921 /* SPC & LWP now unlocked. */ 921 /* SPC & LWP now unlocked. */
922 mutex_spin_exit(oldlock); 922 mutex_spin_exit(oldlock);
923} 923}
924 924
925/* 925/*
926 * suspendsched: 926 * suspendsched:
927 * 927 *
928 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.  928 * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
929 */ 929 */
930void 930void
931suspendsched(void) 931suspendsched(void)
932{ 932{
933 CPU_INFO_ITERATOR cii; 933 CPU_INFO_ITERATOR cii;
934 struct cpu_info *ci; 934 struct cpu_info *ci;
935 struct lwp *l; 935 struct lwp *l;
936 struct proc *p; 936 struct proc *p;
937 937
938 /* 938 /*
939 * We do this by process in order not to violate the locking rules. 939 * We do this by process in order not to violate the locking rules.
940 */ 940 */
941 mutex_enter(&proc_lock); 941 mutex_enter(&proc_lock);
942 PROCLIST_FOREACH(p, &allproc) { 942 PROCLIST_FOREACH(p, &allproc) {
943 mutex_enter(p->p_lock); 943 mutex_enter(p->p_lock);
944 if ((p->p_flag & PK_SYSTEM) != 0) { 944 if ((p->p_flag & PK_SYSTEM) != 0) {
945 mutex_exit(p->p_lock); 945 mutex_exit(p->p_lock);
946 continue; 946 continue;
947 } 947 }
948 948
949 if (p->p_stat != SSTOP) { 949 if (p->p_stat != SSTOP) {
950 if (p->p_stat != SZOMB && p->p_stat != SDEAD) { 950 if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
951 p->p_pptr->p_nstopchild++; 951 p->p_pptr->p_nstopchild++;
952 p->p_waited = 0; 952 p->p_waited = 0;
953 } 953 }
954 p->p_stat = SSTOP; 954 p->p_stat = SSTOP;
955 } 955 }
956 956
957 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 957 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
958 if (l == curlwp) 958 if (l == curlwp)
959 continue; 959 continue;
960 960
961 lwp_lock(l); 961 lwp_lock(l);
962 962
963 /* 963 /*
964 * Set L_WREBOOT so that the LWP will suspend itself 964 * Set L_WREBOOT so that the LWP will suspend itself
965 * when it tries to return to user mode. We want to 965 * when it tries to return to user mode. We want to
966 * try and get to get as many LWPs as possible to 966 * try and get to get as many LWPs as possible to
967 * the user / kernel boundary, so that they will 967 * the user / kernel boundary, so that they will
968 * release any locks that they hold. 968 * release any locks that they hold.
969 */ 969 */
970 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND); 970 l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
971 971
972 if (l->l_stat == LSSLEEP && 972 if (l->l_stat == LSSLEEP &&
973 (l->l_flag & LW_SINTR) != 0) { 973 (l->l_flag & LW_SINTR) != 0) {
974 /* setrunnable() will release the lock. */ 974 /* setrunnable() will release the lock. */
975 setrunnable(l); 975 setrunnable(l);
976 continue; 976 continue;
977 } 977 }
978 978
979 lwp_unlock(l); 979 lwp_unlock(l);
980 } 980 }
981 981
982 mutex_exit(p->p_lock); 982 mutex_exit(p->p_lock);
983 } 983 }
984 mutex_exit(&proc_lock); 984 mutex_exit(&proc_lock);
985 985
986 /* 986 /*
987 * Kick all CPUs to make them preempt any LWPs running in user mode.  987 * Kick all CPUs to make them preempt any LWPs running in user mode.
988 * They'll trap into the kernel and suspend themselves in userret().  988 * They'll trap into the kernel and suspend themselves in userret().
989 * 989 *
990 * Unusually, we don't hold any other scheduler object locked, which 990 * Unusually, we don't hold any other scheduler object locked, which
991 * would keep preemption off for sched_resched_cpu(), so disable it 991 * would keep preemption off for sched_resched_cpu(), so disable it
992 * explicitly. 992 * explicitly.
993 */ 993 */
994 kpreempt_disable(); 994 kpreempt_disable();
995 for (CPU_INFO_FOREACH(cii, ci)) { 995 for (CPU_INFO_FOREACH(cii, ci)) {
996 spc_lock(ci); 996 spc_lock(ci);
997 sched_resched_cpu(ci, PRI_KERNEL, true); 997 sched_resched_cpu(ci, PRI_KERNEL, true);
998 /* spc now unlocked */ 998 /* spc now unlocked */
999 } 999 }
1000 kpreempt_enable(); 1000 kpreempt_enable();
1001} 1001}
1002 1002
1003/* 1003/*
1004 * sched_unsleep: 1004 * sched_unsleep:
1005 * 1005 *
1006 * The is called when the LWP has not been awoken normally but instead 1006 * The is called when the LWP has not been awoken normally but instead
1007 * interrupted: for example, if the sleep timed out. Because of this, 1007 * interrupted: for example, if the sleep timed out. Because of this,
1008 * it's not a valid action for running or idle LWPs. 1008 * it's not a valid action for running or idle LWPs.
1009 */ 1009 */
1010static void 1010static void
1011sched_unsleep(struct lwp *l, bool cleanup) 1011sched_unsleep(struct lwp *l, bool cleanup)
1012{ 1012{
1013 1013
1014 lwp_unlock(l); 1014 lwp_unlock(l);
1015 panic("sched_unsleep"); 1015 panic("sched_unsleep");
1016} 1016}
1017 1017
1018static void 1018static void
1019sched_changepri(struct lwp *l, pri_t pri) 1019sched_changepri(struct lwp *l, pri_t pri)
1020{ 1020{
1021 struct schedstate_percpu *spc; 1021 struct schedstate_percpu *spc;
1022 struct cpu_info *ci; 1022 struct cpu_info *ci;
1023 1023
1024 KASSERT(lwp_locked(l, NULL)); 1024 KASSERT(lwp_locked(l, NULL));
1025 1025
1026 ci = l->l_cpu; 1026 ci = l->l_cpu;
1027 spc = &ci->ci_schedstate; 1027 spc = &ci->ci_schedstate;
1028 1028
1029 if (l->l_stat == LSRUN) { 1029 if (l->l_stat == LSRUN) {
1030 KASSERT(lwp_locked(l, spc->spc_mutex)); 1030 KASSERT(lwp_locked(l, spc->spc_mutex));
1031 sched_dequeue(l); 1031 sched_dequeue(l);
1032 l->l_priority = pri; 1032 l->l_priority = pri;
1033 sched_enqueue(l); 1033 sched_enqueue(l);
1034 sched_resched_lwp(l, false); 1034 sched_resched_lwp(l, false);
1035 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) { 1035 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1036 /* On priority drop, only evict realtime LWPs. */ 1036 /* On priority drop, only evict realtime LWPs. */
1037 KASSERT(lwp_locked(l, spc->spc_lwplock)); 1037 KASSERT(lwp_locked(l, spc->spc_lwplock));
1038 l->l_priority = pri; 1038 l->l_priority = pri;
1039 spc_lock(ci); 1039 spc_lock(ci);
1040 sched_resched_cpu(ci, spc->spc_maxpriority, true); 1040 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1041 /* spc now unlocked */ 1041 /* spc now unlocked */
1042 } else { 1042 } else {
1043 l->l_priority = pri; 1043 l->l_priority = pri;
1044 } 1044 }
1045} 1045}
1046 1046
1047static void 1047static void
1048sched_lendpri(struct lwp *l, pri_t pri) 1048sched_lendpri(struct lwp *l, pri_t pri)
1049{ 1049{
1050 struct schedstate_percpu *spc; 1050 struct schedstate_percpu *spc;
1051 struct cpu_info *ci; 1051 struct cpu_info *ci;
1052 1052
1053 KASSERT(lwp_locked(l, NULL)); 1053 KASSERT(lwp_locked(l, NULL));
1054 1054
1055 ci = l->l_cpu; 1055 ci = l->l_cpu;
1056 spc = &ci->ci_schedstate; 1056 spc = &ci->ci_schedstate;
1057 1057
1058 if (l->l_stat == LSRUN) { 1058 if (l->l_stat == LSRUN) {
1059 KASSERT(lwp_locked(l, spc->spc_mutex)); 1059 KASSERT(lwp_locked(l, spc->spc_mutex));
1060 sched_dequeue(l); 1060 sched_dequeue(l);
1061 l->l_inheritedprio = pri; 1061 l->l_inheritedprio = pri;
1062 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1062 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1063 sched_enqueue(l); 1063 sched_enqueue(l);
1064 sched_resched_lwp(l, false); 1064 sched_resched_lwp(l, false);
1065 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) { 1065 } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1066 /* On priority drop, only evict realtime LWPs. */ 1066 /* On priority drop, only evict realtime LWPs. */
1067 KASSERT(lwp_locked(l, spc->spc_lwplock)); 1067 KASSERT(lwp_locked(l, spc->spc_lwplock));
1068 l->l_inheritedprio = pri; 1068 l->l_inheritedprio = pri;
1069 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1069 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1070 spc_lock(ci); 1070 spc_lock(ci);
1071 sched_resched_cpu(ci, spc->spc_maxpriority, true); 1071 sched_resched_cpu(ci, spc->spc_maxpriority, true);
1072 /* spc now unlocked */ 1072 /* spc now unlocked */
1073 } else { 1073 } else {
1074 l->l_inheritedprio = pri; 1074 l->l_inheritedprio = pri;
1075 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); 1075 l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1076 } 1076 }
1077} 1077}
1078 1078
1079struct lwp * 1079struct lwp *
1080syncobj_noowner(wchan_t wchan) 1080syncobj_noowner(wchan_t wchan)
1081{ 1081{
1082 1082
1083 return NULL; 1083 return NULL;
1084} 1084}
1085 1085
1086/* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */ 1086/* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1087const fixpt_t ccpu = 0.95122942450071400909 * FSCALE; 1087const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1088 1088
1089/* 1089/*
1090 * Constants for averages over 1, 5 and 15 minutes when sampling at 1090 * Constants for averages over 1, 5 and 15 minutes when sampling at
1091 * 5 second intervals. 1091 * 5 second intervals.
1092 */ 1092 */
1093static const fixpt_t cexp[ ] = { 1093static const fixpt_t cexp[ ] = {
1094 0.9200444146293232 * FSCALE, /* exp(-1/12) */ 1094 0.9200444146293232 * FSCALE, /* exp(-1/12) */
1095 0.9834714538216174 * FSCALE, /* exp(-1/60) */ 1095 0.9834714538216174 * FSCALE, /* exp(-1/60) */
1096 0.9944598480048967 * FSCALE, /* exp(-1/180) */ 1096 0.9944598480048967 * FSCALE, /* exp(-1/180) */
1097}; 1097};
1098 1098
1099/* 1099/*
1100 * sched_pstats: 1100 * sched_pstats:
1101 * 1101 *
1102 * => Update process statistics and check CPU resource allocation. 1102 * => Update process statistics and check CPU resource allocation.
1103 * => Call scheduler-specific hook to eventually adjust LWP priorities. 1103 * => Call scheduler-specific hook to eventually adjust LWP priorities.
1104 * => Compute load average of a quantity on 1, 5 and 15 minute intervals. 1104 * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1105 */ 1105 */
1106void 1106void
1107sched_pstats(void) 1107sched_pstats(void)
1108{ 1108{
1109 struct loadavg *avg = &averunnable; 1109 struct loadavg *avg = &averunnable;
1110 const int clkhz = (stathz != 0 ? stathz : hz); 1110 const int clkhz = (stathz != 0 ? stathz : hz);
1111 static bool backwards = false; 1111 static bool backwards = false;
1112 static u_int lavg_count = 0; 1112 static u_int lavg_count = 0;
1113 struct proc *p; 1113 struct proc *p;
1114 int nrun; 1114 int nrun;
1115 1115
1116 sched_pstats_ticks++; 1116 sched_pstats_ticks++;
1117 if (++lavg_count >= 5) { 1117 if (++lavg_count >= 5) {
1118 lavg_count = 0; 1118 lavg_count = 0;
1119 nrun = 0; 1119 nrun = 0;
1120 } 1120 }
1121 mutex_enter(&proc_lock); 1121 mutex_enter(&proc_lock);
1122 PROCLIST_FOREACH(p, &allproc) { 1122 PROCLIST_FOREACH(p, &allproc) {
1123 struct lwp *l; 1123 struct lwp *l;
1124 struct rlimit *rlim; 1124 struct rlimit *rlim;
1125 time_t runtm; 1125 time_t runtm;
1126 int sig; 1126 int sig;
1127 1127
1128 /* Increment sleep time (if sleeping), ignore overflow. */ 1128 /* Increment sleep time (if sleeping), ignore overflow. */
1129 mutex_enter(p->p_lock); 1129 mutex_enter(p->p_lock);
1130 runtm = p->p_rtime.sec; 1130 runtm = p->p_rtime.sec;
1131 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1131 LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1132 fixpt_t lpctcpu; 1132 fixpt_t lpctcpu;
1133 u_int lcpticks; 1133 u_int lcpticks;
1134 1134
1135 if (__predict_false((l->l_flag & LW_IDLE) != 0)) 1135 if (__predict_false((l->l_flag & LW_IDLE) != 0))
1136 continue; 1136 continue;
1137 lwp_lock(l); 1137 lwp_lock(l);
1138 runtm += l->l_rtime.sec; 1138 runtm += l->l_rtime.sec;
1139 l->l_swtime++; 1139 l->l_swtime++;
1140 sched_lwp_stats(l); 1140 sched_lwp_stats(l);
1141 1141
1142 /* For load average calculation. */ 1142 /* For load average calculation. */
1143 if (__predict_false(lavg_count == 0) && 1143 if (__predict_false(lavg_count == 0) &&
1144 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) { 1144 (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1145 switch (l->l_stat) { 1145 switch (l->l_stat) {
1146 case LSSLEEP: 1146 case LSSLEEP:
1147 if (l->l_slptime > 1) { 1147 if (l->l_slptime > 1) {
1148 break; 1148 break;
1149 } 1149 }
1150 /* FALLTHROUGH */ 1150 /* FALLTHROUGH */
1151 case LSRUN: 1151 case LSRUN:
1152 case LSONPROC: 1152 case LSONPROC:
1153 case LSIDL: 1153 case LSIDL:
1154 nrun++; 1154 nrun++;
1155 } 1155 }
1156 } 1156 }
1157 lwp_unlock(l); 1157 lwp_unlock(l);
1158 1158
1159 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT; 1159 l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1160 if (l->l_slptime != 0) 1160 if (l->l_slptime != 0)
1161 continue; 1161 continue;
1162 1162
1163 lpctcpu = l->l_pctcpu; 1163 lpctcpu = l->l_pctcpu;
1164 lcpticks = atomic_swap_uint(&l->l_cpticks, 0); 1164 lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1165 lpctcpu += ((FSCALE - ccpu) * 1165 lpctcpu += ((FSCALE - ccpu) *
1166 (lcpticks * FSCALE / clkhz)) >> FSHIFT; 1166 (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1167 l->l_pctcpu = lpctcpu; 1167 l->l_pctcpu = lpctcpu;
1168 } 1168 }
1169 /* Calculating p_pctcpu only for ps(1) */ 1169 /* Calculating p_pctcpu only for ps(1) */
1170 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; 1170 p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1171 1171
1172 if (__predict_false(runtm < 0)) { 1172 if (__predict_false(runtm < 0)) {
1173 if (!backwards) { 1173 if (!backwards) {
1174 backwards = true; 1174 backwards = true;
1175 printf("WARNING: negative runtime; " 1175 printf("WARNING: negative runtime; "
1176 "monotonic clock has gone backwards\n"); 1176 "monotonic clock has gone backwards\n");
1177 } 1177 }
1178 mutex_exit(p->p_lock); 1178 mutex_exit(p->p_lock);
1179 continue; 1179 continue;
1180 } 1180 }
1181 1181
1182 /* 1182 /*
1183 * Check if the process exceeds its CPU resource allocation. 1183 * Check if the process exceeds its CPU resource allocation.
1184 * If over the hard limit, kill it with SIGKILL. 1184 * If over the hard limit, kill it with SIGKILL.
1185 * If over the soft limit, send SIGXCPU and raise 1185 * If over the soft limit, send SIGXCPU and raise
1186 * the soft limit a little. 1186 * the soft limit a little.
1187 */ 1187 */
1188 rlim = &p->p_rlimit[RLIMIT_CPU]; 1188 rlim = &p->p_rlimit[RLIMIT_CPU];
1189 sig = 0; 1189 sig = 0;
1190 if (__predict_false(runtm >= rlim->rlim_cur)) { 1190 if (__predict_false(runtm >= rlim->rlim_cur)) {
1191 if (runtm >= rlim->rlim_max) { 1191 if (runtm >= rlim->rlim_max) {
1192 sig = SIGKILL; 1192 sig = SIGKILL;
1193 log(LOG_NOTICE, 1193 log(LOG_NOTICE,
1194 "pid %d, command %s, is killed: %s\n", 1194 "pid %d, command %s, is killed: %s\n",
1195 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU"); 1195 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1196 uprintf("pid %d, command %s, is killed: %s\n", 1196 uprintf("pid %d, command %s, is killed: %s\n",
1197 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU"); 1197 p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1198 } else { 1198 } else {
1199 sig = SIGXCPU; 1199 sig = SIGXCPU;
1200 if (rlim->rlim_cur < rlim->rlim_max) 1200 if (rlim->rlim_cur < rlim->rlim_max)
1201 rlim->rlim_cur += 5; 1201 rlim->rlim_cur += 5;
1202 } 1202 }
1203 } 1203 }
1204 mutex_exit(p->p_lock); 1204 mutex_exit(p->p_lock);
1205 if (__predict_false(sig)) { 1205 if (__predict_false(sig)) {
1206 KASSERT((p->p_flag & PK_SYSTEM) == 0); 1206 KASSERT((p->p_flag & PK_SYSTEM) == 0);
1207 psignal(p, sig); 1207 psignal(p, sig);
1208 } 1208 }
1209 } 1209 }
1210 1210
1211 /* Load average calculation. */ 1211 /* Load average calculation. */
1212 if (__predict_false(lavg_count == 0)) { 1212 if (__predict_false(lavg_count == 0)) {
1213 int i; 1213 int i;
1214 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg)); 1214 CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1215 for (i = 0; i < __arraycount(cexp); i++) { 1215 for (i = 0; i < __arraycount(cexp); i++) {
1216 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] + 1216 avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1217 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT; 1217 nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1218 } 1218 }
1219 } 1219 }
1220 1220
1221 /* Lightning bolt. */ 1221 /* Lightning bolt. */
1222 cv_broadcast(&lbolt); 1222 cv_broadcast(&lbolt);
1223 1223
1224 mutex_exit(&proc_lock); 1224 mutex_exit(&proc_lock);
1225} 1225}